信号与系统§5.1 引言

合集下载

信号与系统-第五章概要

信号与系统-第五章概要

1
(a)
2
1 4
f (k)
y(k 2)
D
y(k 1)
D
y(k)
1
(b)
2
1 4
(a) y(k) f (k) 1 y(k 1) 1 y(k 2)
2
4
y(k) 1 y(k 1) 1 y(k 2) f (k)
2
4
为二阶差分方程 (后向差分 )
(b) y(k 2) f (k) 1 y(k 1) 1 y(k)
N=5
N=6
(5) 复指数序列
f (k) e jk cos k j sin k
同正弦序列一样,若复指数序列是一个周期序列,则 2
应为整数或有理数,否则不是周期序列。
二. 序列的基本运算与波形变换 (1) 相加
f (k) f1(k) f2 (k)
f1 (k )
1
-3 -2 -1 0 1 2 3 k
或:y(k 1) (1-T ) y(k) Tf (k)

y(k 1) (1-T ) y(k ) Tf (k )
利用计算机来求解 微分方程就是根据 这一原理来实现的
y(0) (1T ) y(1) Tf (1) y(1) (1T ) y(0) Tf (0) y(2) (1T ) y(1) Tf (1)
一个周期的正弦信号,经抽样后得到的正弦序列是否
也是周期信号呢? 周期序列的定义:
f (k N) f (k) N为序列的周期,只能为整数。
Asin[(k N ) ] Asin[k N ]
在什么情况下等于 Asin[k+]? N 2 即N 2 / ,对于周期序列 N必须为整数
■ 当正弦序列的2 / 为整数时,该序列为周期序列,周期为N。

信号与系统讲义第五章1引言及无失真传输条件

信号与系统讲义第五章1引言及无失真传输条件

无失真:时域波形传输不变
e(t )
e(t)
线性网络
t
H ( j)
R( j) KE( j)e jt0 R( j) E( j)H ( j)
r (t )
t t0
r(t) K e(t t0 )
H ( j) R( j) Ke jt0 E( j)
频域无失真条件: H ( j) Ke jt0
H( j) K () t0
r(t) e(t)*h(t)
R( j) E( j)H( j) H ( j) LT[h(t)] H ( j) R( j)
E( j)
对稳定系统
H (s)
H ( j) H (s) s j
系统函数还可以通过对微分方程取傅氏变换而得到
求矩形脉冲通过低通滤波器的响应
v1 (t )
E
t
0
输入信号波形
R
傅里叶变换在现代通信系统中的应用非常多,典 型的应用就是——滤波、调制与解调、抽样
频域系统函数——系统的频率响应函数H(jw)
稳定系统:s域系统函数→频域系统函数
频域系统函数H(jw)描述了系统对信号的各频率
成份的加权
傅氏变换将信号分解为无穷多项ejwt信号的叠加
S域系统函数H(s)描述系统对复指数信号est的加
5.3 无失真传输
信号通过系统传输,由于系统对信号中各频率分 量幅度产生不同程度的衰减,使得响应中各频率 分量的相对幅度产生变化,引起幅度失真。
同样地,由于系统对输入信号各频率分量产生的 相移,信号也会出现失真,称为相位失真
频域由相于移系→统时对域信延号时各频率分量产生的相移不与频
输 输
入 出率成yx正((t相t))比对,ss位iinn使((置响11t产t )应生的s1变)in各(化s频i2,nt率()而分2t引量起在2的) 时失间真轴上的

信号与系统郑君里版第五章

信号与系统郑君里版第五章
系统的H(jw)为低通滤波器,不允许高频分 量通过,输出电压不能迅速变化,于是不再表现为 举行脉冲,而是以指数规律逐渐上升和下降。
二、无失真传输 1、信号失真
(1)幅度失真. 系统对信号中各频率分量幅度产生不同程度的衰减, 使响应各频率分量的相对幅度产生变化, 即引入幅度失真.
(2)相位失真. 系统对信号中各频率分量产生相移不与频率成正比, 使响应各频率分量在时间轴上的相对相对位置产生变化, 即引入相位失真.
求响应
V2 (
j)
gE jw jw
(1
e
jw
)
E(
1 jw
1
)(1 jw
e
jw
)
E 1 (1 e jw ) E (1 e jw )
jw
jw
又Q E (1 e j ) F1 E u(t) u(t )
j
E F1 Eetu(t)
j
u2 (t) Eu(t) u(t ) E etu(t) e(t )u(t )
φ(t)=Kpm(t) 其中Kp是常数。于是,调相信号可表示为
sPM(t)=Acos[ωct+Kpm(t)]
(2)频率调制,是指瞬时频率偏移随调制信号m(t)而
线性变化,即
d(t)
dt
k
f
t
m( )d
其中Kf是一个常数
相位偏移为: 可得调频信号为:
FM和PM非常相似, 如果预先不知道调制信号 m(t)的具体形式,则无法判断已调信号是调相信号 还是调频信号。
如果将调制信号先微分,而后进行调频,则得到的是调相波, 这种方式叫间接调相;
如果将调制信号先积分,而后进行调相, 则得到的是调频 波,这种方式叫间接调频。

信号与系统ppt课件

信号与系统ppt课件
X5
信号与系统
§4.2 系统频率响应 ➢ §4.3 无失真系统 ➢ §4.4 理想低通滤波器 ➢ §4.5 系统的因果性 ➢ §4.6 相关函数 ➢ §4.7 激励与响应的谱关系 ➢ §4.8 实用性抽样系统分析模型 ➢ §4.9 幅度调制与解调
——系统函数 ➢ §5.8 连续时间系统的结构框图 ➢ §5.9 s域零极点分布与时域特性的关系 ➢ §5.10 s域系统稳定性判断 ➢ §5.11复频域与频域相结合的系统特性分析
X7
信号与系统
第六章 离散时间系统的时域分析
➢ §6.1 引言 ➢ §6.2 离散时间序列 ➢ §6.3 离散时间系统 ➢ §6.4 常系数线性差分方程的求解 ➢ §6.5 零输入响应与零状态响应 ➢ §6.6 系统单位样值响应 ➢ §6.7 卷积和
X8
信号与系统
第七章 离散时间信号与系统变换域分析
➢ §7.1 引言 ➢ §7.2 Z变换 ➢ §7.3 Z变换的性质 ➢ §7.4 逆Z变换 ➢ §7.5 利用Z变换求解离散系统离散时间系统响应 ➢ §7.6 单位样值响应Z变换 ➢ §7.7 离散时间系统的因果性及稳定性 ➢ §7.8 序列的傅里叶变换 ➢ §7.9 离散时间系统的频率响应 ➢ §7.10 利用离散系统离散时间系统实现对模拟信号的滤波
信号与系统
X2
第一章 信号与系统概论
➢ §1.1 引言 ➢ §1.2 信号的描述和分类 ➢ §1.3 信号的运算 ➢ §1.4 基本信号 ➢ §1.5 系统的描述 ➢ §1.6 系统的特性与分类
信号与系统
X3
信号与系统
第二章 连续时间系统的时域分析
➢ §2.1 引言 ➢ §2.2 常系数线性微分方程 ➢ §2.3 零输入响应与零状态响应 ➢ §2.4 单位冲激响应 ➢ §2.5 信号的时间轴分解 ➢ §2.6 卷积及其性质和计算 ➢ §2.7 基于单位冲激响应的系统特性分析

信号与系统-连续系统的复频域分析

信号与系统-连续系统的复频域分析
连续系统的复频域分析
内容提要
l 拉普拉斯变换 l 系统的拉氏变换分析法
– 零输入响应 – 零状态响应
l 系统稳定条件
§5.1 拉普拉斯变换
一 拉普拉斯变换的定义及收敛域 ①定义 双边拉普拉斯变换对
∞ F (s) = ∫ f ( t ) e st d t −∞ σ + j∞ 1 st F ( s ) e ds f (t ) = ∫ − ∞ σ j 2π j
− st

③时移和尺度变换都有时:
1 s f (at − b) ⇔ F ( )e a a
b −s a
④f(t)时间微分,积分函数的拉普拉斯变换不 仅与 F(s)有关,还与 t-0 点函数值 f(0),函数的 微分值 f (0) 或 函数的积分值 f
n (−n)
(0) 有关。这
一点需要与傅立叶变焕相区分(这里的 n 取整数)
at
才收敛,所以收敛坐标为 σ 0 = a 。 ④右边信号的收敛域在收敛轴以右的 s 平面,既
σ >a
⑤左边信号的收敛域在收敛轴以左的 s 平面, 既σ < β ⑥双边信号的收敛域为 s 平面的带状区域,即
α <σ < β
另外, 对所有拉普拉斯变换来 说,ROC 内部不包括任何极点; 如果信号的收敛域包括虚轴, 则 这个信号的傅立叶变换和拉普 拉斯变换都存在。
⑤初值定理和终值定理应用的条件 关于初值定理,要注意所求的初值是 f(t)在 t=0+时刻的值,而不是 f(t)在 t=0-和 t=0 时刻的值,无论拉氏变换 F(s) 是采用 0-系统的结果还是采用 0-系统 的结果,所求的初值总是 f(0+).
另外,用初值定理 f (0+ ) = lim sF ( s ) 求函数

信号系统-附录A 离散时间信号与系统的基本知识

信号系统-附录A  离散时间信号与系统的基本知识

图A7 系统输入输出的时域关系
同样,卷积和也满足交换律、分配 律和结合律。
其计算步骤也与卷积分十分类似, 可分为如下5步。
(1)将参与卷积的两个序列的变量由n改 写为k,得到x(k)和h(k)。
(2)任选其中一个序列关于k=0进行折叠 反转,得到逆时间序列,例如h(−k)。
(3)将h(−k)右移n位(n现在是参数,不 是自变量)得h(n−k)。
系统频率特性概念也完全类似于连 续时间域,用于表征单频复正弦序列通 过系统时系统对其所产生的作用。
对于x(n) ejn (∞ n ∞) ,系统 h(n)的输出为
y(n) x(n) * h(n)

h(k )e j(nk)
k ∞

ejn
h(k)e jk
k ∞
(A29) (∞ n ∞)
(4)对所有k值求出乘积 x(k)h(n k)并求
和,得到相应n值时的输出序列值y(n)。
(5)对所有可能的n值重复上述过程(如
涉及 n 0 的情况,将h(−k)左移n位),
得到全部的序列值y(n)。
A2.5 差分方程表示的LSI系统
在不少情况下,LSI系统输出的卷积 和形式可以得到进一步的改进,如对于因
在S域中,esT代表了一个延迟时间等 于T的延迟器,而T是信号采样时的采样 间隔,也即各个样本之间的间隔,因此
z1 应该是单位延迟器在Z域中的表示。
事实上,对序列 x(n 1) 来说,其
Z变换为


L x(n 1) x(n 1)zn z1 x(k)zk z1X (z)(A35)
n∞
k ∞
4.单边实指数序列
x(n) an (n) (0 a 1) (n 0, 1, 2, )(A9)

第五章-拉普拉斯变换-前5节

第五章-拉普拉斯变换-前5节

第五章:拉普拉斯变换§5.1 定义、存在性(《信号与系统》第二版(郑君里)4.2)问题的提出:信号()f t 的傅里叶变换存在要求:()[]1L ,f t ∈-∞+∞,但有些信号不绝对可积,例如()1sgn L t ∉。

当时的处理方法是乘以双边指数函数,把符号函数“拉”下来,使相乘以后的信号绝对可积。

(){}(){}||0sgn lim sgn 0t t e t σσσ-→=>F F ,。

因此,便考虑将t e σ-纳入积分核,使非绝对可积信号可以做频谱分析。

为使问题简化,仅考虑t > 0的情形,即因果信号、单边变换。

对因果信号()()()f t f t u t =,(){}()()()j -j 00d d t tttef t f t eet f t e t σωσσω+∞+∞-+--⎡⎤==⎣⎦⎰⎰F()(){}0d stf t e t f t +∞-==⎰L(5-1)定义信号()f t 的(单边)拉普拉斯变换为:()(){}()0d j st F s f t f te t s σω+∞-=+⎰@@,L(5-2)()()()j j 01d d 2t t t f tef t e t e σωσωωπ+∞+∞-+--∞⎡⎤=⎢⎥⎣⎦⎰⎰ 令j s σω=+,σ为常数,d jd s ω=()()()j j j 1d 2jt f t F s e s σσωσπ+∞+-∞=⎰()(){}()j 1j 1d 2j st f t F s F se s σσπ+∞--∞⎰@@L(5-3)(4-2)式和(4-3)式是一对拉普拉斯变换式,()f t 称为原函数,()F s 称为像函数。

定义(指数阶函数):指()f t 分段连续(存在有限个第一类间断点),且00M T ∃>>,,使()0t f t Me σ≤,对t T ∀>。

注:()()0O t f t e σ=。

()F s 存在:()F s <∞。

§5.1.系统函数H(jw)

§5.1.系统函数H(jw)
H ( ) Ke jt0
即 H ( j ) K , ( ) t 0 K和t 0均为实常数
X
•低频部分变化不大 显示了网络的低通特性。
V1
E
o

V2
o

X
5.求v2(t)
v 2 t F 1 V2 为了便于求反变换 V2 对进行变形 j E V2 ( ) sin e 2 j 2 2 j j 2 2 j 2E e e e 2 j 2j E 1 e j j j 1 1 j E 1 e j j
E ut ut Ee t ut Ee t ut E 1 e ut E 1 e
t t
ut
v 1( t )
v 2(t )
E
0
E

t
0

t
X
二.正弦信号激励下的响应


X
结论
v1 ( t ) 是单一频率的信号, v 2 (t )是与v1 (t ) 同频率的信号, V2 ( )的幅度由 H ( 0 )加权,相 与 v1 (t ) sin 0 t 相比, H ( ) 代表了系统对信号的处理效果。 移 ( 0 ) 。
傅氏分析从频谱改变的观点说明激励与响应波形的差 异,系统对信号的加权作用改变了信号的频谱,即改 变了信号特征。
X
总结
系统可以看作是一个信号处处理器:
H 是一个加权函数, 对信号各频率分量进行 加权。

信号的幅度由 H ( ) 加权, 信号的相位由 修正。
对于不同的频率 ,有不同的加权作用,这也是信 号分解,求响应再叠加的过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混合系统
混合系统: 连续时间系统与离散时间系统联合应用。如自控 系统、数字通信系统。 需要A/D、D/A转换。
不能认为数字技术将取代一切连续时间系统的应用 •人类在自然界中遇到的待处理信号相当多的是连 续时间信号,需经A/D、D/A转换。 •当频率较高时,直接采用数字集成器件尚有一些 困难,有时,用连续时间系统处理或许比较简便。 •最佳地协调模拟与数字部件已成为系统设计师的 首要职责。
离散时间信号、离散时间系统
离散时间信号: 时间变量是离散的, 函数只在某些规定的时刻 有确定的值,在其他时间 没有定义。
f t k
t 2 t 1 o
t1 t 2 t 3
tk
离散信号可以由模拟信号抽样而得,也可以由实际系 统生成。 离散时间系统: 系统的输入、输出都是离散的时间信号。如数字 计算机。
本章内容
•离散时间信号及其描述、运算; •离散时间系统的数学模型——差分方程; •线性差分方程的时域解法; •离散时间系统的单位样值响应; •离散卷积。
学习方法
注意离散系统与连续系统分析方法上的联系、 区别、对比,与连续系统有并行的相似性。和前几 章对照,温故而知新。
§5.1 引言
四川文理学院 物理与工程技术系 2009.9
连续时间信号、连续时间系统
连续时间信号: f(t)是连续变化的t的函数,除若干不连续点之外对 于任意时间值都可以给出确定的函数值。函数的波形都 是具有平滑曲线的形状,一般也称模拟信号。 模拟信号 抽样信号 量化信号 连续时间系统: 系统的输入、输出都是连续的时间信号。
量化
f t 4.2 3.1 1.5
f q t
3
采样过程就是对模拟信号的时间取离 散的量化值过程——得到离散信号。
0.9 2T 3T
o
T
4
t
幅值量化——幅值只能分级变化。
2
1

T
2T
3T
t
数字信号:离散信号在各离散点的幅值被量化的信号。
离散时间系统的优点
•便于实现大规模集成,从而在重量和体积方面显示其 优越性; •容易作到精度高,模拟元件精度低,而数字系统的精 度取决于位数; •可靠性好; •存储器的合理运用使系统具有灵活的功能; •易消除噪声干扰; •数字系统容易利用可编程技术,借助于软件控制,大 大改善了系统的灵活性和通用性; •易处理速率很低的信号。
离散时间系统的困难和缺点
高速时实现困难,设备复杂,成本高,通信系统由 模拟转化为数字要牺牲带宽。
应用前景
由于数字系统的优点,使许多模拟系统逐步被淘汰, 被数字(更多是模/数混合)系统所代替; 人们提出了“数字地球”、“数字化世界”、“数 字化生存”等概念,数字化技术逐步渗透到人类工作与 生活的每个角落。数字信号处理技术正在使人类生产和 生活质量提高到前所未有的新境界。
系统分析
连续时间系统——微分方程描述
经典法:齐次解 特解 时域分析 零输入响应 零状态响应 变换域分析 : 拉氏变换法\(傅里叶变换法)
离散时间系统——差分方程描述 差分方程的解法与微分方程类似
经典法:齐次解 特解 时域分析 零输入响应 零状态响应 变换域分析: z变换法
相关文档
最新文档