第三章酶化学

合集下载

生物化学第三章 酶

生物化学第三章  酶

(四)酶的比活力(比活性) • 酶的比活力是指每单位质量样品中的酶 活力,即每毫克酶蛋白中所含的活力单 位数或每千克酶蛋白中所含的Kat数。
比活力=
酶活力单位数 酶蛋白质量(mg)
• 比活力是表示酶制剂纯度的一个重要指 标,对同一种酶而言,酶的比活力越高, 纯度越高。
七、酶促反应动力学
• 酶促反应动力学主要研究酶催化的反 应速度及影响反应速度的各种因素。 • 在探讨各种因素对酶促反应速度的影 响时,通常测定其初始速度来代表酶
单纯酶 酶→ 结合酶(全酶)→ 辅助因子→ 酶蛋白 辅酶 辅基 金属离子

●酶蛋白与辅助因子单独存在时均无催化活性,二 者只有结合成完整的分子时,才具有催化活性。 ●一种酶蛋白只与一种辅酶结合,组成一种全酶, 催化一种或一类底物进行某种化学反应。 ●一种辅酶可以和多种酶蛋白结合,组成多种全酶, 分别催化不同底物进行同一类反应。
(三) 诱导契合学说-关于酶作用专一性的假说 ●1890年,Emil Fischer提出“锁钥学说” :底 物的结构和酶活性部位的结构非常吻合,就象 锁和钥匙一样,这样它们就能紧密结合形成中 间产物。
底物
+

酶 –底物复合物
●1958年,Koshland提出“诱导契合学说”: 酶活性部位的结构与底物的结构并不特别 吻合,但活性部位具有一定的柔性,当底 物与酶接近时,可以诱导酶活性中心的构 象发生改 变,使之 成为能与 底物分子 密切结合 的构象 。
促反应速度,即底物转化量 <5% 时的
反应速度。
(一)酶浓度对反应速度的影响 • 当反应系统中底物的浓度足够大时, 酶促反应速度与酶浓度成正比,即 ν =k[E]。
(二) 底物浓度对反应速度的影响

生物化学 第三章 酶(共65张PPT)

生物化学  第三章 酶(共65张PPT)
概念: 抑制剂和底物的结构相似,能与底物竞争酶的活性中心,从而阻碍酶底物复合物的形成,使酶的活性降低。
含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax

酶

(1)大多数酶是蛋白质(Most enzymes are proteins )
白酶的结晶,并进一步证明了酶是蛋白质。
J.B.Sumner
J.H.Northrop
酶是蛋白质的证据:
1 酶的化学组成,氮16%。
2 在水溶液中发生两性解离,有等电点。
3 水解产物为氨基酸。
4 凡使蛋白质变性的因素作用于酶也使之变性。
Menten推导了米氏方程
2
米氏方程的推导
Et ES
SE
S
k 1
k1
ES
ES
P E
k2
[ES]生成速度: v1 [ES]分解速度:v2
k1 Et ESS
k1ES k2 ES
当酶反应体系处于恒态时:
2.在分离提纯过程中,不能剧烈搅拌。
3.在提纯溶剂中加一些保护剂,如少量EDTA (乙二胺四乙酸)、少量β-巯基乙醇。
4.在分离提纯过程中要不断测定酶活力和蛋白 质浓度,从而求得比活力,还要计算总活力。
(二)酶活力的测定 1 定义:酶催化一定化学反应的能力称酶 活力(enzyme activity,也称酶活性), 酶活力通常以最适条件下酶所催化的化学反 应的速度来确定。
例 2H2O2→2H2O+O2
1mole H2O2酶 1mole Fe3+ 能催化 5×106mole H2O2的分解 只能催化6×10,specificity)
1、绝对专一性(absolute specificity)
例:
NH2 C O NH2
H
—CH2—S: · · H —CH2—C=CH HN CH N:
His-咪唑基
4、 酶的活性中心的微环境

生物化学 第3章 酶

生物化学 第3章 酶

生物化学第3章酶生物化学第3章酶第3章酶自学建议1.掌握酶及所有相关的概念、酶的结构与功能的关系、酶的工作原理、酶促反应动力学特点、意义及应用。

2.熟识酶的分子共同组成与酶的调节。

3.了解酶的分类与命名及酶与医学的关系。

基本知识点酶是对其特异底物起高效催化作用的蛋白质。

单纯酶是仅由氨基酸残基组成的蛋白质,融合酶除所含蛋白质部分外,还所含非蛋白质辅助因子。

辅助因子就是金属离子或小分子有机化合物,后者称作辅酶,其中与酶蛋白共价紧密结合的辅酶又称辅基。

酶分子中一些在一级结构上可能相距很远的必需基团,在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这一区域称为酶的活性中心。

同工酶就是指催化剂相同化学反应,酶蛋白的分子结构、化学性质乃至免疫学性质相同的一组酶,就是由相同基因编码的多肽链,或同一基因mRNA分解成的相同mrna所译者的相同多肽链共同组成的蛋白质。

酶促反应具有高效率、高度特异性和可调节性。

酶与底物诱导契合形成酶-底物复合物,通过邻近效应、定向排列、表面效应使底物容易转变成过渡态。

酶通过多元催化发挥高效催化作用。

酶促反应动力学研究影响酶促反应速率及其影响因素,后者包括底物浓度、酶浓度、温度、ph、抑制剂和激活剂等。

底物浓度对反应速率的影响可用米氏方程表示。

v?vmax[s]km?[s]其中,km为米氏常数,其值等同于反应速率为最小反应速率一半时的底物浓度,具备关键意义。

vmax和km需用米氏方程的双倒数作图去求得。

酶在拉沙泰格赖厄县ph和拉沙泰格赖厄县温度时催化活性最低,但拉沙泰格赖厄县ph和拉沙泰格赖厄县温度不是酶的特征性常数,受到许多因素的影响。

酶的抑制作用包含不可逆遏制与对称遏制两种。

对称遏制中,竞争抑制作用的表观km值减小,vmax维持不变;非竞争抑制作用的km值维持不变,vmax增大,反竞争抑制作用的km值与vmax均增大。

在机体内酶活性与含量的调节是代谢调节的重要途径。

第三章 酶化学

第三章 酶化学

第三章酶化学1.试比较酶与非酶催化剂的异同点。

2.解释酶作用专一性的假说有哪些?各自的要点是什么?3.酶的习惯命名法的命名原则是什么?5.已知丙氨酸是某酶的底物结合部位上的一个氨基酸;一次突变丙氨酸转变为甘氨酸,但酶活性没有受到影响。

在另一次突变时,丙氨酸变成了谷氨酸,使该酶的活性明显丧失,请分析原因。

6.在一酶促反应中,若底物浓度为饱和,并有一种抑制剂存在,问:1)继续增加底物浓度,2)增加抑制剂浓度,反应速度将如何变化?为什么?8.何谓共价调节酶?举例说明其如何通过自身活性的变化实现对代谢的调节。

10.举例说明酶的专一性及其研究意义是什么?12.下表数据是在没有抑制剂存在或有不同浓度的抑制剂存在时测得的反应速度随底物浓度变化的情况:1)无抑制剂存在时,反应的最大速度和Km是多少?2)若有2mmol的抑制剂存在,反应的最大速度和Km又是多少?该抑制剂属于何种类型的抑制作用?EI复合物的解离常数是多少?3)若有100mmol的抑制剂存在,最大反应速度和Km又是多少?该种抑制剂属于何种类型的抑制作用?EI复合物的解离常数是多少?13.举例说明酶的竞争性抑制作用及其研究意义。

16.酶原及酶原激活的生物学意义是什么?17.为什么吸烟者患肺气肿的可能性较大?18.从一级结构看,胰蛋白酶含有13个赖氨酸和2个精氨酸,为什么胰蛋白酶不能水解自身?20.以E.coli天冬氨酸转氨甲酰酶(ATCase)为例说明变构酶的结构特征及其在代谢调节中的作用?21.虽然凝血酶和胰蛋白酶的性质有许多相似之处,但胰蛋白酶原经自身催化可转变为胰蛋白酶,而凝血酶原不能,为什么?22.何谓同工酶?举例说明其分子结构的特征及研究意义?23.胰蛋白酶原的第2,3,4,5位氨基酸都是天门冬氨酸,这一结构特征的意义是什么?24.为什么胰脏酶原激活过程中产生的肽链的C一末端氨基酸一般是精或赖氨酸?27.为什么说N一磷乙酰基L一天门冬氨酸(PALA)是研究天门冬氨酸转氨甲酸酶(AT -Case)性质的特异性试剂?28.碱性磷酸酶水解1一磷酸葡萄糖产生葡萄糖和磷酸。

生物化学03第三章 酶

生物化学03第三章 酶

三、 酶的命名与分类
(一)酶的命名
1.习惯命名法——推荐名称
通常以酶催化的底物、反应的性质以及酶的来源命名。 (1) 依据酶所催化的底物命名,如淀粉酶等。 (2) 依据催化反应类型命名,如脱氢酶、转氨酶等。 (3) 综合上述两项原则命名,如乳酸脱氢酶等。 2. 系统命名法——系统名称 规定各种酶名称要明确标示酶的底物与反应类型,如 果一种酶催化两个底物,应在酶系统名称中同时写入 两种底物的名称,用“:”把它们分开,如果底物之 一是水,则水可省略不写。
底物
反应总能量改变
产物 应 过 程
酶促反应活化能的改变

一、酶的活性中心(active center)
(一)什么是活性中心(活性部位)
指在整个酶分子中,只有一小部分区域 的aa残基参与对底物的结合和催化作用,这
些特异的aa残基比较集中的区域称为酶的活
性中心或称活性部位。
(二)酶活性中心的组成
结合部位:酶分子中与结合底物有关的部位。
1. 结合酶的酶蛋白与辅助因子协同作用才能发挥 催化作用。
酶蛋白
(无催化活性)
+ 辅助因子
(无催化活性)
全酶
(有催化活性)
2.全酶各部分在催化反应中的作用
(1)酶蛋白决定反应的特异性。 (2)辅助因子决定反应的种类与性质。
3.辅酶:属于有机分子类型的辅因子;辅酶又可
分为一般的辅酶和辅基两类(按其与酶蛋白结合
酶的调节部位可以与某些化合物可逆地非共价结 合,使酶发生结构的改变,进而改变酶的催化活性, 这种酶活性的调节方式称~。

别构酶:多为寡聚酶
正效应物(别构激活剂) 负效应物(别构抑制剂)
效应物(别构效应剂) (多为小分子化合物)

生物化学第三章酶化学

生物化学第三章酶化学

通式:AH2+B→BH2+A
系统命名可分为19亚类,习惯上可分为4个亚类: (1)脱氢酶:受体为NAD或NADP,不需氧。
(2)氧化酶:以分子氧为受体,产物可为水或H2O2,常需黄素辅基。
(3)过氧化物酶:以H2O2为受体,常以黄素、血红素为辅基。 (4)氧合酶(加氧酶):催化氧原子掺入有机分子,又称羟化酶。按
His 活性中心重要基团: His57 , Asp102 , Ser195
Asp
3 活性中心的研究方法 1.酶分子侧链基团修饰法 (1)非共价特异修饰法: (2)特异性共价修饰法 (3)亲和标记法
2.动力学参数测定方法 3.X-射线晶体结构分析法 4.定点诱变法
二 酶原及酶原的激活 没有催化活性的酶的前体称为酶原(zymogen)。
V max 初 速 度 v c b 1/2 V max
a
0
Km
[S]
图5-14 底物 浓度对 酶促反 应速度 的影响
酶促反应速度V与底物浓度[S]的关系
(二)Michaelis-Menten方程和米氏常数
米氏方程式推导来源于中间产物学说 解释酶促反应中底物浓度和反应速率关系的最合理的
学说是中间产物学说。该学说认为酶促反应形成酶-

通式: AB→A+B

包括醛缩酶、水化酶、脱羧酶等。共7个亚 类。
5、异构酶类 催化同分异构体之间的相互转化。

通式:A→B
其中:A、B为同分异构

包括消旋酶、异构酶、变位酶等。共6个亚 类。
6、合成酶类 催化由两种物质合成一种物质,必须与ATP 分解相偶联。也叫连接酶,如DNA连接酶。
通式:A+B+ATP→AB+ADP+Pi 或 A+B→AB+AMP+PPi

生物化学:第三章 酶学

生物化学:第三章 酶学

为Tyr 248 为Arg 145
Zn
为Glu 270 为底物
R
R R
A.非差 示标记
差 示 标 记 法 图 解
B. 差示 标记
(底物)
R
R
R
Hale Waihona Puke R*RR*
亲和标记法
根据酶与底物特异结合的性质,设计或合成一种含有反应基团的底物类似
物作为活性部位基团的标记试剂。这种试剂象底物一样进入活性部位,接
近结合位点,并以其活泼的化学基团与活性部位的某一基团共价结合,而 指示出酶活性部位的特征。
“锁钥学说”
(lock and key thoery):
Fischer, (1890):酶 的活性中心 结构与底物 的结构互相 吻合,紧密 结合成中间 络合物。
诱导嵌合学说 (induced-fit hypothesis): Koshland,(1958): 酶活性中心的结构有 一定的柔性,当底物 (激活剂或抑制剂) 与酶分子结合时,酶 蛋白的构象发生了有 利于与底物结合的变 化,使反应所需的催 化基团和结合基团正 确地排列和定向,转 入有效的作用位置, 这样才能使酶与底物 完全吻合,结合成中 间产物。
当ΔG<0,反应能自发进行。 活化能:分子由常态转变为活化状态所需的能量。 是指在一定温度下,1mol 反应物全部进入活化 状态所需的自由能。
化学反应要能够 发生,关键的是反应 体系中的分子必须分 子处于活化状态,活 化分子比一般分子多 含的能量就称为活化 能。反应体系中活化 分子越多,反应就越 快。增加反应体系的 活化分子数有两条途 径:一是向反应体系 中加入能量 ,另一 途径是降低反应活化 能。酶的作用就在于 降低化学反应活化能。
活酶的专一性研究 酶分子的化学修饰:差示标记法,亲和标记法 X-射线衍射法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1982年T.Cech发现了第1个有催化活性的天然RNA—— ribozyme(核酶),以后Altman和Pace等又陆续发现了真 正的RNA催化剂。
核酶的发现不仅表明酶不一定都是蛋白质,还促进了有 关生命起源、生物进化等问题的进一步探讨。
第三章酶化学
(二)酶的辅因子
单纯酶
酶 结合酶(全酶)= 酶蛋白 + 辅因子
第四章 酶化学
第三章酶化学
提要
酶的概念
酶的分类与命名
酶的化学本质
酶的结构与功能的关系
酶作用的专一性
酶作用的机理
酶促反应的速度和影响酶促反应速度的因素
酶的制备与酶活力的测定
酶的应用
第三章酶化学
一、酶的概念
酶是生物细胞产生的、具有催化能力的生物催化剂。
定义:酶是生物体内进行新陈代谢不可缺少的受多种 因素调节控制的具有催化能力的生物催化剂。
(三)同工酶(isoenzyme)
——能催化相同的化学反应,但在蛋白质分子的结构、理 化性质和免疫性能等方面都存在明显差异的一组酶。
乳酸脱氢酶 M (LDH)
H
MM MM
MM M4
MH M3H
第三章酶化学
MM
HH M2H2
MH
HH MH3
HH
HH H4
五、酶作用的专一性
酶作用的 专一性
结构专一性
族(基团)专一性 绝对专一性
1. 氧化还原酶类:主要是催化氢的转移或电子传递的氧化 还原反应。
AH2 + B(O2)
A + BH2(H2O2,H2O)
(1)脱氢酶类:催化直接从底物上脱氢的反应。
AH2 +B
A +BH2(需辅酶Ⅰ或辅酶Ⅱ)
第三章酶化学
(2)氧化酶类
①催化底物脱氢,氧化生成H2O2:
AH2 + O2
A + H2O2(需FAD或FMN)
第1三m章o酶l化离学子铁
6×10-4molH2O2
2.专一性:酶对底物具有严格的选择性。 3.敏感性:对环境条件极为敏感。 4.可调性:酶活性的调节和酶合成速度的调节。
第三章酶化学
二、酶的分类与命名
1961年国际酶学委员会(Enzyme Committee, EC)根据 酶所催化的反应类型和机理,把酶分成6大类:
第三章酶化学
丙酮酸脱氢酶系(E.coli):丙酮酸脱氢酶(EⅠ)、硫 辛酰转乙酰酶(EⅡ)和二氢硫辛酰脱氢酶(EⅢ)。
EⅠ EⅡ EⅢ
碱性
EⅠ + EⅡ EⅢ

EⅡ + EⅢ
第三章酶化学
四、酶的结构与功能的关系
(一)活性部位和必需基团
必需基团:这些基团若经化学修饰使其改变,则酶的活
性丧失。
活性部位:酶分子中直接与底物结合,并和酶催化作用
辅因子
辅酶 :与酶蛋白结合得比较松的小分子有机物。 辅基 :与膜蛋白结合得紧密的小分子有机物。 金属激活剂 :金属离子作为辅助因子。
酶的催化专一性主要决定于膜蛋白部分,辅因子通常是 作为电子、原子或某些化学基团的载体。
第三章酶化学
(三)单体酶、寡聚酶和多酶复合物 1.单体酶(monomeric enzyme):仅有一条具有活性部位的多 肽链,全部参与水解反应。 2.寡聚酶 (oligomeric enzyme):由几个或多个亚基组成,亚 基牢固地联在一起,单个亚基没有催化活性。亚基之间以非 共价键结合。 3.多酶复合物 (multienzyme system):几个酶镶嵌而成的复合 物。这些酶催化将底物转化为产物的一系列顺序反应。
(又称羟化酶)
2. 转移酶类:催化化合物中某些基团的转移。
A·X + B A +B·X
根据X分成8个亚类:转移碳基、酮基或醛基、酰基、糖基、 烃基、含氮基、含磷基和含硫基的酶。
3. 水解酶类:催化加水分解作用。
AB + H2O
AOH + BH
第三章酶化学
4. 裂解酶类:催化非水解性地除去基团而形成双键的反应 或逆反应。
直接有关的部位。
结合基团
专一性
活性部位
必需基团
催化基团 催化性质
维持酶的空间结构
第三章酶化学
(二)酶原的激活
没有活性的酶的前体称为酶原。酶原转变成有活性的酶的 过程称为酶原的激活。这个过程实质上是酶活性部位形成 和暴露的过程。
在组织细胞中,某些酶以酶原的形式存在,可保护分泌这 种酶的组织细胞不被水解破坏。
立体异构专一性
第三章酶化学
族专一性:可作用于一类或一些结构很相似的底物。
O 酯酶:R—C—O—R′ + H2O
第三章酶化学
6. 合成酶类:催化有ATP参加的合成反应。
A + B + P
A·B + ADP +Pi
乳酸脱氢酶 EC 1.
1. 1. 27
第1大类,氧化还原酶 第1亚类,氧化基团CHOH 第1亚亚类,H受体为NAD+ 该酶在亚亚类中的流水编号
第三章酶化学
酶的命名有两种方法:系统名、惯用名。 系统名:包括所有底物的名称和反应类型。
酶具有一般催化剂的特征:1.只能进行热力学上允许进行 的反应;2.可以缩短化学反应到达平衡的时间,而不改变 反应的平衡点;3.通过降低活化能加快化学反应速度。
酶的催化特点: 1.高效性:通常要高出非生物催化剂催化活性的106~1013倍。
2H2O2
2H2O + O2 1mol过氧化氢酶 5×106molH2O2
C—C键
CH3 C=O COOH
CH3 C=O H
+ CO2
C—O键 CH2COOH HO—CH—COOH
HCCOOH
HOOCCH
+ H2O
第三章酶化学
C—N键
COOH CH—NH2 CH2 COOH
COOH CH HC + NH3 COOH
5. 异构酶:催化 各种异构体之间的互变。
A
B
常见的有消旋和变旋、醛酮异构、顺反异构和变位酶类。
乳酸 + NAD+
丙酮酸 + NADH + H+
乳酸:NAD+氧化还原酶
惯用名:只取一个较重要的底物名称和反应类型。
乳酸:NAD+氧化还原酶
乳酸脱氢酶
对于催化水解反应的酶一般在酶的名称上省去反应类型。
第三章酶化学
三、酶的化学本质
(一)大多数酶是蛋白质
1926年J.B.Sumner首次从刀豆制备出脲酶结晶,证明其为 蛋白质,并提出酶的本质就是蛋白质的观点。 酶是蛋白质的证据。
②催化底物脱氢,氧化生成H2O: 2AH2 + O2 2A + 2H2O
(3)过氧化物酶
ROO + H2O2
RO + H2O + O2
(4)加氧酶(双加氧酶和单加氧酶)
O2 +
OH OH
OH C=O
C=O OH
第三章酶化学
(顺,顺-已二烯二酸)
RH + O2 + 还原型辅助因子
ROH + H2O + 氧化型辅助因子
相关文档
最新文档