凝胶渗透色谱 完整版本
gpc凝胶渗透色谱数均分子量

GPC凝胶渗透色谱数均分子量
GPC凝胶渗透色谱(GPC)是一种常用的高分子化合物分析方法,可以用于测定聚合物的分子量、分子量分布、聚合度和分子量分布等参数。
在GPC中,样品通过一根高压柱子,柱子内填充有一种凝胶,通常为聚合物硅胶或分子筛硅胶。
随着样品的通过,高分子化合物在凝胶中逐渐膨胀,并在一定程度上被分离。
通过检测样品在柱子中的流动时间和体积,可以计算出样品的平均分子量。
数均分子量(Mn)是指聚合物分子量分布的平均值,通常用Dalton(Da)表示。
它可以用下面的公式计算:Mn = (Σ(ni × Mi)) / Σ(ni)
其中,ni表示分子量为Mi的聚合物分子数,Σ表示对所有分子数进行求和。
需要注意的是,GPC测定的是数均分子量,而不是分子量分布的宽度。
如果需要测定分子量分布的宽度,可以使用分子量分布函数(PDI)来表示。
PDI是分子量分布的标准差与数均分子量的比值,通常用%表示。
凝胶渗透色谱法

凝胶渗透色谱法(GPC)一、凝胶渗透色谱凝胶渗透色谱Gel Permeation Chromatography(GPC),一种新型的液体色谱,原理是利用高分子溶液通过一个装填凝胶的柱子,在柱子中按分子大小进行分离。
柱子为玻璃柱或金属柱,内填装有交联度很高的球形凝胶。
其中的凝胶类型有很多,都是根据具体的要求而确定(常用的有聚苯乙烯凝胶)。
然而,无论哪一种填料,他们都有一个共同点,就是球形凝胶本身都有很多按一定分布的大小不同的孔洞(见图1)。
图1 GPC分离原理不仅可用于小分子物质的分离与鉴定,而且可作为用来分析化学性质相同但分子体积不同的高分子同系物。
可以快速、自动测定高聚物的平均分子量及分子量分布。
现阶段,已经成为最为重要的测定聚合物的分子量与分子量分布的方法。
二、测定原理凝胶色谱法的固定相采用凝胶状多孔性填充剂,是根据样品中各种分子流体力学提及的不同进行分离的。
比凝胶孔径大的分子完全不能进入孔内,随流动相沿凝胶颗粒间流出柱外,而娇小的分子则可或多或少地进入孔内。
因此大分子流程短,保留值小;小分子流程长,保留值大,所以凝胶色谱是按分子流体力学体积的大小,从大到小顺序进行分离的。
(见图2)图2 GPC淋出曲线溶质分子的体积越小,其淋出体积越大,这种解释不考虑溶质与载体间的吸附效应以及溶质在流动相和固定相中的分配效应,其淋出体积仅仅由溶质分子的尺寸和载体的孔径尺寸决定,分离完全是由于体积排除效应所致。
凝胶色谱的特点是样品的保留体积不会超出色谱柱中溶剂的总量,因为保留值的范围是可以推测的,这样可以每隔一定时间连续进样而不会造成谱峰的重叠,提高了仪器的使用率。
三、分子量校正曲线(LogM-V曲线)凝胶色谱图计算样品的分子量分布的关键是把凝胶色谱曲线中的淋洗体积V转化成分子量M,这种分子量的对数值与淋洗体积之间的曲线(LogM-V)称之为分子量校正曲线(见图3)。
图3 分子量校正(LogM-V)曲线➢排阻极限排阻极限是指不能进入凝胶颗粒空穴内部的最小分子的分子量。
第5章 凝胶渗透色谱

•
死Hale Waihona Puke 间•调整保留时间 与固定液用量有
关
• 比保留体积 相对保留值 保留指数
• 色谱过程方程: VR=VM+VR’
•
VR=VM+KVS
•
色谱的保留值与热力学系数联系起来
• 色谱流出曲线方程:——研究色谱峰形
•
塔板理论:高斯分布曲线
•
c 标准偏差:
nc0
2 tR
exp
1 2
n 1
t tR
2
3.2分离机理简介
• 在现在,虽然GPC已经得到了广泛的应用, 但是就连基本的分理机理都处在百花争鸣 的阶段。目前模型机理可分为4大类:
3.2.1平衡排除理论
• 依据色谱方程,认为分离处于平衡时,即溶质在 胶体孔洞内的停滞时间大于它扩散入与扩散出孔 洞所需的时间,分离的过程就既不受扩散控制也 不受扩散影响。
tR / n
c
c0
2
exp
t tR
2 2
2
• 描述色谱峰大小的参数:
•
峰高h h c0
2
• 峰宽W W 4
• 分离度:描述峰分离情况
R
2
tR2 W1
tR1 W2
•
分离因素:保留值 峰窄
•
• 色谱定性分析--依据保留值
• 与已知组分的保留值相比
• 与其它分析方法连用 如IR
• 第5章 凝胶渗透色谱法
•
• 色谱原理 • 流动相:载气 • 固定相:固体吸附剂等
•
图 气相色谱对样品分离过程示意图
• 色谱谱图解析
• 一 谱图表示方法: 横坐标 时间
•
纵坐标 检测器响应信号的大小 色谱图
第八章 凝胶渗透色谱

1.0 DEG/MI N
HEWLETT PACKARD
5890
Sample
Gas Chromatograph (GC) Mass Spectrometer (MS)
B A C
D A
C
D
B
Separation
立体排斥理论 在色谱柱内加入高分子溶液,用溶剂淋洗时,体系 是处于扩散平衡状态。 聚合物分子在柱内流动过程中,不同大小的分子 程度不同地渗透到柱内有大小孔径分布的载体的孔 洞中去; 大分子能渗透进去的孔洞数目比小分子的少,有 些孔洞即使大小分子都能渗透进去,大分子渗透进 去的深度要浅些,于是分子尺寸大的分子先流出, 分子尺寸小的后流出
组分在固定相中的浓度 cs K 组分在流动相中的浓度 cM
一定温度下,组分的分配系数K越大,出峰越慢;
试样中的各组分具有不同的K值是分离的基础;
某组分的K = 0时,即不被固定相保留,最先流出。
与其他分析仪器联用的定性方法
小型化的台式色质谱联用仪(GC-MS;LC-MS) 色谱-红外光谱仪联用仪; 组分的结构鉴定
(2)制备分离柱 A、干法 B、湿法 C、等密度法 ( 3 )柱效率和分辨率 A、柱效率;用理论塔板数表示 B、分辨率:表征对于不同分子量的分子的分离能 力。
(4)色谱柱的标定 GPC方法测定聚合物分子量是个相对方法,不能 从实验数据直接得出聚合物的绝对分子量。实验 中只有淋出体积是可以直接测得,要确定聚合物 的分子量及分子量分布就需要有一系列已知分子 量的样品,把这些样品分别注入色谱柱,从谱图 上可得到这一系列已知分子量试样的淋出体积, 这个过程称为色谱柱的标定。
第5章__凝胶渗透色谱

实验部分
溶剂的选择:
能溶解多种聚合物 不能腐蚀仪器部件 与检测器相匹配
实验部分
• 色谱柱对于多分散聚合物的分离作用是基 于体积排除机理,与分子量没有直接联系。 • 把激光光散射与凝胶色谱仪联用,在得到 浓度谱图的同时,还可得到散射光强对淋 出体积的谱图,从而计算出分子量分布曲 线和整个试样的各种平均分子量。
实验部分
影响因素:
色谱柱、溶剂的选择
色谱柱:
每根色谱柱都有一定的相对分子质量分离范围和 渗透极限,色谱柱有使用的上限和下限。色谱柱的使 用上限是当聚合物最小的分子的尺寸比色谱柱中最大 的凝胶的尺寸还大,这时高聚物进入不了凝胶颗粒孔 径,全部从凝胶颗粒外部流过,这就没有达到分离不 同相对分子质量的高聚物的目的。而且还有堵塞凝胶 孔的可能,影响色谱柱的分离效果,降低其使用寿命。 色谱柱的使用下限就是当聚合物中最大尺寸的分子链 比凝胶孔的最小孔径还要小,这时也没有达到分离不 同相对分子质量的目的。所以在使用凝胶色谱仪测定 相对分子质量时,必须首先选择好与聚合物相对分子 质量范围相配的色谱柱。
• 色谱过程方程: VR=VM+VR’ • VR=VM+KVS • 色谱的保留值与热力学系数联系起来 • 色谱流出曲线方程:——研究色谱峰形 • 塔板理论:高斯分布曲线 2 n c 1 t 0 c e x p n 1 2 tR 2 tR • 标准偏差:
实验部分
GPC仪的组成: 泵系统、(自动)进样系统、凝胶 色谱柱、检测系统和数据采集与处 理系统。
泵系统:
包括一个溶剂储存器、一套脱气装置和 一个高压泵。它的工作是使流动相(溶 剂)以恒定的流速流入色谱柱。泵的工 作状况好坏直接影响着最终数据的准确 性。越是精密的仪器,要求泵的工作状 态越稳定。要求流量的误差应该低于 0.01mL/min。
第5章凝胶渗透色谱

色谱柱:
GPC仪分离的核心部件。是在一根不锈钢空心 细管中加入孔径不同的微粒作为填料。
填料(根据所使用的溶剂选择填料,对填料最基本的 要求是填料不能被溶剂溶解):交联聚苯乙烯凝胶 (适用于有机溶剂,可耐高温)、交联聚乙酸乙烯酯 凝胶(最高100℃,适用于乙醇、丙酮一类极性溶剂) 多孔硅球(适用于水和有机溶剂)、多孔玻璃、多孔 氧化铝(适用于水和有机溶剂) 柱子:玻璃、不锈钢
柱子为玻璃柱或金属柱,内填装有交联度 很高的球形凝胶。其中的凝胶类型有很多, 都是根据具体的要求而确定(常用的有聚苯 乙烯凝胶)。然而无论哪一种填料,他们都 有一个共同点,就是球形凝胶本身都有很多 按一定分布的大小不同的孔洞。
第5章凝胶渗透色谱
• 尺寸不同的高聚物分子,按其分子大小能自由 地渗透进和渗透出这些凝胶孔洞。
• 凝胶孔洞与分子尺寸是相适应的,超过这个尺 寸的大分子就不能渗透进去,它们只能随溶剂的 流动而在凝胶粒子之间的空间中流动。因此,大 分子比起小分子来说,在柱中的行程就短得多。
• 根据大小分子不同的行程就可以把混在一起的 高聚物分子逐级分离开来,先分离出来的是大分 子,较小的聚合物分子受到溶剂分子的排斥也随 后分离出来,然后再用一定的方法检知每级中溶 质的浓度和分子量。
• 色谱定性分析--依据保留值
• 与已知组分的保留值相比
• 与其它分析方法连用 如IR
• 色谱定量分析——峰高或峰面积判断分析
物
的含量
• 色谱优缺点:
• 高效快速分离技术
• 难以鉴别分离组分
第5章凝胶渗透色谱
1.GPC的基本机理
凝胶渗透色谱是一种液相色谱,原理是利 用高分子溶液通过一根装填有凝胶的柱子, 在柱中按分子大小进行分离。
凝胶渗透色谱GPC

渗透压方法 (for Mn) 光散射方法 (for Mw) 粘度方法 (for Mv) 超速离心方法 (for Mz)
间接方法
GPC (for Mn, Mw and Mz) 用标准品进样得到分子量校正曲线,间接算出 聚合物样品的相对分子量。如和标准品结构不 同,还需进行相应的计算才能得到聚合物样品 自身的分子质量。
GPC色谱柱系列
Shim-pack GPC-80X for THF Shim-pack GPC-80XC for 氯仿 Shim-pack GPC-80XD for DMF
排阻极限 (聚苯乙烯)
1.5x103(GPC-801), 5x103(GPC-802), 2x104(GPC-8025), 7x104(GPC-803), 4x105(GPC-804), 4x106(GPC-805), 4x107(GPC-806),4x107 (mixed gel,GPC80M), 2x108(GPC-807)
凝胶过滤色谱 (GFC)
主要用于生命科学领域 以水溶液为流动相 常用固定相填料:亲水性有机凝胶(葡聚糖,琼
脂糖,聚丙烯酰胺等)
3
GPC用途
高聚物的分子量及其分布是高聚物最基本 的参数之一。高聚物的许多性质是与分子 量有关的。例如冲击强度、模量、拉伸强 度、耐热、耐腐蚀性都与高聚物的分子量 和分子量分布有关。
10 228-20812-91 11 223-05671-92
保护柱 LC工作站
GPC-800P
1
LCsolution Single 1
12 223-05655-92
GPC软件
LCsolution GPC
1
1
GPC系统与常规HPLC系统区别
凝胶渗透色谱(GPC)测定(精)

GPC
104.6 问题讨论
(1)在GPC测定聚合物相对分子质量时,为什么要用
标样进行校正?
( 2 )计算机是如何利用所得色谱图求得各种平均相 对分子质量及分布宽度指数D的? ( 3 )什么叫聚合物相对分子质量的质量微分分布曲 线和质量积分分布曲线?
大 学 通 用 化 学 实 验 技 术
10/14
( 4 )此实验的流动相为何要脱气,不脱气对实验有
GPC曲线
GPC曲线
浓度响应
W(M)
大 学 通 用 化 学 实 验 技 术
4/14
淋出体积或淋出时间
大
小
M
淋出体积代表了分子量的大小 --M; M 淋出体积代表了相对分子质量的大小— 浓度响应代表了含量— W( M ) 浓度响应代表了含量 --W(M)
GPC 曲线就是聚合物的相对分子质量分布曲线 GPC 曲线就是聚合物的分子量分布曲线
离的,不考虑溶质和载体之间的吸附效应,也不考虑溶质在流 动相和固定相之间的分配效应,其淋出体积(自试样进柱到被
大 学 通 用 化 学 实 验 技 术
3/14
solvent
体积大的分子先 被淋洗出来 体积小的分子后 被淋洗出来
浓度检测器
的 相 对 分 子 质 量 及 相 对 分 子 质 量 分 布
凝 胶 渗 透 色 谱 ( ) 测 定 聚 苯 乙 烯
GPC
在线答疑: lhfdlx@
Luym@
的 相 对 分 子 质 量 及 相 对 分 子 质 量 分 布
凝 胶 渗 透 色 谱 ( ) 测 定 聚 苯 乙 烯
GPC
在线答疑: lhfdlx@
Luym@
GPC系统配制
泵
进样器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研发历程:
➢ 1953年--Wheaton和Bauman-用多孔树脂按分子量大小分离了苷、多元醇和其它非离子物 质,观察到分子尺寸排除现象。
➢ 1959年--Porath和Flodin— 用葡聚糖凝胶分离了水溶液中不同分子量的样品。
2 凝胶渗透色谱的原理
➢ 以多孔树脂为固定相
➢用溶剂推动聚合物样品流过固定相 ➢产生大小分子顺序流出的分离
Vg载体骨架体积
Vi载体孔洞体积
淋出体积 Ve=V0+t;K<1
V0和Vg对分离没有贡献,应尽量减小,Vi越大分离效果越好
凝胶渗透色谱柱是如何工作的
流出级份的保留时间(洗脱体积) 提供其分子量(尺寸)的信息。 从检测器信号强度得到各流出级分 的浓度。
样品制备的影响
固态 (半结晶) 液态 (稀溶液)
样品制备的影响
用淋洗液制样,使聚合物在分析的整个过程 中处于稳定状态,并且使溶剂峰最小
溶解必须使聚合物链打开成最放松的状态 允许充分的时间让链展开
有些聚合物需要大于3小时
分子量及结晶度愈大,所需真正溶解的时间 就俞多
某些结晶的聚合物需要加热
色谱柱
预热板
加热废液管儿 放空阀
废液 溶剂
溶剂输送系统
典型分离式GPC系统示意图
I Out n
在线脱气
为GPC加热的理由
降低流动相黏度,使得谱柱内部溶剂处于接近理 想的GPC状态(如Polyethylene – Terphthalate m-Cresol + 0.05 m LiBr/100 °C)
➢ 1962年--J.C.Moore— 将连续式高灵敏度的示差折光仪接在分离柱后,并以体积计 量方式作图,制成了快速且自动化的高聚物分子量及分子量 分布的测定仪,创立了凝胶渗透色谱技术。
凝胶渗透色谱
GPC---Gel Permeation Chromatography 也称作体积排斥色谱 SEC---Size Exclusion Chromatography 以溶剂作流动相,流经多孔填料作为分离介质的液相色谱 法。
化体积相同的相对分子量
讨论: 请给出你的解决办法
5. 对测试结果产生影响的因素
输液系统 样品制备 进样系统 柱温变化 色谱柱结构与性能 检测器的影响 流动相的种类
溶剂输送系统
高流速精度是获得重现性 GPC结果的基础
微小的流速误差会导致分子 量计算的很大误差
使用参考峰(Flow Markers) 的技术可校正流速误差
用GPC测得的分子量分布可以计算出各种不同 种平均分子量,可对应于其他仪器所测的值。
4. 存在问题及解决办法
标样与待测样品不同种类
▪以同类聚合物的标准样品可绘制出标准曲线,给
出淋出体积与分子量的关系。
▪不同种类的聚合物,在溶剂中受到的作用不同,
所以即使相同的分子量也会有不同的溶剂化体积
▪ 采用标样的校正曲线,只能得到与标样分子溶剂
聚合物近代测试
凝胶渗透色谱
讲课:9-11、9-18(4学时) 实验:材料楼416(8学时)
1. Questions and Discuss 问题与讨论
1) What is chromatography, and what is it for? 色谱的起源与应用
2.)Do you know Liquid Chromatography or Gas Chromatography? 你是否接触过液相色谱和气相色谱?
Waters G2000高温凝胶色谱仪
多检测器集成的 GPC 系统
紫外检测器(浓度型) 粘度检测器(分子量型) 多角激光光散射检测器(分子量型) 红外接口(特征基团型为测量短链支化)
聚合物的分子结构
PD = Mw / Mn
分子量分布
增加浓度
增加分子量
聚合物的各种平均分子量
Mn:用渗析计测出(Osmometry) Mw:用光散射计测出(Light Scattering) Mv:用粘度计测出(Viscometry) Mz及Mz+1:用超速离心法测出(Ultracentrifuge) Mw/Mn:为多分散性(Polydispersity) Mn<Mv<Mw<Mz<Mz+1
实验室温度波动对RI检测器基线的影响
Temp.(Deg C)
MV
20.0
19.5
19.0
Room Temperature
18.5
2.00
RI Baseline
1.00
0.00
-1.00
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Minutes
Mobil Phase – Methanol @ 0.25/mL minute Detector Temp 35 C No Column Heater Used
用已知分子量的标样标定出流出 时间和分子量的关系, 再对未知样各流出级份的时间( 分子量)和强度进行统计计算得 到分子量分布。
聚合物在色谱柱中的分离是基于分子 在溶剂中表现出的体积而不是分子量
由示差检测器连续记录 流出样品的浓度
溶剂化体积
3. 凝胶渗透色谱仪
示差折光检测器恒温区
S
R
缓冲柱
进样阀
柱温箱
样品制备的影响
样品浓度与分子量相关(分子量越大,浓度越低) 除非该样品可能会有剪切效应发生,聚合物溶液必
须过滤 为了增加样品的溶解,可轻微扰动(不要剧烈摇动
或用超声) 窄分布标样不必过滤,高分子量标样也不要剧烈摇
动 可使用在线过滤器,但是不推荐使用保护柱
样品制备的影响
150 C
170 C
尽量减轻分子间的弱相互作用(样品分子间、样 品和溶剂分子间、填料和样品分子间等)
使难于溶解的样品得以溶解(如聚烯烃PE\PP、 工程塑料PPS等)
使GPC检测处在一个温度稳定的环境
废液管 废 液
检测器3
检测器2
检测器1
连接管
柱温箱
进样阀
GPC色谱柱
一体化温控区的示意图
在同一个温控区集成了进样阀、色谱柱、检测器,保证温度 的一致性和稳定性
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
Minutes
Sample PE-150C-2h Sample PE-150C-4h Sample PE-160C-2h Sample PE-160C-4h Sample PE-170C-2h Sample PE-170C-4h