聚丙烯纤维混凝土试验
聚丙烯纤维混凝土的力学性能试验研究

的 纤 维掺 量 越 大 、 度 越 长 , 凝 土拌 和物 就 越 稠 。 长 混
2 聚丙 烯 纤 维 对 混凝 土 具 有 增强 作 用 。 影 响 因 素有 单 ) 其
的倾 向 , 混 凝 土 和 砂 浆 的 整 体 性 得 到 改 善 , 度 得 到 提 高 。 使 稠
22 纤 维 对抗 压 强 度 的 影 响 .
1l 2试 验 过 程
混 凝 土 试 件 尺 寸 为 10 x 0 m l m 每 组 三 个 试 0 mm 1 0 mx0 m, O 件 .在 N L 2 0 Y 一 0 0型 液压 试 验 机 上 按 照 国标 GB 8 _ 5进 行 J l8
凝 土试 件 尺 寸 1 0 ix 0 m x 0 mm, 组 三 个 试 件 , 据 0 m 10 m 4 0 n 每 根 《 钢纤 维混 凝 土 试验 方 法 》 C C 1 : ) 中 的规 定进 行 测 试 。 (E S3 9 8 2 d混 凝 土抗 折 强 度试 验结 果 见 图 3 8 。
48 口 911 鼬 l i 11 1 1 2fm l ■ I6mm
64 2 .% , 随着 纤 维 掺 量 的增 加增 幅逐 渐加 大 。在 纤 维 - %~ 1 5 且
≈壹\ 袭
1 J1
掺 量 一 定 的 情 况下 , 维 混凝 土 的 劈 拉 强 度 随着 纤 维 长 度 的 纤
8 6 4 2 O
1
^ J
4
增 加而增加 , 当纤 维 掺 量 为 1 k / . 维 长 度 1 mm 的 . gm 时 纤 0 6
纤 维 混 凝 土 的 劈拉 强 度 比纤 维 长 度 9 m 的劈 拉 强 度 提 高 了 a r
聚丙烯纤维高性能混凝土抗渗性能的试验

聚丙烯纤维高性能混凝土抗渗性能的试验通过测试商品混凝土吸水率、渗透高度、抗氯离子渗透性(电通量)、不同深度氯离子浓度等指标,研究了掺入聚丙烯纤维对高性能商品混凝土抗渗性能的影响。
试验结果表明,由于高性能商品混凝土中掺有粉煤灰、硅粉,其抗渗性大大提高;而掺入聚丙烯纤维后吸水率、渗透高度增大,但抗氯离子渗透性无明显变化,需要做进一步的研究。
0 前言为改善高性能商品混凝土抗拉强度低、极限应变小、抗冲击性差、脆性大、易开裂等缺点,满足对商品混凝土高强度高韧性的要求,近年来,通过在高性能商品混凝土中掺入短纤维改善其上述不足正受到广泛重视。
聚丙烯纤维是研究较早并已用于商品混凝土的聚合物纤维之一,它通过大量吸收能量,大幅度提高了商品混凝土抗裂能力及改善抗冲击性能,并提高了商品混凝土的整体性,这些已经为大量试验证实。
但是聚丙烯纤维对商品混凝土抗渗性能的影响,目前存在2 种不同的观点。
一种观点认为:纤维掺入商品混凝土后基体失水面积减小,水分迁移困难,从而使毛细管失水收缩形成的毛细管张力有所减小;同时,由于合成纤维的弹性模量高于凝结初期基体的弹性模量,增加了塑性和硬化初期复合体的抗拉强度,减少了纤维商品混凝土的微裂缝,孔隙结构得到改善,从而提高了商品混凝土的抗渗性[1]。
另一种观点认为:纤维的加入增加了商品混凝土的界面,导致商品混凝土孔隙率提高,抗渗性降低。
关于掺入聚丙烯纤维对商品混凝土抗渗性能的影响,已进行了很多试验研究。
但是,这些研究中大都用渗透高度法,即制作上下底面直径分别为175mm和185mm、高度为150mm的圆柱体试件,养护28d后,测定在恒压条件下24 h 后试件的渗水高度,作为衡量商品混凝土抗渗性的指标。
除采用这种方法外,本文还进行了吸水率、抗氯离子渗透性(电通量)、不同深度氯离子浓度试验,采用不同的指标,综合研究聚丙烯纤维对高性能商品混凝土抗渗性的影响。
1 试验概述1.1 原材料及商品混凝土配合比水泥:大连小野田水泥厂生产的42.5R 普通硅酸盐水泥;粗骨料:最大粒径为20 mm的碎石;细骨料:细度模数为2.9 的河砂;粉煤灰:大连热电厂生产的二级粉煤灰;硅粉:上海埃肯公司生产的硅粉;纤维:PP 纤维,性能见表1;减水剂:sika 高效减水剂。
聚丙烯纤维对混凝土抗压性能的影响

一
、
引言
四 、聚丙 烯纤 维混 凝 土的试 验
(1)原 材 料 的 准 备 水 泥 : 静 天 山普 通 硅 酸 盐 水 泥, 度 等 级 为 4 .: 和 强 25
K, 1 0g g水 K 。 8 纤 维 掺 量 分 别 为 O 00 % .% . 5 , 维 长 度 分 别 为 6 、 、 .5 、01 、O1 %纤 mm 1m O m、1 m 、1 m , 共有两个 因素: m 9 m一 2 纤维掺量和 纤维长度, 了获 为 得 良好的 实验 数据, 本次实验采 用正交 的试验 设计方 法. 每个因素取4 个 水平, 用正交表 L (5, 中第3 、第4 、第5 选 1 4) 6 其 列 列 列不做 安排。 在试验 室配制混凝 土时, 只需配 制l L 便可以满足试验 要求, 5 各原 材 料用量具体 如下表 : 表 1 配 制 1 L 凝 土各 原 材料 用 量 混 5
1
水 泥(g k1
51O .
河砂(g k)
1 O7. 6
碎石(g k)
1 . 614
水(g k)
27
纤维掺量( %)
O
纤维长 度( mm)
6
2
3 4 5 6
7
510 .
51O . 51O 510 . 510 .
51 0 .
项目是桥面工程, 混凝土 的设计 强度 ̄3 M a 据所学的专业知 0p, 根 识 , 鲍罗米公 式, 考专业教 程 《 木工程材料 》Ⅲ. 出配制 结合 并参 土 得 1 昆凝土的基本 原材料 用量 如下: 3 m; 水泥3 0 g河砂7 K , 石1 7 4 K, 1 g碎 7 06
混凝土中添加聚丙烯纤维标准

混凝土中添加聚丙烯纤维标准一、前言混凝土是一种广泛应用于建筑、桥梁、道路等领域的材料。
为了提高混凝土的性能,常常在其中添加各种添加剂。
聚丙烯纤维是一种常见的混凝土添加剂,具有良好的增强作用、抗裂性能和耐久性能。
本文旨在提供一个全面的具体的详细的标准,以指导混凝土中添加聚丙烯纤维的使用。
二、聚丙烯纤维的分类聚丙烯纤维可分为直纤维和波浪纤维两种。
直纤维又可分为单丝和多丝两种,其中多丝又可分为平行排列和交错排列两种。
波浪纤维又可分为单波和双波两种。
三、聚丙烯纤维的性能要求1.纤维长度:聚丙烯纤维的长度应在6mm至48mm之间。
2.直径:聚丙烯纤维的直径应在0.1mm至0.3mm之间。
3.拉伸强度:聚丙烯纤维的拉伸强度应不低于400MPa。
4.伸长率:聚丙烯纤维的伸长率应不低于10%。
5.熔点:聚丙烯纤维的熔点应不低于160℃。
6.溶解度:聚丙烯纤维应在水中不溶。
四、聚丙烯纤维的添加量1.混凝土的添加量:聚丙烯纤维的添加量应按混凝土总重量的0.1%至0.3%计算。
2.混凝土的配合比:混凝土的配合比应根据聚丙烯纤维的添加量进行调整,以保证混凝土的性能。
五、聚丙烯纤维的加入方式聚丙烯纤维的加入应分两次进行。
首先将一部分聚丙烯纤维与水混合,然后加入到混凝土中进行搅拌。
待混凝土搅拌均匀后,再将剩余的聚丙烯纤维加入混凝土中进行搅拌。
六、混凝土的性能要求添加聚丙烯纤维后的混凝土应满足以下要求:1.抗裂性能:混凝土的抗裂性能应显著提高,裂缝宽度应小于0.1mm。
2.抗冻性能:混凝土的抗冻性能应不低于F200级。
3.耐久性能:混凝土的耐久性能应不低于C50级。
七、聚丙烯纤维混凝土的质量控制1.原材料的质量控制:聚丙烯纤维应符合国家标准,并应具有检验报告。
2.生产过程的质量控制:混凝土的生产过程应符合国家标准,并应有相应的质量控制措施。
3.成品的质量控制:混凝土应经过相应的质量检验,符合国家标准和设计要求后方可使用。
八、聚丙烯纤维混凝土的施工要求1.搅拌:混凝土的搅拌应均匀,时间不少于3分钟。
纤维混凝土试验记录

纤维混凝土试验记录实验目的:本次试验旨在研究纤维混凝土的性能,测定其在不同试验条件下的抗压、抗拉和抗弯强度,并对试验结果进行分析。
实验原理:纤维混凝土是在水泥基体中加入纤维材料,并经过搅拌、浇筑、养护等过程形成的一种新型材料。
纤维混凝土能够有效改善水泥基体的脆性,提高其抗裂性能和抗冲击能力,广泛应用于工程实践中。
本实验将对不同配比和不同纤维类型的纤维混凝土进行抗压、抗拉和抗弯强度的测试。
实验材料:1.水泥:采用普通硅酸盐水泥。
2. 骨料:采用粗细骨料混合,粗骨料为5-20mm的碎石,细骨料为0-5mm的人工砂。
3.纤维:采用钢纤维和聚丙烯纤维两种。
4.比例:水泥:骨料:水=1:2:0.4,纤维掺量为水泥质量的1%。
实验步骤:1.配料:按照所需比例将水泥、骨料和纤维按重量配制好,并进行充分混合。
2.浇筑:将配制好的混合料倒入试验模具中,并利用震动台充分震实,确保混凝土充分密实。
3.养护:将浇筑好的试样放入恒温恒湿室中进行养护,定期浇水保持试样的湿度。
4.试验:试样养护满28天后,分别进行抗压、抗拉和抗弯强度测试,记录试验数据。
实验结果:按照以上步骤进行试验,得到的实验数据如下所示:试验组别纤维类型配筋率(%)抗压强度(MPa)抗拉强度(MPa)抗弯强度(MPa)试验组一钢纤维1354.56.9试验组二钢纤维2425.27.8试验组三聚丙烯纤维1313.85.9试验组四聚丙烯纤维2384.67.2实验分析:从以上实验结果可以看出,不同纤维类型和配筋率对纤维混凝土的力学性能有一定影响。
在相同配筋率下,钢纤维混凝土的抗压、抗拉和抗弯强度均高于聚丙烯纤维混凝土。
这是因为钢纤维具有较高的强度和刚性,能够有效增加混凝土的韧性和抗裂性能。
而聚丙烯纤维虽然能够增加混凝土的韧性,但其强度和刚性较低,影响了混凝土的整体力学性能。
此外,我们还发现,在钢纤维混凝土中增加配筋率可以提高其抗压、抗拉和抗弯强度。
这是因为配筋率的增加能够提高混凝土的骨料含量,增加粘结材料的分散性,并增加纤维与水泥基体之间的相互作用。
聚丙烯纤维混凝土综合性能试验研究共3篇

聚丙烯纤维混凝土综合性能试验研究共3篇聚丙烯纤维混凝土综合性能试验研究1聚丙烯纤维混凝土是通过将聚丙烯纤维掺入混凝土中,加以掺和、振捣、浇注、养护而制成的一种新型复合材料。
它不同于传统混凝土材料,具有许多优异的性能。
为了探究聚丙烯纤维混凝土的综合性能,进行了一系列试验研究,结果如下。
1. 抗折强度:通过施加弯曲载荷来测试混凝土的抗弯强度。
试验结果表明,在相同的水泥质量下掺入聚丙烯纤维,混凝土抗折强度明显提高。
2. 抗压强度:采用标准试验方法来测试混凝土的抗压强度。
试验结果表明,掺入聚丙烯纤维的混凝土抗压强度比普通混凝土高。
3. 抗渗性能:混凝土的抗渗性能是评估其耐久性的一个重要指标。
试验结果显示,掺入聚丙烯纤维的混凝土抗渗能力比普通混凝土更好。
4. 抗冻性能:低温环境下混凝土的抗冻性能会受到很大的考验。
试验结果表明,掺入聚丙烯纤维的混凝土在低温环境下具有较好的抗冻性能。
5. 断裂韧性:混凝土的断裂韧性是一个评估其耐久性的重要指标。
试验结果表明,掺入聚丙烯纤维的混凝土具有更好的脆性断裂韧性。
6. 抗风化性能:混凝土的抗风化性能可以反映其耐久性表现。
试验结果显示,掺入聚丙烯纤维的混凝土具有更好的抗风化性能。
综上所述,掺入适量的聚丙烯纤维可以有效地提高混凝土的综合性能。
对于需要具有更好耐久性表现的混凝土结构,可以考虑使用聚丙烯纤维混凝土来提高其性能。
聚丙烯纤维混凝土综合性能试验研究2聚丙烯纤维混凝土是一种新型的混凝土材料,在现代建筑工程中应用越来越广泛。
本文将深入研究聚丙烯纤维混凝土的综合性能试验,探讨其在建筑工程中的应用优势。
一、试验目的本次试验旨在探究聚丙烯纤维混凝土的力学性能、耐久性、抗裂性、抗渗性以及施工性等综合性能,以试验数据为依据,评价聚丙烯纤维混凝土在实际工程中的应用价值。
二、试验方法1.制作试块根据试验要求,制作聚丙烯纤维混凝土试块,按照设计配合比要求配置混凝土原料,加入适量聚丙烯纤维,混凝土表面进行充分振捣,制作20*20*20cm的试块,并进行养护和标记。
聚丙烯纤维混凝土综合性能试验研究

3.3聚丙烯纤维混凝土早期收缩与抗裂性能的影响因素及其作用机理
聚丙烯纤维混凝土的早期收缩和抗裂性能受到多种因素的影响,主要包括纤 维含量、水灰比、养护条件等。其中,纤维含量对早期收缩和抗裂性能的影响最 为显著。随着纤维含量的增加,混凝土内部的微裂缝减少,从而降低了早期收缩 率。同时,纤维的存在也提高了混凝土的韧性,降低了裂缝扩展的风险,提高了 抗裂性能。
本次演示通过试验研究探讨了聚丙烯纤维混凝土早期收缩与抗裂性能之间的 关系。结果表明,聚丙烯纤维的加入可以显著降低聚丙烯纤维混凝土的早期收缩 和提高其抗裂性能。纤维含量、水灰比和养护条件等因素对聚丙烯纤维混凝土的 早期收缩与抗裂性能也有重要影响。
感谢观看
聚丙烯纤维混凝土综合性能试 验研究
01 一、材料与方法
目录
02 二、结果与分析
03 三、结论
04 四、展望与建议
05 参考内容
在建筑领域,混凝土是一种重要的建筑材料,具有不可替代的地位。然而, 混凝土在硬化的过程中,由于水化热、干燥收缩等因素,常常会产生裂缝,影响 其耐久性和安全性。因此,如何提高混凝土的抗裂性能一直是工程师们的重点。 近年来,一种名为聚丙烯纤维混凝土的新型混凝土混合物逐渐引起了人们的。
四、展望与建议
尽管聚丙烯纤维混凝土在提高结构性能方面具有显著的优势,但在实际应用 中仍存在一些挑战。因此,我们提出以下建议以推动聚丙烯纤维混凝土的进一步 发展:
1、深入研究:进一步开展聚丙烯纤维混凝土在不同环境条件下的性能研究, 包括温度、湿度、化学腐蚀等影响因素。这将有助于更全面地了解其适用范围和 局限性。
通过早期收缩试验和压力试验,本次演示得到了聚丙烯纤维混凝土试件的早 期收缩率和抗裂强度数据。如表1所示:
表1聚丙烯纤维混凝土试件早期收缩率和抗裂强度数据 组别早期收缩率(×10-6)抗裂强度(MPa)
聚丙烯纤维混凝土抗裂性能

聚丙烯纤维混凝土抗裂性能为了更好地研究聚丙烯纤维商品混凝土抗裂性能,针对普通商品混凝土、不同体积掺量的聚丙烯纤维商品混凝土,进行了断裂能试验研究。
引言材料的断裂能和断裂韧性是基于断裂力学概念发展而来一种反映商品混凝土抗裂能力和抗冲击能力的力学性能指标,在近30多年来,商品混凝土的断裂参数研究受到普遍关注。
断裂能是指形成单位断裂面所需消耗的能量,以GF 表示。
这一概念在用于商品混凝土研究之前,已在其他材料的研究中应用。
从20 世纪60 年代初开始随着断裂力学被用于研究商品混凝土力学行为,尤其是在70 年代以来逐渐形成的商品混凝土非线性断裂理论中,断裂能GF 已经成为描述商品混凝土断裂性能的主要概念,具有重要的学术意义和应用价值。
国内外对商品混凝土和钢纤维商品混凝土的断裂能和断裂韧性的研究已取得一些成就,并借助于断裂力学,建立了商品混凝土断裂损伤模型。
文中借助对普通商品混凝土和聚丙烯纤维商品混凝土断裂能和断裂韧性的测量和比较,用来分析聚丙烯商品混凝土的破坏机理。
1 试验方法按照断裂力学的研究思路,试样中一般要预制一个或两个初始裂纹,以保证断裂从预制裂纹尖端开始扩展。
Petersson 于1980年用带裂缝的三点弯曲试验梁求商品混凝土的断裂能,证明了其可行性,使得对商品混凝土断裂能的测试前进了一步。
后来RIL EM 也推荐“用带切口的三点弯曲梁确定砂浆和商品混凝土断裂能”作为标准测试方法。
如图1 所示,其定义断裂能是产生单位面积的裂缝所必须的总能量。
在平行于裂缝方向的平面中的投影面积为裂缝面积。
所测量的三点弯曲切口梁的荷载—加载点位移曲线如图2所示。
曲线下的面积可用来计算断裂能。
最终断裂时的变形可以由图中求得。
文中按上述思想设计并完成试验。
用于三点弯曲试验的商品混凝土试件尺寸为100 mm ×100 mm ×400 mm 并带中心裂纹。
测量跨距为300 mm ,梁高度为100 mm ,跨高比为3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚丙烯纤维混凝土试验研究
摘要: 本文笔者以聚丙烯纤维混凝土的配合比为例,简单阐述了聚丙烯纤维混凝土在施工过程中需要注意的重点,并为了验证其抗裂性能而采用的平板约束法。
关键词: 聚丙烯纤维混凝土;配合比;试验;纤维掺量
中图分类号:tu377 文献标识码:a
1 聚丙烯纤维混凝土的配合比重要性
某高速公路特大桥在主墩墩身和连续刚构主梁0#块混凝土施工中分别采用了c40 聚丙烯纤维混凝土和c50 聚丙烯纤维混凝土的设计,有效的抑制了混凝土裂纹的形成,增强了结构物的耐久性。
在混凝土中掺入纤维后,成千上万根的纤维分布在混凝土的内部形成复杂的三维乱向体系,这种体系增加了配合比设计的难度。
以本工程为例c50 高强混凝土要求水胶比低,因此要适当增加胶凝材料的用量或降低用水量,这样就造成新拌混凝土内聚力高,导致混凝土流动阻力增加。
表现在混凝土和易性上就是混凝土的粘聚性较大,不利于混凝土泵送、浇注和密实,而在掺入聚丙烯纤维后,这种三维乱向体系造成粘聚性更大,同时坍落度损失更快。
因此在设计c50 聚丙烯纤维混凝土配合比时,对于混凝土原材料尤其是外加剂的选择更为严格。
聚丙烯纤维混凝土坍落度和坍落度损失是影响聚丙烯纤维混凝土泵送性能的重要因素,因此在混凝土配合比设计方面着重考察影响聚丙烯混凝土坍落度和坍落度损失的因素。
根据普通混凝土配合
比设计理论,影响混凝土坍落度的主要因素有单位混凝土用水量、砂率、碎石级配等,而外加剂是影响单位混凝土用水量的主要因素,因此在聚丙烯纤维混凝土配合比设计方面着重考察了外加剂掺量
和砂率对混凝土工作性的影响。
本工程c50 聚丙烯纤维混凝土配合比原材料采用水泥为万年青p. o52. 5r 普通硅酸盐水泥; 细骨料为细度模数2. 86 的河砂,表观密度为2690 kg /m3 ; 粗骨料为粒径5~20 mm 石灰岩人工碎石; 聚丙烯纤维采用北京三株企画高科技有限公司生产的19mm 改性聚丙烯纤维; 外加剂采用山西凯迪建材有限公司kdsp-1 聚羧
酸盐高性能减水剂。
1. 1 外加剂掺量对聚丙烯纤维混凝土工作性的影响
为了考察外加剂不同掺量对聚丙烯混凝土性能的影响,本试验以本工程普通c50 混凝土的配合比做为基准配合比,纤维采用固定掺量0. 9 kg /m3 ; 采用1. 1%、1. 2%、1. 3% 外加剂掺量分别进行试验,试验结果见表1。
根据试验结果,聚丙烯混凝土坍落度与外加剂掺量成正比,1h 坍落度损失与外加剂掺量成反比。
其中4 号配合比离析,泵送性能不能满足要求。
1. 2 砂率对聚丙烯纤维混凝土工作性的影响
在砂率对聚丙烯纤维混凝土工作性影响方面,不能按照普通c50 配合比设计的条件进行砂率的选取,要通过试验室试配比较,选择
最优的砂率。
笔者根据外加剂不同掺量对聚丙烯纤维混凝土工作性的影响的试验结果,通过增加4#配合比砂率,来调整混凝土和易性,具体试验配合比及拌和物性能试验结果见表2。
根据试验结果,3#配合比混凝土工作性满足高泵送混凝土要求,因此选用3#号配合比在工程上试生产,在混凝土施工过程中3#号配合比应用效果很好,混凝土强度完全满足设计要求,施工质量满足规范要求,未发生混凝土堵管的事故,同时能够很好的抑制混凝土早期塑性裂纹的生成。
2 聚丙烯纤维混凝土抗裂性能的试验研究
2. 1 试验方法
平板约束法试验模拟混凝土在四边全约束状态下的早期裂情况,采用内边尺寸为600mm×600mm×63mm 的钢制方形模具. 模具四边上同时用双螺帽固定排共14 个φ10 ×100mm 螺栓伸向模具
内侧起约作用. 两排螺栓相互交错,便于浇注的混凝土能填密实,成型后,采用电风扇吹风、加热来加速开裂试验,用40 倍读数显微镜对混凝土板的开裂情况进行跟踪观测缝开裂情况,进行分形评价。
2. 2 试验方案
试验中,考虑纤维体积掺量单因素作用,固定水灰比0. 32,水泥用量为485 kg /m3,砂率为39%,采用19mm 长度的聚丙烯纤维掺量分别为0 kg /m3、0. 3 kg /m3、0. 6 kg /m3、0. 9 kg /m3 ;
4 组试验每一配比成型两个试件进行测试.
2. 3 试验结果与分析
表3 为混凝土板开裂结果,由表3 可知聚丙烯纤维的掺入延缓了裂缝的产生和发展,对于同一种长度的纤维,随着掺量的增加延缓了混凝土的开裂,6h最大裂缝宽度,6h 裂缝总长度都减小。
这是因为混凝土中掺入聚丙烯纤维后,与未掺纤维相比,由于表层材料中存在纤维,一方面使其失水面积有所减小,水分迁移较为困难,从而使毛细管失水收缩形成的毛细管张力有所减少; 另一方面,低弹性模量的聚丙烯纤维相对于塑性浆体成为高弹性模量材料,由复合力学理论可知,依靠纤维材料与水泥基之间的界面吸附粘结力、机械啮合力等,通过二者共同受力,增加了材料抵抗开裂的塑性抗拉强度,使材料表层的开裂状况得以减轻,且随着掺量的增加,改善效果愈显著。
3 结论
(1) 聚丙烯混凝土坍落度与外加剂掺量成正比,1h 坍落度损失与外加剂掺量成反比。
同时因为外加剂掺量的增加会发生混凝土离析,要通过调整混凝土配合比砂率来改善混凝土和易性。
(2) 聚丙烯纤维混凝土配合比设计中砂率要比普通混凝土配合比设计中砂率的选取要高,要通过试验室试配比较,选择最优的砂率。
同时通过混凝土试生产验证配合比的合理性。
(3) 聚丙烯纤维的掺入延缓了裂缝的产生和发展,且随着掺量
的增加延缓混凝土开裂的效果愈显著。
参考文献:
[1] 唐明,傅柏权,张戚.聚丙烯纤维混凝土早期塑性开裂特征及分形评价.沈阳建筑大学学报,2007(07) .
[2] 张建峰,罗平,周世华.纤维对混凝土早期塑性开裂的影响.混凝土,2010( 7):76-78.
注:文章内所有公式及图表请以pdf形式查看。