小学数学组合图形面积
小学数学五年级上册《组合图形的面积》7篇

小学数学五年级上册《组合图形的面积》7篇小学数学五年级上册《组合图形的面积》1组合图形面积是学生学习了长方形,正方形,平行四边形,三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。
在教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。
在让学生动手操作,自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。
接着让学生来说说自己的做法,通过投影展示学生的分法(以分割成两个长方形为例),第一,你是怎样分的(分割成两个长方形);第二,长方形的面积公式是怎样的;第三,要计算第一个长方形的面积,长是多少,宽是多少要计算第二个长方形的面积,长是多少,宽是多少在这个环节中,学生基本上都能够运用分割或添补法把组合图形转化为所学过的基本图形,但在展示学生分法时,忘记了将在巡堂时发现的个别学生的分法是由于找不到相关条件无法计算图形面积也进行展示和集体讨论为什么,这是不足的地方(如果当时在这个环节中,让学生充分展示汇报不同的分法后,教师接着引导学生总结优化出哪种分法更利于我们计算这个组合图形的面积或者哪种分法计算这个组合图形的面积更简单,然后就让学生用这种方法来计算图形的面积,可能后面的环节就不会不够时间)。
学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的面积计算,然后让学生汇报展示,从中小结优化出那种分割法或添补法计算这个组合图形的面积更简单。
这个环节花的时间比较多,跟前面的环节有类似,结果后面的时间很紧。
因此在今后教学中应要多注意教学环节之间的内容设计,尽量紧凑,及时发现问题和作出反馈。
小学数学五年级上册《组合图形的面积》2一分耕耘一分收获。
这次百花奖,让我感受颇深,对于本节课,《组合图形的面积》是学生学习了长方形、正方形、平行四边形,三角形和梯形的`面积计算的基础上认识学习组合图形面积的计算,这是面积知识的提升和发展。
小学数学《组合图形面积》优秀教案(通用10篇)

小学数学《组合图形面积》优秀教案小学数学《组合图形面积》优秀教案(通用10篇)作为一名教职工,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。
快来参考教案是怎么写的吧!以下是小编为大家整理的小学数学《组合图形面积》优秀教案,希望能够帮助到大家。
小学数学《组合图形面积》优秀教案篇1教学目标1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。
2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。
教学重点能根据条件求组合图形的面积。
教学难点理解分解图形时简单图形的差较难分解。
教具、学具教师指导与教学过程学生学习活动过程设计意图一、试一试教师引导学生读题,理解题意。
二、练一练第1题1、请学生任意分割,后说说分割的是什么已经学过的图形2、老师要求再分割3、想一想出了分割还有没有其他方法。
这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。
学生自己进行分割,再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。
适当地添上相关的条件进行分割,要求分割的合理,能够计算。
培养学生的空间分析能力。
通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。
教师指导与教学过程学生学习活动过程设计意图三、练一练第3题学生看书上的图。
教师读题,要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?四、作业完成练一练的第2题。
理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。
除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。
独立完成练习。
学生能正确进行组合图形的实际运用。
再进行组合图形的面积。
小学五年级数学《组合图形面积的计算》优秀教案三篇

小学五年级数学《组合图形面积的计算》优秀教案三篇组合图形面积的计算是平面图形知识在小学阶段的综合应用。
计算一个组合图形的面积,有时可以有多种方法,下面就是我给大家带来的小学五年级数学《组合图形面积的计算》优秀教案三篇,希望能帮助到大家!小学五年级数学《组合图形面积的计算》优秀教案一教学目标:1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。
教学方法:讲解法、演示法教学过程:一、割补法这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。
Ppt演示变化过程,并出示解题过程。
二、等积变形法。
这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
Ppt演示变化过程,并出示解题过程。
三、旋转法。
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。
Ppt演示变化过程,并出示解题过程。
四、小结方法求组合图形面积可按以下步骤进行1、弄清组合图形所求的是哪些部分的面积。
2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。
小学五年级数学《组合图形面积的计算》优秀教案二教学内容:《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”教学目标:1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
【易错题精析】第14讲 组合图形的面积 小学数学五年级上册易错专项练(知识梳理易错汇总易错精讲易错

第14讲组合图形的面积(讲义)小学数学五年级上册易错专项练(知识梳理+易错汇总+易错精讲+易错专练)1.组合图形的面积的求法。
把组合图形的面积转化成几个简单的平面图形的面积和或差来计算。
2.不规则图形面积的估算方法。
方法一:借助方格纸用数格子的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
1.在对组合图形进行分解时,一定要考虑到分别求面积时所需要的数据条件下是否充分。
将组合图形分成几个简单图形,计算每个简单图形的面积时要找准数据。
【易错一】1.请你估算一下,图中的叶子大约是()cm2。
A.16cm2~34cm2B.18cm2~36cm2C.20cm2~38cm2D.22cm2~40cm2【解题思路】首先要看清图形所占方格的个数,然后用每个方格的面积乘个数即可。
【完整解答】完整的小正方形有18个,所以图形面积大于18cm2;不完整的小正方形有18个,所以图形面积小于18+18=36(cm2)。
故答案为:B【易错点】解答此题,要注意认真分析图形,弄清图形所占的方格数是解答此题的关键。
【易错二】一个梯形分成一个三角形和一个平行四边形(如图),已知平行四边形的面积是14.4cm2,这个梯形的面积是( )cm2。
【解题思路】由图可知,平行四边形和三角形等高,利用“平行四边形的高=平行四边形的面积÷底”求出三角形的高,再根据“三角形的面积=底×高÷2”求出三角形的面积,最后求出平行四边形和三角形的面积和即可。
【完整解答】14.4÷4.5×5.5÷2+14.4=3.2×5.5÷2+14.4=17.6÷2+14.4=8.8+14.4=23.2(cm2)所以,这个梯形的面积是23.2cm2。
【易错点】掌握平行四边形和三角形的面积计算公式是解答题目的关键。
【易错三】如下图,在一块平行四边形的草地中,有一条长12米,宽1米垂直于底边的小路,如果铺1平方米草坪需要12元,铺这块草坪大约需要多少钱?【解题思路】可以把左右两块草地合在一起,使其成为一个平行四边形。
苏教版五年级数学上册《组合图形的面积》PPT课件

利用新知识解决生活中的问题
1、新丰小学有一块菜地,形状如下图,这块菜 地的面积是多少平方米
50m
33m
计算这个组合图形的面积
10cm 5cm
10cm
20cm
小结
方法:一分图形 二找条件 三算面积
关键:学会运用“分割”与“添补” 的方
法计算组合图形面积.
2、某工厂有一种用铁皮剪成的零件。 (如图)
3m
7m (三)
6m 3m
(7二m) 4m
7m (四)
3m
4m
4m
4m
3m 3m
6m
6m
6m
3m
3m
7m
4m
3m
6m
3m
7m
7m
} 分割法
转化
添补法
3m
7m
一.下面各个图形可以分成哪些已经学 过的图形?
怎么计算组合图形的面积?
1、分图形:用分割法或添补法分把组 合图形成我们会计算的简单图形。 2、找条件,算面积:分别计算简单图 形的面积。 3、最后求和或差。
请计算做一个这样的零件要用多少铁皮 (单位:米)
先仔细观察图形,然后用你熟悉的方法去完成这道题。
2m 3m
3m 3m
3m 3m
方法一:
把组合图形分割成一个长方形加一个梯形
2m
3m 3m
3m 3m
3m
方法二:
把组合图形添补成一个长方形减去一个梯形
2m 3m
3m
3m
3一个长方形
已经学过的几种平面图形的面积计算公式
b
a
S=ab
a
a
S=a×a
h
a
S=ah
五年级《组合图形的面积》教学设计4篇

五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。
教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。
学生在解决问题的过程中,获得数学学习方法。
在对学习过程与结果的反思中,提高解决问题的能力。
【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。
3.自主探索,合作交流。
养成认真思考,团结协作的能力。
4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。
【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。
(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。
2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。
)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。
小学数学组合图形面积

小学数学组合图形的面积,10种解题思路,值得收藏小学数学组合图形的面积,10种解题思路,值得收藏一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积分析:半圆的面积+正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。
分析:先求出正方形面积再减去里面圆的面积即可.三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积.例如:下图,求阴影部分的面积。
分析:通过分析发现阴影部分就是一个底是2、高是4的三角形四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如:下图,求阴影部分的面积。
分析:拆开图形,使阴影部分分布在正方形的4个角处,如下图。
五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可例如:下图,求两个正方形中阴影部分的面积。
分析:此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便(如下图)根据梯形两侧三角形面积相等原理(蝴蝶定理),可用三角形丁的面积替换丙的面积,组成一个大三角ABE,这样整个阴影部分面积恰是大正方形面积的一半.六、割补法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如:下图,若求阴影部分的面积。
分析:把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如:下图,求阴影部分的面积。
分析:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】

五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】作为一名老师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学组合图形的面积,10种解题思路,值得收藏
小学数学组合图形的面积,10种解题思路,值得收藏一、相加法
这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.
例如:求下图整个图形的面积
分析:半圆的面积+正方形的面积=总面积
二、相减法
这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。
分析:先求出正方形面积再减去里面圆的面积即可.
三、直接求法
这种方法是根据已知条件,从整体出发直接求出不规则图形面积.
例如:下图,求阴影部分的面积。
分析:通过分析发现阴影部分就是一个底是2、高是4的三角形
四、重新组合法
这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.
例如:下图,求阴影部分的面积。
分析:拆开图形,使阴影部分分布在正方形的4个角处,如下图。
五、辅助线法
这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可
例如:下图,求两个正方形中阴影部分的面积。
分析:此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便(如下图)
根据梯形两侧三角形面积相等原理(蝴蝶定理),可用三角形丁的面积替换丙的面积,组成一个大三角ABE,这样整个阴影部分面积恰是大正方形面积的一半.
六、割补法
这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.
例如:下图,若求阴影部分的面积。
分析:把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.
七、平移法
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.
例如:下图,求阴影部分的面积。
分析:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法
这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.
例如:下图(1),求阴影部分的面积。
分析:左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.
九、对称添补法
这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.
例如:下图,求阴影部分的面积。
分析:沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
十、重叠法
这种方法是将所求的图形看成是两个或两个以上图形的重叠部分。
例如:下图,求阴影部分的面积。
分析:可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分.。