(优辅资源)河南省八市高三上学期第一次测评试题(9月)数学(理)Word版含答案

合集下载

河南省2023届高三上学期第一次考试数学理科试题(解析版)

河南省2023届高三上学期第一次考试数学理科试题(解析版)

“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。

河南八校高三上学期第一次联考数学(理)试题(扫描版)

河南八校高三上学期第一次联考数学(理)试题(扫描版)

河南八校2014-2015学年上学期第二次联考高三数学(理)试题参 考 答 案一、选择题 DCDCD DCCBB CA二、填空题13、3214、10 15、 16、①④ 17.解:(Ⅰ)由2cos cos (tan tan 1)1A C A C -=得: sin sin 2cos cos (1)1cos cos A C A C A C-= 2(sin sin cos cos )1A C A C -= ,,又 ……………6分 (Ⅱ)由余弦定理得:2221cos 22a c b B ac +-== 22()2122a c ac b ac +--∴=, 又,,115sin 224ABC S ac B ∆∴==⨯=…………12分 18.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件 (i =0,1,2,3,4),则i i i i C A P -=44)32()31()( (1)这4个人中恰有2人去参加甲游戏的概率278)32()31()(22242==C A P 3分 (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则, 由于与互斥,故91)31()32()31()()()(44433443=+=+=C C A P A P B P 所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为19……… 7分 (3)ξ的所有可能取值为0,2,4. 由于与互斥,与互斥,故278)()0(2===A P P ξ, 8140)()()2(31=+==A P A P P ξ 8117)()()4(40=+==A P A P P ξ。

所以ξ的分布列是随机变量ξ的数学期望81814812270E =⨯+⨯+⨯=ξ 12分 19.解(1)证明:如图,取的中点,连接,因,则由平面侧面,且平面侧面,得,又平面, 所以.因为三棱柱是直三棱柱,则,所以.又,从而侧面,又侧面,故. -------6分(2)解法一:连接,由(1)可知,则是在内的射影∴即为直线与所成的角,则在等腰直角中,,且点是中点,∴,且,∴过点A作于点,连,由(1)知,则,且∴即为二面角的一个平面角且直角中:11A A ACAEAC===,又,∴sin=ADAEDAE∠==且二面角为锐二面角∴,即二面角的大小为 ----12分解法二(向量法):由(1)知且,所以以点为原点,以所在直线分别为轴建立空间直角坐标系,如图所示,且设,则,,,,,,,设平面的一个法向量,由,得:令,得,则设直线与所成的角为,则得111sin624AC nAC nπ-===,解得,即又设平面的一个法向量为,同理可得,设锐二面角的大小为,则1212121cos cos,2n nn nn nα=<>==,且,得∴锐二面角的大小为. ------------12分20.解:(1)设椭圆的方程为)0(12222>>=+babyax,则.由,得∴椭圆C的方程为. ……2分(2)(i)解:设,直线的方程为,代入,得由,解得由韦达定理得12,22121-=-=+txxtxx. 四边形的面积2213483621txxS-=-⨯⨯=∴当,. …… 4分(ii)解:当,则、的斜率之和为0,设直线的斜率为则的斜率为,的直线方程为由223(2)(1)1(2)1612y k xx y-=-⎧⎪⎨+=⎪⎩…………6分(1)代入(2)整理得222(34)8(32)4(32)480k x k kx k++-+--=同理的直线方程为,可得22243)32(843)32(82kkkkkkx++=+---=+∴2121222161248,3434k kx x x xk k--+=-=++214)(3)2(3)2(212121212121=--+=---++-=--=x x k x x k x x x k x k x x y y k AB 所以的斜率为定值. …………12分21、解:(1)的定义域为.2121()2.a ax a f x ax x x+++'=+= 当时,,故在单调递增;当时,,故在单调递减;当时,令,解得即0,x ⎛∈ ⎝时,;x ⎫∈+∞⎪⎪⎭时,;故在0,⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减;…………(6分) (2)不妨设,而,由(1)知在单调递减,从而对任意,恒有1212()()4f x f x x x --…1221()()4()f x f x x x --…1122()4()4f x x f x x ++… …..(8分) 令,则1()24a g x ax x+'=++ 等价于在单调递减, 即1()240a g x ax x +'=++…,从而22222241(21)42(21)2212121x x x x a x x x ------==-+++…, 故的取值范围为…………….(12分)另解: 设, 则222222222224(21)(41)48448444(21)(1)()(21)(21)(21)(21)x x x x x x x x x x x x x x ϕ-+---⋅+-+--+'====++++ 当1(0,)()0,()2x x x ϕϕ'∈<时,为减函数,1(,)()0,()2x x x ϕϕ'∈+∞>时,为增函数。

河南省八校高三数学上学期第一次联考试题 理(扫描版)

河南省八校高三数学上学期第一次联考试题 理(扫描版)

河南省八校2015届高三数学上学期第一次联考试题理(扫描版)河南八校2014-2015学年上学期第二次联考高三数学(理)试题参 考 答 案一、选择题 DCDCD DCCBB CA二、填空题13、32 14、10 15、e - 16、①④17.解:(Ⅰ)由2cos cos (tan tan 1)1A C A C -=得: sin sin 2cos cos (1)1cos cos A C A C A C -= ∴2(sin sin cos cos )1A C A C -= ∴1cos()2A C +=-, ∴1cos 2B =,又0B π<< 3B π∴= ……………6分 (Ⅱ)由余弦定理得:2221cos 22a cb B ac +-== 22()2122a c ac b ac +--∴=,又a c +=b =27234ac ac ∴--=,54ac =115sin 224ABC S ac B ∆∴==⨯=…………12分 18.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件i A (i =0,1,2,3,4),则i i i i C A P -=44)32()31()((1)这4个人中恰有2人去参加甲游戏的概率278)32()31()(22242==C A P 3分 (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则43A A B ⋃=,由于3A 与4A 互斥,故91)31()32()31()()()(44433443=+=+=C C A P A P B P 所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为19……… 7分(3)ξ的所有可能取值为0,2,4. 由于1A 与3A 互斥,0A 与4A 互斥,故278)()0(2===A P P ξ, 8140)()()2(31=+==A P A P P ξ 8117)()()4(40=+==A P A P P ξ。

河南省八市2018届高三上学期第一次测评试题(9月) 数学(文) Word版含答案

河南省八市2018届高三上学期第一次测评试题(9月) 数学(文) Word版含答案

八市•学评2017〜2018 (上)高三第一次测评文科数学注意事项:1.本试卷共6页,三个大题,23小题,满分150分,考试时间120分钟。

2.本试卷上不要答题.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有 一项是符合题目要求的。

1.己知集合 A = {-2,0,2}, B = {x|x 2-2x <3},则A ∩B =(A){-2,O} (B) {0,2} (C) (-1,2) (D) (—2,-1) 2.已知i 为虚数单位,复数z 满足zi=2-2i ,则z = (A) -2-2i (B) 2+2i (C) 2-i (D) 2+i3.在等差数{a n }中,11=a ,206543=+++a a a a ,则a n= (A)7 (B)8 (C) 9 (D) 104.设m 在[0,5]上随机取值,则关于方程012=++mx x 有实根的概率为 (A)51 (B) 52 (C) 53 (D) 545.直线1-=x y 与圆222)2()3(r y x =++-0)>(r 相切,则r 的值为 (A) 23(B) 22 (C) 2 (D) 86.已知函数⎩⎨⎧≥+-=-,0,1)1(,0<,2)(x x f x x f x 则)6(f =(A)7 (B)8 (C) 9 (D) 107.某几何体的三视图如图所示,则该几何体的表面积为 (A)6 (B) 16(C) 13210+ (D) 13216+8.执行如图所示的程序框图,输出的S 的值为 (A) 23- (B) 0 (C) 23 (D) 39.函数)2<<20,->0,>)(sin()(πϕπωϕωA x A x f +=的部分图象如图所示,则当 ]127,12[ππ∈x , )(x f 的取值范围是A. ]23,23[-B. ]1,23[-C. ]21,21[-D. ]1,21[-10.如图,己知抛物线C:抛物线x y 22=与圆M: 1)2(22=+-y x ,过抛物线C 上一点(2,2)作两条直线与圆M 相切于A 、B 两点,分别交抛物线于E 、F 两点,则直线EF 的斜率等于 (A) 21- (B) 41-(C) 81-(D) 161- 11.已知圆柱21O O 的两底圆周均在球O 的球面上,若圆柱21O O 的底面直径和高相等,则圆柱21O O 的侧面积与球O 的表面积的比值是 (A)35π (B)45π (C) 65π (D) 85π 12.己知方程02321||ln 2=+-mx x 有4个不同的实数根,则实数m 的取值范围是 (A) (0,22e ) (B) (0,22e ] (C) (0,2e ] (D) (0,2e )二、填空题:本大理共4小题,每小题5分。

(优辅资源)河南省郑州市高三上学期入学考试数学(文)试题Word版含答案

(优辅资源)河南省郑州市高三上学期入学考试数学(文)试题Word版含答案

郑州一中2017-2018上期高三入学测试文科数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{6}A x N n =∈≤,2{30}B x R x x =∈->,则AB =( )A .{3,4,5,6}B .{36}x x <≤C .{4,5,6}D .{036}x x x <<≤或 2.已知2a ib i i+=+(,a b R ∈),其中i 为虚数单位,则a b -=( ) A .-3 B .-2 C .-1 D .13.每年三月为学雷锋活动月,某班有青年志愿者男生3人,女生2人,现需选出2名青年志愿者到社区做公益宣传活动,则选出的2名志愿者性别相同的概率为( ) A .35 B .25 C .15 D .3104.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .96里B .48里 C. 192里 D .24里5.已知抛物线28x y =与双曲线2221y x a-=(0a >)的一个交点为,M F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为( )A .530x y ±=B .350x y ±= C. 450x y ±= D .540x y ±= 6.如下程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“mMODn ”表示m 除以n 的余数),若输入的,m n 分别为495,135,则输出的m =( )A .0B .5 C. 45 D .907. ABC ∆的外接圆的圆心为O ,半径为1,2AO AB AC =+,且O A A B =,则向量CA在向量CB 方向上的投影为( ) A .12 B .32- C. 12- D .328.已知*,x y N ∈且满足约束条件1225x y x y x -<⎧⎪->⎨⎪<⎩,则x y +的最小值为( )A .1B .4 C.6 D .7 9.定义运算:13a a24a a 1423a a a a =-,将函数()f x =sin x cox x ωω(0ω>)的图象向左平移23π个单位,所得图象对应的函数为偶函数,则ω的最小值是( ) A .14 B .54 C. 74 D .3410.设曲线()f x x =(m R ∈)上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象要以为( )11.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(=新工件的体积材料利用率原工件的体积)( )A .89πB .169πC. 31)π D.31)π12.设函数22122,02()log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则1224341x x x x x ++的取值范围是( ) A .(3,)-+∞ B .(,3)-∞ C. [3,3)- D .(3,3]-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知n S 是等差数列{}n a 的前n 项和,若54510S a =-,则数列{}n a 的公差为 .14.已知,,A B C 三点都在体积为5003π的球O 的表面上,若AB =060ACB ∠=,则球心O 到平面ABC 的距离为 .15.已知曲线ln y x x =+在点(1,1)处的切线为l ,若l 与曲线2(2)1y ax a x =+++相切,则a = .16.已知12,F F 分别是椭圆22221x y a b+=(0)a b >>的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作12F PF ∠的角平分线交x 轴于点M ,若2122PM PF PF =,则该椭圆的离心率为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足cos (2)cos()b A c a B π=+-. (1)求角B 的大小;(2)若4b =,ABC ∆,求ABC ∆的周长.18. 已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号 (1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 (2)抽取的100人的数学与地理的水平测试成绩如下表:成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有2018442++=.①若在该样本中,数学成绩优秀率是30%,求,a b 的值:②在地理成绩及格的学生中,已知11a ≥,7b ≥,求数学成绩优秀的人数比及格的人数少的概率.19. 如图,在四棱锥P ABCD -中,122PC AD CD AB ====,//AB DC ,AD CD ⊥,PC ⊥平面ABCD .(1)求证:BC ⊥平面PAC ;(2)若M 为线段PA 的中点,且过,,C D M 三点的平面与线段PB 交于点N ,确定点N 的位置,说明理由;并求三棱锥A CMN -的高.20. 已知圆221:60C x y x ++=关于直线1:21l y x =+对称的圆为C .(1)求圆C 的方程;(2)过点(1,0)-作直线l 与圆C 交于,A B 两点,O 是坐标原点,是否存在这样的直线l ,使得在平行四边形OASB 中OS OA OB =-?若存在,求出所有满足条件的直线l 的方程;若不存在,请说明理由.21. 已知函数2()ln (1)f x x a x x =-+-. (1)讨论函数()f x 的单调性;(2)当1a <时,证明:对任意的(0,)x ∈+∞,有2ln ()(1)1xf x a x a x<--+-+. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程为1cos sin x ty t=+⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系. .(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2sin()4πρα+=曲线1C 的极坐标方程为0θα=,其中0α满足0tan 2α=,曲线1C 与圆C 的交点为,O P ,与直线l 的交点为Q ,求线段PQ 的长. 23.选修4-5:不等式选讲已知函数()21f x x =-.(1)求不等式()12f x x ++<的解集;(2)若函数()()(1)g x f x f x =+-的最小值为a ,且m n a +=(0,0m n >>),求41m n+的最小值.试卷答案一、选择题1-5:CABAB 6-10: CDBD 11、12:AD二、填空题13. 2 14. 3 15. 8 16.2三、解答题17.(1)∵cos (2)cos()b A c a B π=+-,∴cos (2)(cos )b A c a B =+-. 由正弦定理可得,sin cos (2sin sin )cos B A C A B =--, 即sin()2sin cos sin A B C B C +=-=又角C 为ABC ∆内角,sin 0C >,∴1cos 2B =-,又(0,)B π∈,∴23B π=.(2)有1sin 2ABC S ac B ∆==4ac =. 又2222()16b a c ac a c ac =++=+-=∴a c +=ABC ∆周长为4+ 18.解:(1)785,667,199. (2)①7930%100a++=,∴14a =;10030(20184)(56)17b =--++-+=.②100(7205)(9186)431a b +=-++-++-=. 因为11a ≥,7b ≥,所以,a b 的搭配:(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),(24,7),共有14种.设11a ≥,7b ≥时,数学成绩优秀的人数比及格的人数少为事件A ,5a b +<. 事件A 包括:(11,20),(12,19),共2个基本事件;21()147P A ==,数学成绩优秀的人数比及格的人数少的概率为21147=.19.(1)证明:连接AC ,在直角梯形ABCD 中,AC ==BC ==222AC BC AB +=,即AC BC ⊥.又PC ⊥平面ABCD ,∴PC BC ⊥,又AC PC C =,故BC ⊥平面PAC .(2)N 为PB 的中点,因为M 为PA 的中点,N 为PB 的中点,所以//MN AB ,且122MN AB ==. 又∵//AB CD ,∴//MN CD ,所以,,,M N C D 四点共面, 所以点N 为过,,C D M 三点的平面与线段PB 交点.因为BC ⊥平面PAC ,N 为PB 的中点,所以N 到平面PAC 的距离12d BC ==又111222ACM ACP S S AC PC ∆∆==⨯⨯⨯=1233N ACM V -==.由题意可知,在直角三角形PCA中,PA ==,CM =,在直角三角形PCB中,PB ==,CN =CMN S ∆=设三棱锥A CMN -的高为h,1233N ACM A CMN V V h --===,解得h =故三棱锥A CMN -20.解:(1)圆1C 化为标准为22(3)9x y ++=.设圆1C 的圆心1(3,0)C -关于直线1:21l y x =+的对称点为(,)C a b ,则111CC k k ∙=-, 且1CC 的中点3(,)22a bM -在直线1:21l y x =+上, 所以有213(3)102ba b a ⎧⨯=-⎪⎪+⎨⎪--+=⎪⎩,解得12a b =⎧⎨=-⎩所以圆C 的方程为22(1)(2)9x y -++=.(2)由OS OA OB BA =-=,所以四边形OASB 为矩形,所以OA OB ⊥, 是使OA OB ⊥,必须使0OA OB ∙=,即:12120x x y y +=.①当直线l 的斜率不存在时,可得直线l 的方程1x =-,与圆22(1)(2)9C x y -++= 交于两点(2)A -,(1,2)B -.因为(1)(1)2)(2)0OA OB ∙=--+=,所以OA OB ⊥,所以当直线l 的斜率不存在时,直线:1l x =-满足条件.②当直线l 的斜率存在时,可设直线l 的方程为(1)y k x =+. 设11(,)A x y ,22(,)B x y ,由22(1)(2)9(1)x y y k x ⎧-++=⎨=+⎩,得2222(1)(242)440k x k k x k k +++-++-=由于点(1,0)-在圆C 内部,所以0∆>恒成立.1,2x =21222421k k x x k +-+=-+,2122441k k x x k +-∙=+要使OA OB ⊥,必须使0OA OB ∙=,即:12120x x y y +=,也就是:221224*4(1)(1)01k k k x x k++++=+ 整理得:222222244242(1)011k k k k k k k k k+-+-+-∙+=++. 解得:1k =,所以直线l 的方程为1y x =+.存在直线1x =-和1y x =+,它们与圆C 交于,A B 两点,且四边形OASB 对角线相等. 21.解:(1)由题知2'2(1)1()a x x f x x-+-+=(0x >),当1a ≠-时,由'()0f x =得22(1)10a x x ++-=且98a ∆=+,1x =,2x =①当1a =-时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减; ②当1a >-时,()f x 在2(0,)x 上单调递增,在2(,)x +∞上单调递减; ③当98a ≤-时,()f x 在(0,)+∞上单调递增; ④当918a -<<-时,()f x 在2(0,)x 和1(,)x +∞上单调递增,在21(,)x x 上单调递减. (2)当1a <时,要证2ln ()(1)1xf x a x a x<-+-+在(0,)+∞上恒成立,只需证ln ln 1xx x a x-<--+在(0,)+∞上恒成立,令()ln F x x x =-,ln ()1xg x a x=-+-, 因为'1()1F x x=-, 易得()F x 在(0,1)上递增,在(1,)+∞上递减,故()(1)1F x F ≤=- 由ln ()1x g x a x =-+-得'221ln ln 1()x x g x x x --=-=(0x >). 当0x e <<,'()0g x <;当x e >时,'()0g x >. 所以()g x 在(0,)e 上递减,在(,)e +∞上递增. 所以1()()1g x g e a e≥=-+-. 又1a <,∴1111a e e-+->->-,即max min ()()F x g x <, 所以ln ln (1)xx x a x x-<--+在(0,)+∞上恒成立, 故1a <时,对任意的(0,)x ∈+∞,ln ()(1)xf x a x x<--+恒成立.22.(1)圆C 的普通方程为22(1)1x y -+=,又cos x ρθ=,sin y ρθ=,所以圆C 的极坐标方程为2cos ρθ=;(2)设11(,)ρθ为点P 的极坐标,则有1112cos tan 2ρθθ=⎧⎨=⎩,解得11tan 2ρθ⎧=⎪⎨⎪=⎩设22(,)ρθ为点Q的极坐标,22222(sin cos cos sin )44tan 2ππρθθθ⎧+=⎪⎨⎪=⎩解得22tan 2ρθ⎧=⎪⎨⎪=⎩由于12θθ=,所以12PQ ρρ=-=PQ23.(1)3,11()12,1213,2x x f x x x x x x ⎧⎪-≤-⎪⎪++=-+-<<⎨⎪⎪≥⎪⎩,当1x ≤-时,32x -<,得23x >-,即x φ∈;精 品 文 档试 卷 当112x -<<时,22x -+<,得0x >,即102x <<; 当12x ≥时,32x <,得23x <,即1223x ≤<. 综上,不等式的解集为2(0,)3. (2)由条件得()2123(21)(23)2g x x x x x =-+-≥---=,当且仅当13[,]22x ∈时,其最小值2a =,即2m n +=.又411411419()()(5)(52222n m m n m n m n m n +=++=++≥+=, 所以41m n +的最小值为92,当且仅当43m =,23n =时等号成立.。

(优辅资源)河南省名校联盟高三上学期适应性考试(9月)数学(文)Word版含答案

(优辅资源)河南省名校联盟高三上学期适应性考试(9月)数学(文)Word版含答案

河南名校联盟2017-2018学年度高三适应性考试文科数学一.选择题:1.已知i 为虚数单位,则21i+=( ) A.-2i B.2i C.1-I D.1+i2.已知集合{|1,A x x =≤-或1}x ≥,集合{|01}B x x =<<,则()R C A B 为A.(,0][1,)-∞+∞B. (0,1)C. (0,1]D.[-1,1]3.为检测某校高一学生的身高状况,现采用先分层抽样后简单随机抽样的方法,抽取一个容量为300的样本,已知每个学生被抽取的概率为0.25,且男女的比例为3:2,则该高校高一年级男生的人数为( )A.600B.1200C.720D.9004.在等比数列{}n a 中,1344a a a ==,则为6a =( )A.-6B.8±C.-8D.85.如图所示为一个8X8的国际象棋棋盘,其中每个格子的大小都一样,向棋盘内随机抛撒100枚豆子,则落在黑方格内的豆子总数最接近( ) A.40 B.50 C.60 D.646.空间有不重合的平面,,αβγ和直线a,b,c,则下面四命题中正确的有1p :若αβ⊥且αγ⊥,则β∥γ;2p :若a ⊥b,b ⊥c,则a ∥c3p :若,a b αα⊥⊥,则a ∥b;4p :若a ⊥α,b ⊥β,且αβ⊥,则a ⊥bA. 1p ,2pB. 2p ,3pC. 1p ,3pD. 3p ,4p7.《九章算术》中介绍了一种“更相减损术”,用于求两个正整数的最大公约数,将该方法用算法流程图表示出来如下,若输入a=20,b=8,则输出的结果为( ) A.a=4,i=3 B.a=4,i=4 C.a=2,i=3 D.a=2,i=48.,其三视图如图所示,图中均为正方形,则该几何体的体积为( ) A.16 B.163 C.83D.8 9.变量x,y 满足22221x y x y y x +≤⎧⎪-≥-⎨⎪-≥⎩,则z=3y-x 的取值范围为( )A.[1,2]B.[2,5]C.[2,6]D.[1,6]10.已知()()xf x x a e =+的图象在x=-1与x=1处的切线互相垂直,则a=( ) A.-1 B.0 C.1 D.211.过抛物线22(0)y px p =>的焦点作一条斜率为1的直线交抛物线于A ,B 两点,过着两点向y 轴引垂线交y 轴于D ,C ,若梯形ABCD的面积为p=( ) A.1 B.2 C.3 D.4 12.若对于任意的120x x a <<<都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A.2eB.eC.1D.0.5 二.填空题:13.已知非零向量,a b 满足(),(4)a a b b a b ⊥+⊥+,则:b a =__________________14.已知圆O :221x y +=,点12534(,),(,)131355A B -,记射线OA 与x 轴正半轴所夹的锐角为α,将点B 绕圆心O 逆时针旋转α角度得到C 点,则点C 的坐标是_________15.等差数列{}n a 的前n 项和为n S ,已知561410,14a a S +=-=-,则0n S =时,n=( )16.以双曲线22221(0,0)x y a b a a-=>>的两焦点为直径作圆,且该圆在x 轴上方交双曲线于A ,B 两点;再以线段AB 为直径作圆,且该圆恰好经过双曲线的两个顶点,则双曲线的离心率为( )三.解答题(共70分,解答题应写出文字说明,证明过程和演算步骤,第17—21题为必考题,每个试题考生都必须解答,第22,23题为选考题,考生根据要求作答)17.锐角△ABC 的内角A ,B ,C 的对边分别为a,b,c,已知△ABC 的外接圆半径为R ,且满足2sin 3R a A =(1)求角A 的大小(2)若a=2,求△ABC 周长的最大值18.如图所示,在四棱锥P —ABCD 中,底面ABCD 为直角梯形,∠ABC=∠BAD=90°, △PDC 和△BDC 均为等边三角形,且平面PDC ⊥平面BDC ,点E 为PB 的中点 (1)求证:AE ∥平面PDC (2)若△PBC的面积为2,求四棱锥P —ABCD 的体积19.某学校对甲乙两个班级进行了物理测试,成绩统计如下(每班50人)(2)成绩不低于80分的记为“优秀”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精 品 文 档
试 卷
八市•学评2017〜2018 (上)高三第一次测评
理科数学
注意事项:
1.本试卷共6页,三个大题,23小题,满分150分,考试时间120分钟。
2.本试卷上不要答题.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷
上的答案无效。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有 一项是符
合题目要求的。
1.己知全集跳集合 A = {-2,0,2},CuB = {x|x2-2x-3> 0},则A∩B =
(A> {-2} (B) {0,2} (C) (-1,2) (D) (—2,-1]

2.已知i为虚数单位,复数z的共轭复数为z,且满足2z+z= 3-2i,则z =
(A) l-2i (B) l+2i (C) 2-i (D) 2+i
3.已知等差数{an}中,92832823aaaa, 且an<0,则数列的前10项和为
(A) -9 (B) -11 (C) -13 (D) -15
4.从[0, 2]内随机取两个数,则这两个数的和不大于1的概率为
(A) 61 (B) 81 (C) 41 (D) 21
5.某几何体的三视图如图所示,则该几何体的体积为
(A) 2 (B) 4 (C) 6 (D) 12

6.已知函数,1>,22,1,2)(3xxxxfx则满足2)(af的实数a的取
值范围是
(A) (-∞, -2) U (0, +∞) (B) (-1,0)
(C )(-2, 0) (D)(-∞, -2) U (0, +∞)
7.二项式5)221(yx的展开式中23yx的系数是
(A) 5 (B) -20 (C) 20 (D) -5
8.执行如图所示的程序框图,输出的S的值为

(A) 23 (B) 0 (C) 23 (D) 3
精 品 文 档
试 卷
9.函数)2<<20,->0,>)(sin()(AxAxf的部分图象如图所示,则当
]127,12[x
, )(xf的取值范围是

A. ]23,23[ B. ]1,23[
C. ]21,21[ D. ]1,21[
10.己知双曲线C: 12222byax (a> 0,b>0)的渐近线与抛物线pxy22(p>0)的准线分别
交于A,B两点,若抛物线E的焦点为F,且0FBFA,则双曲线C的离心率为
(A) 2 (B) 3 (C) 2 (D) 5
11.三棱锥A一BCD的一条棱长为a,其余棱长均为l.当三棱锥A-BCD的体枳最大时,
它的外接球的表面积为
(A) 35 (B) 45 (C) 65 (D) 85
12.己知方程02321||ln2mxx有4个不同的实数根,则实数m的取值范围是

(A) (0,22e) (B) (0,22e] (C) (0,2e] (D) (0,2e)
二、填空题:本大理共4小题,每小题5分。
13.若平面向量a与b的夹角为900,a = (2,0),|b|=1,则|a + 2b]= .

14.已知实数x,y满足不等式组,,2,0y-,01myxxyx,且z = y - 2x的最小值为-2 ,则实数
m= 。
15.洛书古称龟书,是阴阳五行术数之源。在古代传说中有神龟出于洛水,
其甲壳上有此图案。如图结构是戴九履一,左三右七,二四为肩,六八
为足,以五居中。洛书中蕴含的规律奥妙无穷,比如:42+92 + 22=82 +12 +62,
据此你能得到类似等式是 .
16.己知数列{an}满足1111)1(2)1(2,0nnnnnnnnnaaaaaaaaa,且
精 品 文 档
试 卷
3
1
1
a
,则数列{an}的通项公式an = 。

三、解答题:解答应写出文字说明、证明过程或演算步骤。
-b+yf2c a
17.(本小题满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c , 已知

AaBcbcoscos
2

(I)求角A的大小;
(II)若a = 2,求的面积S的最大值。
18.(本小题满分12分)在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,四

边形ABCD是边长为2的菱形,∠BAD = 600, DD1=3, 12FCCF;E,
G分别是M和DF的中点,
(I)求证:CG丄平面DEF;
(II)求二面角A1-DE-F的余弦值。
19.(本小题满分12分)某投资公司现提供两种一年期投资理财方案,—年后投资盈亏的倩况

(I)甲、乙两人在投资顿问的建议下分别选择“投资股市”和“购买基金”,若一年后他们
中至少有一人盈利的概率大于43,求m的取值范围;
(II) 21m,某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选
出—种,那么选择何种方案可使得一年后的投资收益的数学期望值较大。
20.(本小题满分12分〉己知圆C:8)1(22yx,定点A(1,0),M为圆上一动点,线段
m的垂直平分线交线段MC于点N,设点N的轨迹为曲线E.
(I)求曲线£的方程:
(II)若经过F(0, 2)的直线L交曲线E于不同的两点G,H (点G点F,H之间),且满足
FHFG53
,求直线L的方程。
精 品 文 档
试 卷
21.(本小题满分 12分)已知函数Raxaxaxxf,2)22(2ln)(2,
(I)当a= l时,求曲线)(xf在点(1,)1(f)处的切线方程;
(II)若],1[x时,函数)(xf的最小值为0,求的取值范围。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分。作答时请写清
题号。
22.(本小题满分10分〉选修4-4:坐标系与参数方程

在直角坐标系xOy中,直线l的参数方程为,,22tytx(t为参数)。在以坐标原点为
极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为sin2.
(I)求直线/的普通方程和曲线c的直角坐标方程t
(II)已知点A(0,1).若点P是直线l上一动点,过点P作曲线C的两条切线,切点分别为M,
N,求四边形面积的最小值。
23.(本小题满分10分),选修4-5:不等式选讲
己知不等式|2x-l|+|x+1|<2的解集为M.
(I)求集合M;
(II)若整数Mm,正数a,b,c满足a+6+4c = 2m,证明:8111cba.
精 品 文 档

试 卷
精 品 文 档

试 卷
精 品 文 档

试 卷
精 品 文 档

试 卷
精 品 文 档

试 卷
精 品 文 档

试 卷

相关文档
最新文档