小学五年级数学《组合图形的面积》知识点+试题(带答案)
小学五年级数学《组合图形的面积》试题及答案

五年级数学(上册):《组合图形的面积》试题1、求图形的面积(单位:厘米)梯形面积:三角形面积:(8+12)×8.5÷2 12×3÷2= 20×8.5÷2 = 36÷2= 170÷2 = 18(cm2)= 85(cm2)图形面积= 梯形面积–三角形面积:85-18=67(cm2)2、校园里有两块花圃(如图),你能计算出它们的面积吗?(单位:m)图形面积=长方形面积6×(5-2)+ 正方形面积(2×2)图形面积=长方形面积 - 梯形面积6×(5-2)+ 2×2 10×6 –[(3+6)×2÷2 ]= 6×3 + 4 = 60 -[ 9×2÷2 ]= 18 + 4 = 60 - 9= 22(m2)= 51(m2)3、下图直角梯形的面积是49平方分米,求阴影部分的面积。
直角梯形的高=直角三角形的高(阴影部分面积)直角梯形的高= 49÷(6+8)×2 直角三角形面积= 6×7÷2= 49÷14× 2 = 42÷2= 3.5× 2 = 21(dm²)= 7(dm²)4、图中梯形中空白部分是直角三角形,它的面积是45平方厘米,求阴影部分面积。
直角梯形的高=直角三角形的高梯形面积=(5+12)×7.5÷2= 45÷12×2= 17×7.5÷2= 3.75×2 = 127.5÷2= 7.5(cm2)= 63.75(cm2)阴影部分面积=梯形面积–空白部分面积:63.75 - 45 = 18.75(cm2)5、阴影部分面积是40平方米,求空白部分面积。
(单位:米)梯形的高=三角形的高(阴影部分三角形)梯形面积=(6+10)×8÷2= 40÷10× 2 = 16×8÷2= 4× 2 = 128÷2= 8(m2)= 64(m2)空白部分面积=梯形面积–阴影部分面积:64–40 = 24(m2)6、如图,平行四边形面积240平方厘米,求阴影部分面积。
北师大版五年级数学上册第六单元《组合图形的面积》课后练习题(附答案)

北师大版五年级数学上册第六单元《组合图形的面积》课后练习题(附答案)第1节《组合图形的面积》1、计算下面组合图形的面积。
(单位:厘米)2、求下面图形的面积(单位:m)。
你能想出几种方法。
3、笑笑家的一面墙(如下图,单位米),如果墙面刷石灰,每平方米用6.5元,共要多少元?参考答案:1、11×8÷2+22×10=264(平方厘米)2、方法一:分成三角形和长方形(40-10)×(30-15)÷2+10×30=525(平方米)方法二:分成长方形和梯形10×15+(40+10)×(30-15)÷2=525(平方米)方法三:从大长方形里减去一个梯形40×30-(30+15)×(40-10)÷2=525(平方米)3、(10×3+10×3÷2)×6.5=292.5(元)第2节《不规则图形的面积》课后练习题(附答案)1、写出下面图形的面积。
()平方厘米()平方厘米2、估一估,下面不规则土地的面积约是()平方米。
3、估一估,下面不规则土地的面积约是()平方米。
参考答案:1、16 212、26003.126第3节《面积单位的换算》课后练习题(附答案)1、填上适当的数。
12公顷=()平方米800000平方米=()公顷5000公顷=()平方千米4平方千米=()公顷3平方千米=()公顷=()平方米2、填上合适的单位名称。
餐桌的面积大约是44()。
教室的面积大约是48()。
一张1元的纸币的面积大约是44()。
我们校园的面积大约是1()。
中国的国土面积大约是960万()。
3、实际应用。
(1)一个长方形果园的长250米,宽120米,这个果园有多少公顷?(2)一块正方形地的周长是800米,每公顷收稻谷6.5吨,那么这块地收稻谷多少吨?参考答案:1、120000 80 50 400 300 30000002、平方分米平方米平方厘米公顷平方千米3.(1)250×120=30000(平方米)=3(公顷)(2)800÷4=200(米)200×200=40000(平方米)=4(公顷)4×6.5=26(吨)。
《组合图形的面积》练习题(含答案)

助学堂组合图形的面积测试题1、下面的图形是由两个三角形组成的,请画出这两个三角形。
AB DC2、已知平行四边形的面积是48平方分米,求阴影部分的面积。
3dm8dm3、求下面个图形的面积、(单位:分米)(1)(2)1486 6123 612(3)(4)82.55.4 4 1.54.2 634、如图所示,梯形的周长是52厘米,求阴影部分的面积。
1014165、校园里有一块花圃,(如图所示),算出它的面积。
(单位:米)6 2256、大小正方形如图放置,阴影部分为重叠部分,求空白部分面积。
(单位:厘米)1577助学堂227、有一块土地如图所示,你能用几种方法求出它的面积?(单位:米)12158227、如图所示,一个平行四边形背分成A、B两被封,A的面积比B的面积打40平方米,A的上底是多少?BA8米【参考答案】1 解:AB DC2 解:48÷8×3÷2=9(平方分米)3(1)解:8×6+(8+12)×3÷2=78(平方分米)3(2)解:(14+12)×6÷2+12×6÷2=114(平方分米)3(3)解:5.4×4.2+5.4×6÷2=38.88(平方分米)3(4)解:2.5×1.5+(2.5+4)×(8-3-1.5)÷2+4×3=27.125(平方分米)4 解:10×(52-10-14-16)÷2=60(平方厘米)5 解:2×2+(5-2)×6=22(平方米)6 解:大正方形面积为:22×22=484(平方厘米)小正方形面积为:15×15=225(平方厘米)阴影部分面积为:7×7=49(平方厘米)空白部分的面积为:484+225-2×49=611(平方厘米)7 解:方法一:12 15助学堂82212×8+(15+8)×(22-12)÷2=211(平方米)方法二:1215822(15-8)×(22-2)÷2+22×8=211(平方米)8 解:40÷8=5(平方米)。
【小学数学】小学五年级数学《组合图形的面积》知识点+试题(带答案)

知识点有几个简单的图形拼出来的图形;我们把它们叫做组合图形。
分割法;即将这个图形分割成几个基本的图形。
分割图形越简洁;其解题的方法也将越简单;同时又要考虑分割的图形与所给条件的关系。
添补法;即通过补上一个简单的图形;使整个图形变成一个大的规则图形。
运用所学的知识;解决生活中组合图形的实际问题。
能正确估计不规则图形面积的大小。
能用数格子的方法;计算不规则图形的面积。
估计、计算不规则图形面积的内容主要是以方格图作为进行估计与计算的;所以借助方格图能帮助建立估计与计算不规则图形面积的方法。
五年级数学(上册):《组合图形的面积》试题1、求图形的面积(单位:厘米)梯形面积:三角形面积:(8+12)×8.5÷2 12×3÷2= 20×8.5÷2 = 36÷2= 170÷2 = 18(cm2)= 85(cm2)图形面积= 梯形面积–三角形面积:85-18=67(cm2)2、校园里有两块花圃(如图);你能计算出它们的面积吗?(单位:m)图形面积=长方形面积6×(5-2)+ 正方形面积(2×2)图形面积=长方形面积 - 梯形面积6×(5-2)+ 2×2 10×6 –[(3+6)×2÷2 ]= 6×3 + 4 = 60 -[ 9×2÷2 ]= 18 + 4 = 60 - 9= 22(m2)= 51(m2)3、下图直角梯形的面积是49平方分米;求阴影部分的面积。
直角梯形的高=直角三角形的高(阴影部分面积)直角梯形的高= 49÷(6+8)×2 直角三角形面积= 6×7÷2= 49÷14×2 = 42÷2= 3.5×2 = 21(dm²)= 7(dm²)4、图中梯形中空白部分是直角三角形;它的面积是45平方厘米;求阴影部分面积。
五年级数学上册试题 - 6.1《组合图形的面积》-北师大版(含答案)

6.1《组合图形的面积》1、把下面各个图形分成已学过的图形,并与同伴交流你的想法。
2、下面组合图形可以分成哪些已学过的图形?请你在图中画一画。
3、把这个组合图形可以分割成一个()形和一个()形或一个()形和一个()形,还可以分割成一个()形和一个()形。
4、画一画.(将下面的图形用虚线分成学过的基本图形)5、求下图中涂色部分的面积.(单位:cm)6、手工课上,唐老师让同学们在一张长方形纸的一角剪去一个等腰直角三角形(如图),剩下部分的面积是多少?7、少先队大队部做了两个标语牌(如图),请算出它们各用了多少铁板?(单位:m)8、大小两个正方形放置如图,阴影部分为重叠部分,空白部分面积是多少?(单位:cm)9、如下图,长方形的长是12cm,宽是6cm,其中三角形①的面积是20cm2,求涂色部分的面积.10、下面是实验小学绿化带的平面规划图.(单位:米)喷泉、盆景、树林和草坪各占地多少平方米?11、如图是某工艺品的展开图.它的面积是多少?(单位:cm)812、有一台插秧机,作业宽度是2.1m,每小时能前进4km,大约多少小时可以插完下面这块地?(得数保留整数)13、一块梯形地,上底长40m,下底长60m,高是40m(如图).李伯伯在这块地中最大的一块正方形地里种棉花,其余的种花生,种花生的面积有多大?14、小丽用彩纸剪了一个大写英文字母“W”.它的面积是多少?15、图中小方格的边长是1m,请你估计涂色部分的面积.16、图中每个小方格的面积是1cm 2,计算阴影部分的面积.17、估计下列图形的面积.(每个小方格表示1cm 2)18、一口池塘,水面如图中阴影部分所示.请你估计一下它的水面面积.(每个小方格的边长表示10m )19、某公司想购买土地(如图).比一比,在同等价格(总价相同)下购买哪一块便宜些?(每个方格的面积为1km 2)20、有一块近似平行四边形的地,底是56m ,高是30.8m .这块地的面积约是多少平方21、科技小组收集玉兰树叶,每片树叶的面积如下图.(每个方格边长1cm)每平方米树叶每天吸收约5g二氧化碳气体进行光合作用,如果一棵玉兰树有10000片这样的树叶,这棵玉兰树一年大约可以吸收多少千克二氧化碳气体?22、小狗和小鸭在雪地里玩,它们在比脚印的大小,你认为谁的脚印大呢?23、两个完全一样的梯形可以拼成一个(),如果拼成的图形的面积是5.4dm2,那么一个梯形的面积是()dm2。
五年级数学上册组合图形面积应用题面积解答题附解析

组合图形面积应用1.计算下面图形中阴影部分的面积。
(单位:厘米)解:25×16-(9+11)×6÷2=25×16-20×6÷2=400-120÷2=400-60=340(平方厘米)答:阴影部分的面积为340平方厘米。
2.求面积是多少?解:[(200-140)+100]×(200-80)÷2+200×140=160×120÷2+28000=9600+28000=37600(平方米)答:面积是37600平方米。
3.计算下图阴影部分的面积。
解:阴影部分的面积=(10+15)×10÷2-10×10÷2 =25×10÷2-100÷2=250÷2-50=125-50=75(平方米)。
4.计算阴影部分的面积。
(单位:cm)解:60×40-60×40÷2=2400-2400÷2=2400-1200=1200(平方厘米)5.求下面组合图形的面积。
(单位:cm)解:8×4+8×4÷2=32+32÷2=32+16=48(平方厘米)6.计算下面阴影部分的面积。
(1)(2)(1)解:阴影部分的面积=14×12÷2=168÷2=84(平方厘米)(2)解:阴影部分的面积=12×10-12×6÷2=120-72÷2=120-36=84(平方分米)(2)阴影部分的面积=平行四边形的面积-三角形的面积,平行四边形的底是20dm,高是10dm;三角形的底是20dm,高是6dm,再根据平行四边形的面积=底×高,三角形的面积=底×高÷2,代入数值计算即可。
7.计算下面图形的面积。
北师大版五年级数学上册期末复习专题组合图形的面积练习(含答案)

北师大版五年级数学上册期末复习专题组合图形的面积【知识点归纳】 方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减. ③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形. 【典例分析】例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个41圆,阴影部分的面积等于梯形的面积减去41圆的面积再加上41圆的面积减去三角形面积的差,列式解答即可得到答案. 解:[(5+8+5)×5÷2-41×3.14×52]+(41×3.14×52-5×5÷2), =[18×5÷2-0.785×25]+(0.785×25-25÷2), =[90÷2-19.625]+(19.625-12.5), =[45-19.625]+7.125, =25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr 2的应用.同步测试一.选择题(共10小题)1.已知长方形和正方形的面积相等,阴影部分A和B的面积不相等是()A.B.C.D.2.如图是一个直角梯形,图中阴影部分面积是100平方厘米,空白部分面积是()平方厘米.A.140 B.120 C.100 D.703.如图中阴影部分的面积是60平方厘米,空白部分的面积是()平方厘米.A.12 B.30 C.60 D.无法判断4.下面三个完全一样的直角梯形中,阴影部分的面积()A.甲最大B.乙最大C.丙最大D.一样大5.在图的平行四边形中,E、F把AB边分成了相等的三段,平行四边形的面积是48平方厘米,阴影三角形的面积是()A.8平方厘米B.12平方厘米C.16平方厘米D.24平方厘米6.如图,平行四边形的面积是24cm2,则阴影部分的面积是()A.2cm2B.4cm2C.10cm2D.12cm27.两个完全一样的正方形,如果①号图形阴影部分的面积是10平方厘米,那么②号图形阴影部分的面积是()平方厘米.A.30 B.25 C.20 D.108.下面两个是完全一样的平行四边形,涂色部分的面积()A.甲大B.乙大C.一样大9.如图中,阴影部分面积与三角形()的面积相等.A.BCD B.BFC C.BCE10.比较下面两个图形,说法正确的是()A.甲、乙的面积相等,周长也相等B.甲、乙的面积相等,但甲的周长长C.甲、乙的周长相等,但乙的面积大D.甲、乙的面积相等,它们周长不一定相等二.填空题(共8小题)11.如图(单位:dm),半圆是长方形内最大的半圆,则这个长方形的面积是dm2.12.如图的面积是平方厘米.13.如果用1厘米表示如图小方格的边长,那么阴影部分的面积是平方厘米.14.如图,平行四边形的面积是20cm2,那么三角形的高是cm,面积是cm2.15.图中四边形的面积是平方厘米.16.如图,阴影部分是面积是平方厘米.(π取3.14)17.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是.18.如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为.(A)5050m2(B)4900m2(C)5000m2(D)4998m2三.判断题(共5小题)19.图中阴影部分的面积比半圆大..(判断对错)20.如图所示,梯形的上底长等于下底长的一半,空白面积也等于阴影部分面积的一半.(判断对错)21.图中阴影部分的面积为24cm2.(判断对错)22.如图中阴影部分的面积是14平方厘米.(判断对错)23.计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再进行计算..(判断对错)四.计算题(共2小题)24.求阴影部分的面积.(单位:cm)25.计算下面图形的面积.五.解答题(共3小题)26.下面是一个菜园的平面图,算一算这个菜园的面积是多少平方米.27.如图,在平行四边形ABCD中,BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知两块阴影部分的面积和比三角形EFG的面积大10平方厘米,求CF的长.28.李大爷家有一块菜地.(形状如图,单位米)长方形地里种的是圆白菜,右边的梯形地里种的是茄子.(1)每棵圆白菜占地0.15平方米,一共可以种几棵?(2)茄子地一共有多少平方米?参考答案与试题解析一.选择题(共10小题)1.【分析】我们通过对每个选项给出的图形计算可知,A选项中阴影部分A的面积等于正方形的面积的,B的面积等于长方形面积的,而长方形和正方形的面积相等;所以阴影部分A和B的面积;选项B阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的正方形的面积,所以相等;选项C阴影部分A等于长方形的面积减去大的空白部分长方形的面积,B的面积得出正方形减去空白部分小长方形的面积,所以不相等.选项D阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的三角形的面积,所以相等;据此解答.解:A选项中阴影部分A的面积等于正方形的面积的,B的面积等于长方形面积的,而长方形和正方形的面积相等;所以阴影部分A和B的面积;选项B阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的正方形的面积,所以相等;选项C阴影部分A等于长方形的面积减去大的空白部分长方形的面积,B的面积得出正方形减去空白部分小长方形的面积,所以不相等.选项D阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的三角形的面积,所以相等;故选:C.【点评】本题考查了学生的观察能力,考查了学生灵活解决问题的能力.2.【分析】空白三角形、阴影三角形,以及梯形的高相等,根据三角形的面积=底×高÷2可知,先用阴影三角形的面积乘上2,再除以它的底20厘米,即可求出它的高,再用空白三角形的底乘上高,再除以2,即可求出空白部分的面积.解:100÷20×2=5×2=10(厘米)14×10÷2=140÷2=70(平方厘米)答:空白部分的面积是70平方厘米.故选:D.【点评】本题考查了三角形的面积公式,三角形的面积=底×高÷2,关键是得出两个三角形的高相等.3.【分析】先利用三角形的面积公式S=ah÷2计算出三角形的高,也就等于知道了空白部分的高,从而利用三角形的面积公式进行解答即可.解:60×2÷20=120÷20=6(厘米)10×6÷2=30(平方厘米)答:空白部分的面积是30平方厘米.故选:B.【点评】此题主要考查三角形的面积公式的灵活应用.4.【分析】这几个直角梯形中,阴影部分总面积都是以梯形的下底为底,以梯形的高为高的三角形的面积,由此即可判断它们面积的大小.解:三图中,阴影部分总面积都是以梯形的下底为底,以梯形的高为高的三角形的面积,因为三个梯形完全相同,由此可得:阴影部分的面积都相等.故选:D.【点评】此题主要考查等底等高的三角形面积都相等,据图即可以作出判断.5.【分析】根据图得出阴影部分的三角形,与平行四边形的等高,底是平行四边形底的,又三角形的面积是与它底等高平行四边形面积的一半,所以三角形的面积是平行四边形面积的×=,然后解答即可.解:因为E、F把AB边分成了相等的三段,所以阴影部分三角形的底是平行四边形底的,所以三角形的面积是平行四边形面积的×=,阴影三角形的面积是48×=8(平方厘米).答:阴影三角形的面积是8平方厘米.故选:A.【点评】本题关键理解以三角形的面积是与它底等高平行四边形面积的一半.6.【分析】首先根据平行四边形的面积公式:s=ah,那么a=s÷h,已知平行四边形的面积和高求出平行四边形的底,然后用平行四边形的底减去5就是阴影部分三角形的底,然后根据三角形的面积公式:s=ah÷2,把数据代入公式解答.解:24÷4=6(厘米),(6﹣5)×4÷2=1×4÷2=2(平方厘米),答:阴影部分的面积是2平方厘米.故选:A.【点评】此题主要考查平行四边形的面积公式、三角形的面积公式的灵活运用,关键是熟记公式.7.【分析】由正方形的特征可知,①号图中阴影部分的面积等于正方形面积的,因此正方形的面积就等于图①中阴影部分面积的4倍,已知①号图形阴影部分的面积是10平方厘米,用10乘上4即可得到正方形的面积;而②号图中阴影部分的面积是正方形面积的,因此再用正方形的面积乘上即可得到②号图形阴影部分的面积,据此解答.解:由分析知②号图形阴影部分的面积是:10×4×=40×=20(平方厘米);答:②号图形阴影部分的面积是20平方厘米.故选:C.【点评】解决本题的关键是明确各个图中阴影部分的面积和正方形的面积之间的数量关系.8.【分析】甲图中阴影部分的面积可以看作与平行四边形等底等高的三角形,三角形的面积是平行四边形的面积的一半,乙图中的阴影部分面积也可以看作与平行四边形等底等高的三角形,三角形的面积是平行四边形的面积的一半,平行四边形又是完全一样,所以阴影部分的三角形的面积也是一样据此判断.解:甲图中阴影部分的面积和乙图中的阴影部分面积都可以看作与平行四边形等底等高的三角形,平行四边形的面积一样,它们的面积也一样大.故选:C.【点评】此题主要考查等底等高的三角形面积相等及平行四边形的特点.据图即可以作出判断.9.【分析】三角形的面积S=ah,只要是三角形的底和高相等,则它们的面积相等,据此即可得解.解:由图意可知:图中3个三角形的底是相等的,要想面积与阴影部分的三角形面积相等,那么如果高与阴影部分的三角形的高相等即可;再根据平行线间的距离相等,所以△BCE的面积与阴影部分的面积相等.故选:C.【点评】解答此题的主要依据是:等底等高的三角形的面积相等.10.【分析】由图形可知,甲的面积小于长方形面积的一半,乙的面积大于长方形面积的一半,所以乙的面积大于甲的面积;因为甲的周长=长方形的两条邻边的和+中间的曲线的长,乙的周长=长方形的两条邻边和+中间的曲线的长,进行解答继而得出结论.解:因为甲的面积小于长方形面积的一半,乙的面积大于长方形面积的一半,所以甲的面积小于乙的面积;甲的周长=长方形的两条邻边的和+中间的曲线的长,乙的周长=长方形的两条邻边的和+中间的曲线的长,所以甲的周长等于乙的周长;故选:C.【点评】解答此题应根据长方形的特征,并结合周长的计算方法进行解答.二.填空题(共8小题)11.【分析】观察图形可知,长方形的长等于圆的直径是8分米,宽是半圆的半径是8÷2=4分米,据此利用长方形的面积=长×宽计算即可解答问题.解:8÷2=4(分米)8×4=32(平方分米)答:这个长方形的面积是32平方分米.故答案为:32.【点评】掌握长方形内的半圆的特征得出长方形的长与宽的值,是解决本题的关键.12.【分析】根据图示,这个组合图形可以看作由一个梯形和一个长方形拼成的图形,利用长方形和梯形面积公式求解即可.解:如图:该图形可看作一个梯形和一个长方形拼成的图形,其面积为:(12+16)×(10﹣5)÷2+16×5=28×5÷2+80=70+80=150(平方厘米)答:这个图形的面积为150平方厘米.故答案为:150平方厘米.【点评】此题主要考查的是梯形的面积公式:(上底+下底)×高÷2、长方形面积公式:长×宽的应用.13.【分析】右边图形中阴影部分的面积=最上面一行中的2个方格的面积+下面图形中的长方形的面积﹣1个方格的面积,据此即可求解.解:2+4×5﹣1=2+20﹣1=21(平方厘米)答:阴影部分的面积是21平方厘米.故答案为:21.【点评】解答此题的关键是:看利用小方格的边长计算简单还是利用小正方形的面积计算简单,要灵活应对.14.【分析】根据平行四边形的面积变形公式h=S÷a,可求平行四边形的高,根据三角形面积公式S=ah可求三角形的面积;依此即可求解.解:高:20÷5=4(厘米)三角形的面积:3×4÷2=12÷2=6(平方厘米)故答案为:4,6.【点评】本题考查了学生求平行四边形、三角形面积的知识,关键是求出平行四边形的高.15.【分析】根据图意可把这个不规则的四边形,看作是2个直角三角形面积的和来进行解答,然后再根据三角形的面积公式进行计算.解:11×6÷2=66÷2=33(平方厘米)答:这个四边形的面积是33平方厘米.故答案为:33.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.16.【分析】观察图示可知,阴影部分的面积=梯形面积﹣圆面积的,代入数据,解答即可.解:(4+10)×4÷2﹣3.14×42×=28﹣12.56=15.44(平方厘米)答:阴影部分是面积是15.44平方厘米.故答案为:15.44.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.17.【分析】运用面积公式、割补法求阴影部分面积,再与题目的要求比较.解:花坛面积为4m2,一半为2m2,A、阴影部分面积为2×2÷2=2(m2)B、阴影部分面积为1×1+1×1÷2+1×2÷2=2.5(m2)不符合要求;C、阴影部分面积为1×1÷2×4=2(m2)D、把图中上面两个扇形移下来,刚回拼成两个小正方形,面积为2m2;故答案为:B.【点评】本题考查了阴影部分图形面积的计算方法,即规则图形用面积公式求,不规则图形用割补法求解.18.【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102﹣2)米,宽为(51﹣1)米.所以草坪的面积=长×宽=(102﹣2)×(51﹣1)=100×50=5000(米2).故答案为:C.【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.三.判断题(共5小题)19.【分析】分别计算出阴影部分和半圆的面积,再判断.解:设正方形的边长为a,则:阴影部分面积=πa2﹣=a2;半圆的面积为:π×═a2;所以阴影部分面积等于半圆的面积,原说法错误.故答案为:错误.【点评】解决本题的关键是计算出组合图形中相关部分的面积,再比较.20.【分析】分别运用梯形的面积公式和三角形的面积公式进行列式比较就可做出判断.解:设梯形的上底为a,高为h,则下底为2a;梯形的面积=(a+2a)×h÷2=3ah÷2=ah;空白三角形的面积=a×h÷2=ah;则阴影部分的面积=梯形的面积﹣空白三角形的面积=ah﹣ah=ah;由此可以看出:空白面积等于阴影部分面积的一半.故此题是正确的.故答案为:√.【点评】此题主要考查三角形和梯形的面积公式.21.【分析】观察图形可知,可把右侧阴影部分割补到左侧对称的位置,如下图所示:会发现阴影部分是一个上底为4cm、下底为8cm,高为4cm的梯形,利用梯形的面积公式代入数据计算即可.解:由分析知,阴影部分的面积等于上图所示梯形的面积,梯形的上底为:8﹣8÷2=8﹣4=4(cm),高为:8÷2=4(cm),所以面积为:(4+8)×4÷2=12×4÷2=48÷2=24(cm2);答:图中阴影部分的面积为24cm2.所以题干说法正确.故答案为:√.【点评】本题考查了求组合图形的面积,组合图形的面积一般都是转化为规则图形的面积的和或差,再利用规则图形的面积公式进行计算.22.【分析】把这个图形分成三部分计算,上面是底4厘米、高2厘米的三角形,中间是上底2厘米、下底4厘米、高1厘米的梯形,下面是长与宽分别是3厘米、2厘米的长方形,据此计算出它们的面积,再加起来即可判断.解:4×2÷2+(2+4)×1÷2+2×3=4+3+6=13(平方厘米)答:阴影部分的面积是13平方厘米.故答案为:×.【点评】此题考查了不规则图形的周长与面积的计算方法,一般都是转化到规则图形中利用面积公式计算解答.23.【分析】根据组合图形的面积的计算方法可知:计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再利用规则图形的面积公式进行计算,据此即可判断.解:计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再根据简单图形的计算公式进行计算.故答案为:√.【点评】此题考查组合图形的面积的计算方法:关键是把组合图形的面积转化为我们学过的图形的面积,再利用相应的面积公式与基本的数量关系解决问题.四.计算题(共2小题)24.【分析】(1)通过旋转平移把阴影部分转化为一个半圆,根据圆的面积公式:S=πr2,把数据代入公式解答.(2)阴影部分的面积等于圆的面积减去正方形的面积,根据圆的面积公式:S=πr2,三角形的面积公式:S=ah÷2,把数据代入公式解答.解:(1)3.14×42÷2=3.14×16÷2=50.24÷2=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.(2)3.14×(10÷2)2﹣10×(10÷2)÷2×2=3.14×25﹣10×5÷2×2=78.5﹣50=28.5(平方厘米);答:阴影部分的面积是28.5平方厘米.【点评】解答求阴影部分的面积关键是观察分析图形是由哪几部分组成的,是各部分的面积和、还是求各部分的面积差,再根据相应的面积公式解答.25.【分析】组合图形的面积等于底为35米,高为12米的三角形面积加上底为50米,高为33米的平行四边形的面积;根据三角形和梯形面积公式解答即可.解:33×50+35×12÷2=1650+210=1860(平方米)答:图形的面积是1860平方米.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.五.解答题(共3小题)26.【分析】本题可用长80米、宽40米的长方形面积减去边长10米的正方形面积求出菜园的面积,长方形面积=长×宽,正方形面积=边长×边长.解:80×40﹣10×10=3200﹣100=3100(平方米)答:这个菜园的面积是3100平方米.【点评】本题主要考查了学生利用长方形的面积公式解题的能力,找出正确的计算组合图形的面积的方法是解题关键.27.【分析】根据题意:如图,已知两块阴影部分的面积和比三角形EFG的面积大10平方厘米,则三角形EFG的面积+10平方厘米+梯形BCFG的面积=平行四边形ABCD的面积,又因为三角形EFG的面积+梯形BCFG的面积=三角形BCF的面积,所以三角形BCF的面积+10平方厘米=平行四边形ABCD的面积;CF是平行四边形的高,根据平行四边形的面积=底×高,则高CF=平行四边形的面积÷底即可.解:(10×8÷2+10)÷10=(40+10)÷10=50÷10=5(厘米)答:CF长5厘米.【点评】解决此题的关键用直角三角形的面积+10平方厘米代替平行四边形的面积,根据面积公式求出CF.28.【分析】(1)先利用长方形的面积公式S=ab计算出圆白菜地的面积,再用它的面积除以每棵圆白菜的占地面积,即可得解;(2)依据梯形的面积公式S=(a+b)×h÷2,代入数据即可求解.解:(1)8×4.5÷0.15=36÷0.15=240(棵)答:一共可以种240棵.(2)(4.8+10.5﹣4.5)×(8﹣2)÷2=10.8×6÷2=32.4(平方米)答:茄子地一共有32.4平方米.【点评】此题主要考查长方形和梯形的面积公式的灵活应用.。
北师大版小学五年级数学上册《组合图形的面积》试题及答案-6页文档资料

五年级数学(上册):《组合图形的面积》试题1、求图形的面积(单位:厘米)梯形面积:三角形面积:(8+12)×8.5÷2 12×3÷2= 20×8.5÷2 = 36÷2= 170÷2 = 18(cm2)= 85(cm2)图形面积= 梯形面积–三角形面积: 85-18=67(cm2)2、校园里有两块花圃(如图),你能计算出它们的面积吗?(单位:m)图形面积=长方形面积6×(5-2)+ 正方形面积(2×2)图形面积=长方形面积 - 梯形面积6×(5-2)+ 2×2 10×6 –[(3+6)×2÷2 ]= 6×3 + 4 = 60 -[ 9×2÷2 ]= 18 + 4 = 60 - 9= 22(m2) = 51(m2)3、下图直角梯形的面积是49平方分米,求阴影部分的面积。
直角梯形的高=直角三角形的高(阴影部分面积)直角梯形的高= 49÷(6+8)×2 直角三角形面积= 6×7÷2= 49÷14× 2 = 42÷2= 3.5× 2 = 21(dm²)= 7(dm²)4、图中梯形中空白部分是直角三角形,它的面积是45平方厘米,求阴影部分面积。
直角梯形的高=直角三角形的高梯形面积=(5+12)×7.5÷2= 45÷12×2 = 17×7.5÷2= 3.75×2 = 127.5÷2= 7.5(cm2) = 63.75(cm2)阴影部分面积=梯形面积–空白部分面积:63.75 - 45 = 18.75(cm2)5、阴影部分面积是40平方米,求空白部分面积。
(单位:米)梯形的高=三角形的高(阴影部分三角形)梯形面积=(6+10)×8÷2= 40÷10× 2 = 16×8÷2= 4× 2 = 128÷2= 8(m2) = 64(m2)空白部分面积=梯形面积–阴影部分面积:64–40 = 24(m2)6、如图,平行四边形面积240平方厘米,求阴影部分面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点
有几个简单的图形拼出来的图形;我们把它们叫做组合图形.
计算组合图形的面积的方法是多种多样的.一般运用的方法是“分割法”和“添补法”.
分割法;即将这个图形分割成几个基本的图形.分割图形越简洁;其解题的方法也将越简单;同时又要考虑分割的图形与所给条件的关系.
添补法;即通过补上一个简单的图形;使整个图形变成一个大的规则图形.
运用所学的知识;解决生活中组合图形的实际问题.
能正确估计不规则图形面积的大小.
能用数格子的方法;计算不规则图形的面积.
估计、计算不规则图形面积的内容主要是以方格图作为北京进行估计与计算的;所以借助方格图能帮助建立估计与计算不规则图形面积的方法.
五年级数学(上册):《组合图形的面积》试题
1、求图形的面积(单位:厘米)
梯形面积:三角形面积:
(8+12)×8.5÷2 12×3÷2
= 20×8.5÷2 = 36÷2
= 170÷2 = 18(cm2)
= 85(cm2)
图形面积= 梯形面积–三角形面积:85-18=67(cm2)
2、校园里有两块花圃(如图);你能计算出它们的面积吗?(单位:m)
图形面积=长方形面积6×(5-2)+ 正方形面积(2×2)图形面积=长方形面积 - 梯形面积
6×(5-2)+ 2×2 10×6 –[(3+6)×2÷2 ]
= 6×3 + 4 = 60 -[ 9×2÷2 ]
= 18 + 4 = 60 - 9
= 22(m2)= 51(m2)
3、下图直角梯形的面积是49平方分米;求阴影部分的面积.
直角梯形的高=直角三角形的高(阴影部分面积)
直角梯形的高= 49÷(6+8)×2 直角三角形面积= 6×7÷2
= 49÷14×2 = 42÷2
= 3.5×2 = 21(dm²)
= 7(dm²)
4、图中梯形中空白部分是直角三角形;它的面积是45平方厘米;求阴影部分面积.
直角梯形的高=直角三角形的高梯形面积=(5+12)×7.5÷2
= 45÷12×2= 17×7.5÷2
= 3.75×2 = 127.5÷2
= 7.5(cm2)= 63.75(cm2)
阴影部分面积=梯形面积–空白部分面积:63.75 - 45 = 18.75(cm2)
5、阴影部分面积是40平方米;求空白部分面积.(单位:米)
梯形的高=三角形的高(阴影部分三角形)梯形面积=(6+10)×8÷2
= 40÷10×2 = 16×8÷2
= 4×2 = 128÷2
= 8(m2)= 64(m2)
空白部分面积=梯形面积–阴影部分面积:64–40 = 24(m2)
6、如图;平行四边形面积240平方厘米;求阴影部分面积.
梯形的下底=平行四边形的底梯形面积=(15+20)×12÷2
= 240÷12 = 35×12÷2
= 20(cm)= 420÷2
= 210(cm2)
阴影部分面积= 平行四边形面积–梯形面积:240–210 = 30(cm2)
7、下图ABCD是梯形;它的面积是140平方厘米;已知AB=15厘米;DC=5厘米.求阴影部分的面积.
阴影部分三角形的高=梯形的高
= 140÷(5+15)×2
= 140÷20×2
= 7×2
= 14(cm)
阴影部分三角形面积= 15×14÷2
= 210÷2
= 105(cm2)
8、求下图阴影部分的面积(单位:厘米)
阴影部分面积=大三角形面积+ 小三角形面积
(6×6÷2)+(3×6÷2)
=(36÷2)+(18÷2)
= 18 + 9
= 27(cm2)
9、求梯形的面积.(单位:厘米)
直角三角形面积= 3×4÷2梯形的高=直角三角形的高
= 12÷2 = 6÷5×2
= 6(cm2)= 1.2×2
= 2.4(cm)
梯形面积=(5+10)×2.4÷2
= 15×2.4÷2
= 36÷2
= 18(cm2)
10、如图;已知梯形ABCD的面积为37.8平方厘米;BE长7厘米;EC长4厘米;求平行四边形ABED的面积.
平行四边形的高=梯形的高
= 37.8÷[7+(7+4)]×2
= 37.8÷18×2
= 2.1×2
= 4.2(cm)
平行四边形面积:7×4.2 = 29.4(cm2)。