2020年山东省泰安市中考数学试卷(含解析)

合集下载

2020年山东省泰安市中考数学试卷及答案

2020年山东省泰安市中考数学试卷及答案

2020年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)−12的倒数是()A.﹣2B.−12C.2D.122.(4分)下列运算正确的是()A.3xy﹣xy=2B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x63.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A.80°B.100°C.110°D.120°5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,36.(4分)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A .20°B .25°C .30°D .50°7.(4分)将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b 的值分别是( ) A .﹣4,21B .﹣4,11C .4,21D .﹣8,698.(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD =8,则AC 的长为( )A .4B .4√3C .83√3D .2√39.(4分)在同一平面直角坐标系内,二次函数y =ax 2+bx +b (a ≠0)与一次函数y =ax +b 的图象可能是( )A .B .C .D .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .lcmB .√63cm C .(2√3−3)cm D .(2−√3)cm11.(4分)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论: ①DN =BM ; ②EM ∥FN ; ③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个12.(4分)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .√2+1B .√2+12C .2√2+1D .2√2−12二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分) 13.(4分)方程组{x +y =16,5x +3y =72的解是 .14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A (0,3),B (﹣1,1),C (3,1).△A 'B 'C ′是△ABC 关于x 轴的对称图形,将△A 'B 'C '绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为 .15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m时,才能确保山体不滑坡.(取tan50°=1.2)16.(4分)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.17.(4分)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3;(2)解不等式:x+13−1<x−14. 20.(9分)如图,已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A (3,a ),点B (14﹣2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求△ACD 的面积.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.(12分)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.(13分)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=12时,求点P的坐标;②求m的最大值.2020年山东省泰安市中考数学试卷答案一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)−12的倒数是()A.﹣2B.−12C.2D.12解:−12的倒数是﹣2.故选:A.2.(4分)下列运算正确的是()A.3xy﹣xy=2B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x6解:A.3xy﹣xy=2xy,故本选项不合题意;B.x3•x4=x7,故本选项不合题意;C.x﹣10÷x2=x﹣12,故本选项不合题意;D.(﹣x3)2=x6,故本选项符合题意.故选:D.3.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元解:4000亿=400000000000=4×1011,故选:C.4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A.80°B.100°C.110°D.120°解:如图所示,∵AB∥CD∴∠ABE=∠1=50°,又∵∠2是△ABE的外角,∴∠2=∠ABE+∠E=50°+60°=110°,故选:C.5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,3解:这20名同学读书册数的众数为3册,中位数为3+32=3(册),故选:A.6.(4分)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A.20°B.25°C.30°D.50°解:连接OA,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∴∠AOP=90°﹣∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC∥AB,∴∠BOC=∠OBA=50°,由圆周角定理得,∠BAC=12∠BOC=25°,故选:B.7.(4分)将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b的值分别是( )A .﹣4,21B .﹣4,11C .4,21D .﹣8,69解:∵x 2﹣8x ﹣5=0,∴x 2﹣8x =5,则x 2﹣8x +16=5+16,即(x ﹣4)2=21,∴a =﹣4,b =21,故选:A .8.(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD=8,则AC 的长为( )A .4B .4√3C .83√3D .2√3解:连接CD ,∵AB =BC ,∠BAC =30°,∴∠ACB =∠BAC =30°,∴∠B =180°﹣30°﹣30°=120°,∴∠D =180°﹣∠B =60°,∴∠CAD=30°,∵AD是直径,∴∠ACD=90°,∵AD=8,∴CD=12AD=4,∴AC=√AD2−CD2=√82−42=4√3,故选:B.9.(4分)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b 的图象可能是()A.B.C.D.解:A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;∵D、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误;故选:C.10.(4分)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A .lcmB .√63cmC .(2√3−3)cmD .(2−√3)cm 解:过F 作FH ⊥BC 于H ,∵高AG =2cm ,∠B =45°,∴BG =AG =2cm ,∵FH ⊥BC ,∠BEF =30°,∴EH =√3AG =2√3,∵沿虚线EF 将纸片剪成两个全等的梯形,∴AF =CE ,∵AG ⊥BC ,FH ⊥BC ,∴AG ∥FH ,∵AG =FH ,∴四边形AGHF 是矩形,∴AF =GH ,∴BC =BG +GH +HE +CE =2+2AF +2√3=6,∴AF =2−√3(cm ),故选:D .11.(4分)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论:①DN =BM ;②EM ∥FN ;③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个解:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC , ∴∠DAN =∠BCM ,∵BF ⊥AC ,DE ∥BF ,∴DE ⊥AC ,∴∠DNA =∠BMC =90°,在△DNA 和△BMC 中,{∠DAN =∠BCM∠DNA =∠BMC AD =BC,∴△DNA ≌△BMC (AAS ),∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,{∠ADE =∠CBFAD =BC ∠DAE =∠BCF,∴△ADE ≌△CBF (ASA ),∴AE =FC ,DE =BF ,故③正确;∴DE ﹣DN =BF ﹣BM ,即NE =MF ,∵DE ∥BF ,∴四边形NEMF 是平行四边形,∴EM ∥FN ,故②正确;∵AB =CD ,AE =CF ,∴BE =DF ,∵BE ∥DF ,∴四边形DEBF 是平行四边形,∵AO =AD ,∴AO =AD =OD ,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°﹣∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,故选:D.12.(4分)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.√2+1B.√2+12C.2√2+1D.2√2−12解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM =CM ,OD =OA ,∴OM 是△ACD 的中位线,∴OM =12CD ,当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大,∵OB =OD =2,∠BOD =90°,∴BD =2√2,∴CD =2√2+1,∴OM =12CD =√2+12,即OM 的最大值为√2+12;故选:B .二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分)13.(4分)方程组{x +y =16,5x +3y =72的解是 {x =12y =4 . 解:{x +y =16①5x +3y =72② ②﹣3×①,得2x =24,∴x =12.把x =12代入①,得12+y =16,∴y =4.∴原方程组的解为{x =12y =4. 故答案为:{x =12y =4. 14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC 关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M 的坐标为(﹣2,1).解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移10m时,才能确保山体不滑坡.(取tan50°=1.2)解:在BC 上取点F ,使∠F AE =50°,过点F 作FH ⊥AD 于H ,∵BF ∥EH ,BE ⊥AD ,FH ⊥AD ,∴四边形BEHF 为矩形,∴BF =EH ,BE =FH ,∵斜坡AB 的坡比为12:5,∴BE AE =125,设BE =12x ,则AE =5x ,由勾股定理得,AE 2+BE 2=AB 2,即(5x )2+(12x )2=262,解得,x =2,∴AE =10,BE =24,∴FH =BE =24,在Rt △F AH 中,tan ∠F AH =EH AH, ∴AH =EH tan50°=20, ∴BF =EH =AH ﹣AE =10,∴坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡,故答案为:10.16.(4分)如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且AD ∥BO ,∠ABO =60°,AB =8,过点D 作DC ⊥BE 于点C ,则阴影部分的面积是 643π﹣8√3 .解:连接OA ,∵∠ABO =60°,OA =OB ,∴△AOB 是等边三角形,∵AB =8, ∴⊙O 的半径为8, ∵AD ∥OB ,∴∠DAO =∠AOB =60°, ∵OA =OD , ∴∠AOD =60°, ∵∠AOB =∠AOD =60°, ∴∠DOE =60°, ∵DC ⊥BE 于点C , ∴CD =√32OD =4√3,OC =12OD =4,∴BC =8+4=12,S 阴影=S △AOB +S 扇形OAD +S 扇形ODE ﹣S △BCD=12×8×4√3+2×60π×82360−12×12×4√3 =64π3−8√3 故答案为64π3−8√3.17.(4分)已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如下表: x ﹣5 ﹣4 ﹣2 02 y6﹣6 ﹣46下列结论: ①a >0;②当x =﹣2时,函数最小值为﹣6;③若点(﹣8,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2; ④方程ax 2+bx +c =﹣5有两个不相等的实数根.其中,正确结论的序号是 ①③④ .(把所有正确结论的序号都填上)解:将(﹣4,0)(0,﹣4)(2,6)代入y =ax 2+bx +c 得, {16a −4b +c =0c =−44a +2b +c =6,解得,{a =1b =3c =−4, ∴抛物线的关系式为y =x 2+3x ﹣4, a =1>0,因此①正确;对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(﹣8,y 1)(8,y 2)代入关系式得,y 1=64﹣24﹣4=36,y 2=64+24﹣4=84,因此③正确;方程ax 2+bx +c =﹣5,也就是x 2+3x ﹣4=﹣5,即方x 2+3x +1=0,由b 2﹣4ac =9﹣4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确; 正确的结论有:①③④, 故答案为:①③④.18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3;(2)解不等式:x+13−1<x−14. 解:(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3=(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2)=(a−2)2a−3•a−3(a+2)(a−2)=a−2a+2;(2)去分母,得:4(x +1)﹣12<3(x ﹣1), 去括号,得:4x +4﹣12<3x ﹣3, 移项,得:4x ﹣3x <﹣3﹣4+12, 合并同类项,得:x <5.20.(9分)如图,已知一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于点A (3,a ),点B (14﹣2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求△ACD 的面积.解:(1)∵点A (3,a ),点B (14﹣2a ,2)在反比例函数上, ∴3×a =(14﹣2a )×2,解得:a =4,则m =3×4=12, 故反比例函数的表达式为:y =12x ;(2)∵a =4,故点A 、B 的坐标分别为(3,4)、(6,2),设直线AB 的表达式为:y =kx +b ,则{4=3k +b 2=6k +6,解得{k =−23b =6,故一次函数的表达式为:y=−23x+6;当x=0时,y=6,故点C(0,6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=12×CD•x A=12×12×3=18.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是80名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80﹣16﹣18﹣20﹣8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×1680=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个, ∴所选两名同学中恰好是1名男生1名女生的概率为59.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍. (1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?解:(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元, 依题意,得:84001.4x−4000x=10,解得:x =200,经检验,x =200是原方程的解,且符合题意, ∴1.4x =280.答:A 种茶叶每盒进价为200元,B 种茶叶每盒进价为280元. (2)设第二次购进A 种茶叶m 盒,则购进B 种茶叶(100﹣m )盒, 依题意,得:(300﹣200)×m2+(300×0.7﹣200)×m2+(400﹣280)×100−m2+(400×0.7﹣280)×100−m2=5800, 解得:m =40, ∴100﹣m =60.答:第二次购进A 种茶叶40盒,B 种茶叶60盒.23.(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC =∠EAD =90°. (1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC∥AE,AC∥BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?是.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DG=12EC=92,∵BD=AB=6,在Rt△BDG中,BG=√DG2+BD2=√(92)2+62=152,∴CB=152−92=3,在Rt△ABC中,AC=√AB2+BC2=√62+32=3√5,∵∠ACB=∠ECD,∠ABC=∠EDC,∴△ABC ∽△EDC , ∴AC EC=BC CD,∴3√59=3CD, ∴CD =9√55, ∴AD =AC +CD =3√5+9√55=24√55. 25.(13分)若一次函数y =﹣3x ﹣3的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为(3,0),二次函数y =ax 2+bx +c 的图象过A ,B ,C 三点,如图(1). (1)求二次函数的表达式;(2)如图(1),过点C 作CD ∥x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分∠DBE .求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,S △BFP =mS △BAF . ①当m =12时,求点P 的坐标; ②求m 的最大值.解:(1)一次函数y =﹣3x ﹣3的图象与x 轴,y 轴分别交于A ,C 两点,则点A 、C 的坐标分别为(﹣1,0)、(0,﹣3),将点A 、B 、C 的坐标代入抛物线表达式得{0=a −b +c0=9a +3b +c c =−3,解得{a =1b =−2c =−3,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设直线BE 交y 轴于点M ,从抛物线表达式知,抛物线的对称轴为x =2,∵CD ∥x 轴交抛物线于点D ,故点D (2,﹣3),由点B 、C 的坐标知,直线BC 与AB 的夹角为45°,即∠MCB =∠DCD =45°, ∵BC 恰好平分∠DBE ,故∠MBC =∠DBC ,而BC =BC ,故△BCD ≌△BCM (AAS ),∴CM =CD =2,故OM =3﹣2=1,故点M (0,﹣1),设直线BE 的表达式为:y =kx +b ,则{b =−13k +b =0,解得{k =13b =−1, 故直线BE 的表达式为:y =13x ﹣1;(3)过点P 作PN ∥x 轴交BC 于点N ,则△PFN ∽△AFB ,则AF PF=AB PN , 而S △BFP =mS △BAF ,则AF PF =1m =4PN ,解得:m =14PN , ①当m =12时,则PN =2,设点P (t ,t 2﹣2t ﹣3),由点B 、C 的坐标知,直线BC 的表达式为:y =x ﹣3,当x =t ﹣2时,y =t ﹣5,故点N(t﹣2,t﹣5),故t﹣5=t2﹣2t﹣3,解得:t=1或2,故点P(2,﹣3)或(1,﹣4);②m=14PN=14[t﹣(t2﹣2t)]=−14(t−32)2+916,∵−14<0,故m的最大值为916.。

山东省泰安市2020年(春秋版)中考数学试卷(II)卷

山东省泰安市2020年(春秋版)中考数学试卷(II)卷

山东省泰安市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)计算-3-(-2)的结果等于()A . 1B . 5C . -5D . -12. (2分) (2020七下·青岛期中) 如下图,表示某港口某日从6时到18时水深变化情况,每一艘轮船在水深不低于6米时可安全通航,满足这一要求的时间段是()A . 12时以后B . 14时以后C . 10时到14时D . 12时到16时3. (2分) (2020七下·万州期末) 在下列说法中,(1)角的对称轴是它的角平分线所在直线;(2)图形的平移、旋转、轴对称变换不改变图形的形状和大小;(3)三角形的三条高线一定在三角形内;(4)多边形的外角和是360°.则正确的有()A . 4个B . 3个C . 2个D . 1个4. (2分)如图是某几何体的三视图,其侧面积为()A . 20B . 20πC . 10πD . 30π5. (2分)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A . 12个B . 14个C . 15个D . 16个6. (2分) (2019八下·柳州期末) 如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是()A . x=-3B . x=4C . x=-D . x=-7. (2分)(2016·兖州模拟) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 2008. (2分) (2020八下·涿鹿期中) 如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中错误的是()A . 四边形AEDF是平行四边形B . 若∠BAC=90°,则四边形AEDF是矩形C . 若AD平分∠BAC,则四边形AEDF是矩形D . 若AD⊥BC且AB=AC,则四边形AEDF是菱形9. (2分) (2019八下·大名期末) 直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB()A . 平行于x轴B . 平行于y轴C . 经过原点D . 以上都不对10. (2分)(2020·宜兴模拟) 如图,已知矩形ABCD的四个顶点都在双曲线y=(k>0)上,BC=2AB,且矩形ABCD的面积是32,则k的值是()A . 6B . 8C . 10D . 12二、填空题 (共6题;共6分)11. (1分) (2019八下·温江期中) 分解因式: ________.12. (1分) (2020九下·重庆月考) 如图,在Rt△ABC中,∠ACB=90°,AC=16,将Rt△ABC绕点B顺时针旋转一定角度后得到Rt△A1BC1 ,连接CC1 , AA1 ,过点A作AM⊥AC交A1C1于点D,若CC1= AA1 , BC1=C1D,且AD<BC,则AD的长为________。

山东省泰安市2020年中考数学试卷

山东省泰安市2020年中考数学试卷

山东省泰安市2020年中考数学试卷一、单选题(共12题;共24分)1.的倒数是()A. -2B. 2C.D.2.下列运算正确的是()A. B. C. D.3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A. 元B. 元C. 元D. 元4.将含30°角的一个直角三角板和一把直尺如图放置,若,则等于()A. 80°B. 100°C. 110°D. 120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A. 3,3B. 3,7C. 2,7D. 7,36.如图,是的切线,点A为切点,交于点B,,点C在上,.则等于()A. 20°B. 25°C. 30°D. 50°7.将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是()A. -4,21B. -4,11C. 4,21D. -8,698.如图,是的内接三角形,,是直径,,则的长为()A. 4B.C.D.9.在同一平面直角坐标系内,二次函数与一次函数的图象可能是()A. B. C. D.10.如图,四边形是一张平行四边形纸片,其高,底边,,沿虚线将纸片剪成两个全等的梯形,若,则的长为()A. B. C. D.11.如图,矩形中,相交于点O,过点B作交于点F,交于点M,过点D作交于点E,交于点N,连接.则下列结论:① ;② ;③ ;④当时,四边形是菱形.其中,正确结论的个数是()A. 1个B. 2个C. 3个D. 4个12.如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为()A. B. C. D.二、填空题(共6题;共6分)13.方程组的解是________.14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C 的坐标分别为,,.是关于轴的对称图形,将绕点逆时针旋转180°,点的对应点为M,则点M的坐标为________.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.,斜坡长,斜坡的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿至少向右移________ 时,才能确保山体不滑坡.(取)16.如图,点O是半圆圆心,是半圆的直径,点A,D在半圆上,且,过点D作于点C,则阴影部分的面积是________.17.已知二次函数(是常数,)的y与x的部分对应值如下表:下列结论:① ;②当时,函数最小值为;③若点,点在二次函数图象上,则;④方程有两个不相等的实数根.其中,正确结论的序号是________.(把所有正确结论的序号都填上)18.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,……,我们把第一个数记为,第二个数记为,第三个数记为,……,第个数记为,则________.三、解答题(共7题;共77分)19.(1)化简:;(2)解不等式:.20.如图,已知一次函数的图象与反比例函数的图象交于点,点.(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求的面积.21.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.若和均为等腰三角形,且.(1)如图(1),点B是的中点,判定四边形的形状,并说明理由;(2)如图(2),若点G是的中点,连接并延长至点F,使.求证:① ,② .24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,与恰好为对顶角,,连接,,点F是线段上一点.(1)探究发现:当点F为线段的中点时,连接(如图(2),小明经过探究,得到结论:.你认为此结论是否成立?________.(填“是”或“否”)(2)拓展延伸:将(1)中的条件与结论互换,即:若,则点F为线段的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.(3)问题解决:若,求的长.25.若一次函数的图象与x轴,y轴分别交于A,C两点,点B的坐标为,二次函数的图象过A,B,C三点,如图(1).(1)求二次函数的表达式; (2)如图(1),过点C 作 轴交抛物线于点D , 点E 在抛物线上( 轴左侧),若恰好平分.求直线的表达式;(3)如图(2),若点P 在抛物线上(点P 在 轴右侧),连接交于点F , 连接,.①当 时,求点P 的坐标; ②求的最大值.答案解析部分一、单选题1.【解析】【解答】解:根据乘积等于1的两数互为倒数,可直接得到- 的倒数为-2.故答案为:A。

山东省泰安市2020年(春秋版)中考数学试卷(I)卷

山东省泰安市2020年(春秋版)中考数学试卷(I)卷

山东省泰安市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)-4的绝对值是()A .B . -C . 4D . -42. (2分) (2016九上·南充开学考) 若式子有意义,则x的取值范围为()A . x≥2B . x≠3C . x≥2或x≠3D . x≥2且x≠33. (2分)(2018·随州) 下列运算正确的是()A . a2•a3=a6B . a3÷a﹣3=1C . (a﹣b)2=a2﹣ab+b2D . (﹣a2)3=﹣a64. (2分)下列图形经过折叠不能围成棱柱的是()A .B .C .D .5. (2分)(2018·桂林) 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A . 10和7B . 5和7C . 6和7D . 5和66. (2分)(2020·宁波模拟) 如图,点A在双曲线上,且OA=4,过A作AC⊥ 轴,垂足为C,OA 的垂直平分线交OC于B,则△ABC的周长为()A . 4B . 5C .D .7. (2分)已知抛物线y=﹣x2+1的顶点为P,点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD,PD交AB于点E,△PAD 与△P EA相似吗?()A . 始终不相似B . 始终相似C . 只有AB=AD时相似D . 无法确定8. (2分)(2017·集宁模拟) 如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形ABCD,使AB 边落在AC上,点B落在点H处,折痕AE分别交BC于点E,交BO于点F,连结FH,则下列结论正确的有几个()⑴AD=DF;(2) = ;(3) = ﹣1;(4)四边形BEHF为菱形.A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)9. (1分) (2016八上·富宁期中) 4的算术平方根是________,9的平方根是________,﹣27的立方根是________.10. (1分) (2018八上·仁寿期中) 已知 , ,则的值为________。

七年级下册数学山东省泰安市2020年中考数学试题(精校word版,含答案)

七年级下册数学山东省泰安市2020年中考数学试题(精校word版,含答案)

泰安市二O 一七年初中学生学业考试数学试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列四个数:-3,3-,π-,-1,其中最小的数是( ) A .π- B .-3 C .-1 D .3-2.下列运算正确的是( )A .2222a a a =gB .224a a a += C .22(12)124a a a +=++ D .2(1)(1)1a a a -++=- 3.下列图案:其中,中心对称图形是( )A .①②B .②③ C. ②④ D .③④4.“2014年至2020年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”.将数据3万亿美元用科学记数法表示为( )A .14310⨯美元 B .13310⨯美元 C. 12310⨯美元 D .11310⨯美元5.化简22211(1)(1)x x x--÷-的结果为( ) A .11x x -+ B .11x x +- C.1x x + D .1x x-6.下面四个几何体:其中,俯视图是四边形的几何体个数是( ) A .1 B .2 C.3 D .4 7.一元二次方程2660x x --=配方后化为( )A .2(3)15x -= B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=8.袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) A .14 B .516 C. 716 D .129.不等式组29611x x x k +>+⎧⎨-<⎩,的解集为2x <.则k 的取值范围为( )A .1k >B .1k < C.1k ≥ D .1k ≤10.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( ) A .10001470010(140%)x x -=+ B .10001470010(140%)x x +=+ C.10001470010(140%)x x -=- D .10001470010(140%)x x+=-11.为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A 、B 、C 、D 四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图.根据统计图中提供的信息,结论错误....的是( )A .本次抽样测试的学生人数是40B .在图1中,α∠的度数是126oC.该校九年级有学生500名,估计D 级的人数为80D .从被测学生中随机抽取一位,则这位学生的成绩是A 级的概率为0.2 12.如图,ABC ∆内接于O e ,若A α∠=,则OBC ∠等于( )A .1802α-oB .2α C. 90α+oD .90α-o13.已知一次函数2y kx m x =--的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是( )A .2,0k m <>B .2,0k m << C. 2,0k m >> D .0,0k m <<14.如图,正方形ABCD 中,M 为BC 上一点,ME AM ⊥,ME 交AD 的延长线于点E .若12AB =,5BM =,则DE 的长为( )A .18B .1095 C. 965 D .25315.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x-1 0 1 3 y-3131下列结论:①抛物线的开口向下;②其图象的对称轴为1x =;③当1x <时,函数值y 随x 的增大而增大;④方程20ax bx c ++=有一个根大于4.其中正确的结论有( ) A .1个 B .2个 C.3个 D .4个16.某班学生积极参加爱心活动,该班50名学生的捐款统计情况如下表: 金额/元 5 10 20 50 100 人数4161596则他们捐款金额的中位数和平均数分别是( )A .10,20.6B .20,20.6 C.10,30.6 D .20,30.617.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若55ABC ∠=o ,则ACD ∠等于( )A .20oB .35oC.40oD .55o18.如图,在正方形网格中,线段A B ''是线段AB 绕某点逆时针旋转角α得到的,点A '与A 对应,则角α的大小为( )A .30oB .60oC.90oD .120o19.如图,四边形ABCD 是平行四边形,点E 是边CD 上的一点,且BC EC =,CF BE ⊥交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分CBF ∠;②CF 平分DCB ∠;③BC FB =;④PF PC =. 其中正确结论的个数为( )A .1B .2 C.3 D .420.如图,在ABC ∆中, 90C ∠=o, 10AB cm =,8BC cm =,点P 从点A 沿AC 向点C 以1/cm s 的速度运动,同时点Q 从点C 沿CB 向点B 以2/cm s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为( )A .219cm B .216m C. 215m D .212m第Ⅱ卷(非选择题 共60分)二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分)21.分式72x -与2x x-的和为4,则x 的值为 . 22.关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为 . 23.工人师傅用一张半径为24cm ,圆心角为150o的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为 .24.如图, 30BCA ∠=o,M 为AC 上一点, 2AM =,点P 是AB 上的一动点, PQ AC ⊥,垂足为点Q ,则PM PQ +的最小值为 .三、解答题 (本大题共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.如图,在平面直角坐标系中,Rt AOB ∆的斜边OA 在x 轴的正半轴上,90OBA ∠=o,且1tan 2AOB ∠=,25OB =,反比例函数ky x=的图象经过点B .(1)求反比例函数的表达式;(2)若AMB ∆与AOB ∆关于直线AB 对称,一次函数y mx n =+的图象过点M A 、,求一次函数的表达式.26.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?27.如图,四边形ABCD 中, AB AC AD ==,AC 平分BAD ∠,点P 是AC 延长线上一点,且PD AD ⊥.(1)证明:BDC PDC ∠=∠;(2)若AC 与BD 相交于点E ,1AB =,:23CE CP =:,求AE 的长.28.如图,是将抛物线2y x =-平移后得到的抛物线,其对称轴为1x =,与x 轴的一个交点为(1,0)A -,另一交点为B ,与y 轴交点为C .(1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC NC ⊥,求点N 的坐标; (3)点P 是抛物线上一点,点Q 是一次函数3322y x =+的图象上一点,若四边形OAPQ 为平行四边形,这样的点P Q 、是否存在?若存在,分别求出点P Q 、的坐标,若不存在,说明理由.29.如图,四边形ABCD 是平行四边形,AD AC =,AD AC ⊥,E 是AB 的中点,F 是AC 延长线上一点.(1)若ED EF ⊥,求证:ED EF =;(2)在(1)的条件下,若DC 的延长线与FB 交于点P ,试判定四边形ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED EF =,ED 与EF 垂直吗?若垂直给出证明,若不垂直说明理由.。

2020年山东省泰安市中考数学试卷

2020年山东省泰安市中考数学试卷

2020年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1. −12的倒数是()A.−2B.−12C.2 D.12【答案】A【考点】倒数【解析】根据倒数的定义,直接解答即可.【解答】−12的倒数是−2.2. 下列运算正确的是()A.3xy−xy=2B.x3⋅x4=x12C.x−10÷x2=x−5D.(−x3)2=x6【答案】D【考点】负整数指数幂幂的乘方与积的乘方合并同类项同底数幂的除法同底数幂的乘法【解析】分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】A.3xy−xy=2xy,故本选项不合题意;B.x3⋅x4=x7,故本选项不合题意;C.x−10÷x2=x−12,故本选项不合题意;D.(−x3)2=x6,故本选项符合题意.3. 2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元 B.4×1010元 C.4×1011元 D.40×109元【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】4000亿=400000000000=4×1011,4. 将含30∘角的一个直角三角板和一把直尺如图放置,若∠1=50∘,则∠2等于()A.80∘B.100∘C.110∘D.120∘【答案】C【考点】平行线的性质【解析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】如图所示,∵AB // CD∴∠ABE=∠1=50∘,又∵∠2是△ABE的外角,∴∠2=∠ABE+∠E=50∘+60∘=110∘,5. 某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,3【答案】A【考点】众数中位数【解析】找到出现次数最多的数据,即为众数;求出第10、11个数据的平均数即可得这组数据的中位数,从而得出答案.【解答】=3(册),这20名同学读书册数的众数为3册,中位数为3+326. 如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10∘,点C在⊙O上,OC // AB.则∠BAC等于()A.20∘B.25∘C.30∘D.50∘【答案】B【考点】切线的性质圆周角定理【解析】连接OA,根据切线的性质得到∠PAO=90∘,求出∠AOP,根据等腰三角形的性质、平行线的性质求出∠BOC,根据圆周角定理解答即可.【解答】连接OA,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90∘,∴∠AOP=90∘−∠P=80∘,∵OA=OB,∵OC // AB,∴∠BOC=∠OBA=50∘,∠BOC=25∘,由圆周角定理得,∠BAC=127. 将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.−4,21B.−4,11C.4,21D.−8,69【答案】A【考点】解一元二次方程-配方法【解析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【解答】∵x2−8x−5=0,∴x2−8x=5,则x2−8x+16=5+16,即(x−4)2=21,∴a=−4,b=21,8. 如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30∘,AD是直径,AD=8,则AC的长为()√3 D.2√3A.4B.4√3C.83【答案】B【考点】圆周角定理三角形的外接圆与外心圆心角、弧、弦的关系【解析】连接CD,根据等腰三角形的性质得到∠ACB=∠BAC=30∘,根据圆内接四边形的性质得到∠D=180∘−∠B=60∘,求得∠CAD=30∘,根据直角三角形的性质即可得到结论.【解答】连接CD,∴∠ACB=∠BAC=30∘,∴∠B=180∘−30∘−30∘=120∘,∴∠D=180∘−∠B=60∘,∴∠CAD=30∘,∵AD是直径,∴∠ACD=90∘,∵AD=8,∴CD=1AD=4,2∴AC=√AD2−CD2=√82−42=4√3,9. 在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b 的图象可能是()A. B.C. D.【答案】C【考点】一次函数的图象二次函数的图象【解析】根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;∵D、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误;10. 如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B =45∘,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30∘,则AF的长为()cm C.(2√3−3)cm D.(2−√3)cmA.lcmB.√63【答案】D【考点】勾股定理平行四边形的性质梯形全等图形【解析】根据直角三角形的三角函数得出BG,HE,进而利用梯形的性质解答即可.【解答】过F作FH⊥BC于H,∵高AG=2cm,∠B=45∘,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30∘,∴EH=√3AG=2√3,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG // FH,∵AG=FH,∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2√3=6,∴AF=2−√3(cm),11. 如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE // BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM // FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个【答案】D【考点】菱形的性质菱形的判定矩形的性质【解析】证△DNA≅△BMC(AAS),得出DN=BM,∠ADE=∠CBF,故①正确;证△ADE≅△CBF(ASA),得出AE=FC,DE=BF,故③正确;证四边形NEMF是平行四边形,得出EM // FN,故②正确;证四边形DEBF是平行四边形,证出∠ODN=∠ABD,则DE =BE,得出四边形DEBF是菱形;故④正确;即可得出结论.【解答】∵四边形ABCD是矩形,∴AB=CD,AB // CD,∠DAE=∠BCF=90∘,OD=OB=OA=OC,AD=BC,AD // BC,∴∠DAN=∠BCM,∵BF⊥AC,DE // BF,∴DE⊥AC,∴∠DNA=∠BMC=90∘,在△DNA和△BMC中,{∠DAN=∠BCM ∠DNA=∠BMCAD=BC,∴△DNA≅△BMC(AAS),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,{∠ADE=∠CBFAD=BC∠DAE=∠BCF,∴△ADE≅△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE−DN=BF−BM,即NE=MF,∵DE // BF,∴四边形NEMF是平行四边形,∴EM // FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE // DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60∘,∴∠ABD=90∘−∠ADO=30∘,∵DE⊥AC,∴∠ADN=ODN=30∘,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,12. 如图,点A,B的坐标分别为A(2, 0),B(0, 2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.√2+1B.√2+12C.2√2+1 D.2√2−12【答案】B【考点】坐标与图形性质三角形中位线定理点与圆的位置关系【解析】根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【解答】如图,∵ 点C 为坐标平面内一点,BC =1,∴ C 在⊙B 的圆上,且半径为1,取OD =OA =2,连接CD ,∵ AM =CM ,OD =OA ,∴ OM 是△ACD 的中位线,∴ OM =12CD , 当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大, ∵ OB =OD =2,∠BOD =90∘,∴ BD =2√2,∴ CD =2√2+1,∴ OM =12CD =√2+12,即OM 的最大值为√2+12; 二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分)方程组{x +y =16,5x +3y =72的解是________. 【答案】{x =12y =4【考点】加减消元法解二元一次方程组二元一次方程组的解代入消元法解二元一次方程组【解析】用代入法或加减法求解二元一次方程组即可.【解答】{x +y =165x +3y =72②−3×①,得2x =24,∴ x =12.把x =12代入①,得12+y =16,∴y=4.∴原方程组的解为{x=12y=4.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0, 3),B(−1, 1),C(3, 1).△A′B′C′是△ABC关于x轴的对称图形,将△A′B′C′绕点B′逆时针旋转180∘,点A′的对应点为M,则点M的坐标为________.【答案】(−2, 1)【考点】坐标与图形变化-旋转中心对称关于x轴、y轴对称的点的坐标【解析】延长A′B′后得出点M,进而利用图中坐标解答即可.【解答】将△A′B′C′绕点B′逆时针旋转180∘,如图所示:所以点M的坐标为(−2, 1),故答案为:(−2, 1).如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC // AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50∘时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移10m时,才能确保山体不滑坡.(取tan50∘=1.2)【答案】10.【考点】解直角三角形的应用-坡度坡角问题【解析】在BC上取点F,使∠FAE=50∘,作FH⊥AD,根据坡度的概念求出BE、AE,根据正切的定义求出AH,结合图形计算,得到答案.【解答】在BC上取点F,使∠FAE=50∘,过点F作FH⊥AD于H,∵BF // EH,BE⊥AD,FH⊥AD,∴四边形BEHF为矩形,∴BF=EH,BE=FH,∵斜坡AB的坡比为12:5,∴BEAE =125,设BE=12x,则AE=5x,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得,x=2,∴AE=10,BE=24,∴FH=BE=24,在Rt△FAH中,tan∠FAH=EHAH,∴AH=EHtan50=20,∴BF=EH=AH−AE=10,∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD // BO,∠ABO=60∘,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是________.【答案】643π−8√3【考点】平行线的性质圆周角定理扇形面积的计算【解析】连接OA,易求得圆O的半径为8,扇形的圆心角的度数,然后根据S阴影=S△AOB+S扇形OAD +S扇形ODE−S△BCD即可得到结论.【解答】连接OA,∵∠ABO=60∘,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD // OB,∴∠DAO=∠AOB=60∘,∵OA=OD,∴∠AOD=60∘,∵∠AOB=∠AOD=60∘,∴∠DOE=60∘,∵DC⊥BE于点C,∴CD=√32OD=4√3,OC=12OD=4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE−S△BCD=12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√3已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:下列结论:②当x =−2时,函数最小值为−6;③若点(−8, y 1),点(8, y 2)在二次函数图象上,则y 1<y 2; ④方程ax 2+bx +c =−5有两个不相等的实数根. 其中,正确结论的序号是________.(把所有正确结论的序号都填上) 【答案】 ①③④【考点】二次函数的最值二次函数图象与系数的关系 二次函数图象上点的坐标特征 根的判别式 抛物线与x 轴的交点【解析】任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的图象与系数之间的关系进行判断即可. 【解答】将(−4, 0)(0, −4)(2, 6)代入y =ax 2+bx +c 得, {16a −4b +c =0c =−44a +2b +c =6 ,解得,{a =1b =3c =−4 , ∴ 抛物线的关系式为y =x 2+3x −4, a =1>0,因此①正确;对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(−8, y 1)(8, y 2)代入关系式得,y 1=64−24−4=36,y 2=64+24−4=84,因此③正确;方程ax 2+bx +c =−5,也就是x 2+3x −4=−5,即方x 2+3x +1=0,由b 2−4ac =9−4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确; 正确的结论有:①③④,如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200=________.【答案】 20110数学常识规律型:图形的变化类 规律型:点的坐标 规律型:数字的变化类 【解析】观察“杨辉三角”可知第n 个数记为a n =(1+2+...+n)=12n(n +1),依此求出a 4,a 200,再相加即可求解. 【解答】观察“杨辉三角”可知第n 个数记为a n =(1+2+...+n)=12n(n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)(1)化简:(a −1+1a−3)÷a 2−4a−3;(2)解不等式:x+13−1<x−14.【答案】 原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3=(a 2−4a+3a−3+1a−3)⋅a−3(a+2)(a−2)=(a −2)2⋅a −3=a−2a+2;去分母,得:4(x +1)−12<3(x −1), 去括号,得:4x +4−12<3x −3, 移项,得:4x −3x <−3−4+12, 合并同类项,得:x <5. 【考点】分式的混合运算 解一元一次不等式【解析】(1)先计算括号内异分母分式的加法,再将除法转化为乘法,继而约分即可得; (2)根据解一元一次不等式的基本步骤依次计算可得. 【解答】 原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3=(a 2−4a+3a−3+1a−3)⋅a−3(a+2)(a−2)=(a−2)2a−3⋅a−3(a+2)(a−2)=a−2a+2;去分母,得:4(x+1)−12<3(x−1),去括号,得:4x+4−12<3x−3,移项,得:4x−3x<−3−4+12,合并同类项,得:x<5.如图,已知一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(3, a),点B(14−2a, 2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.【答案】∵点A(3, a),点B(14−2a, 2)在反比例函数上,∴3×a=(14−2a)×2,解得:a=4,则m=3×4=12,故反比例函数的表达式为:y=12x;∵a=4,故点A、B的坐标分别为(3, 4)、(6, 2),设直线AB的表达式为:y=kx+b,则{4=3k+b2=6k+6,解得{k=−23b=6,故一次函数的表达式为:y=−23x+6;当x=0时,y=6,故点C(0, 6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=12×CD⋅x A=12×12×3=18.【考点】反比例函数与一次函数的综合【解析】(1)点A(3, a),点B(14−2a, 2)在反比例函数上,则3×a=(14−2a)×2,即可求解;(2)a=4,故点A、B的坐标分别为(3, 4)、(6, 2),求出一次函数的表达式为:y=−23x+6,则点C(0, 6),故OC=6,进而求解.【解答】∵点A(3, a),点B(14−2a, 2)在反比例函数上,∴3×a=(14−2a)×2,解得:a=4,则m=3×4=12,故反比例函数的表达式为:y=12x;∵a=4,故点A、B的坐标分别为(3, 4)、(6, 2),设直线AB的表达式为:y=kx+b,则{4=3k+b2=6k+6,解得{k=−23b=6,故一次函数的表达式为:y=−23x+6;当x=0时,y=6,故点C(0, 6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=12×CD⋅x A=12×12×3=18.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.【答案】80D组人数为:80−16−18−20−8=18(名),把条形统计图补充完整如图:=72∘;扇形统计图中表示机器人的扇形圆心角α的度数为360∘×1680画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为5.9【考点】列表法与树状图法条形统计图扇形统计图【解析】(1)由B组的人数及其所占百分比可得本次参加比赛的学生人数;(2)求出D组人数,从而补全条形统计图;(3)由360∘乘以A组所占的百分比即可;(4)画出树状图,由概率公式求解即可.【解答】本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;D组人数为:80−16−18−20−8=18(名),把条形统计图补充完整如图:=72∘;扇形统计图中表示机器人的扇形圆心角α的度数为360∘×1680画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为59.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?【答案】A种茶叶每盒进价为200元,B种茶叶每盒进价为280元第二次购进A种茶叶40盒,B种茶叶60盒【考点】分式方程的应用一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,根据用8400元购买的B种茶叶比用4000元购买的A种茶叶多10盒,即可得出关于x的分式方程,解之即可得出结论;(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100−m)盒,根据总利润=每盒的利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.【解答】设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:84001.4x −4000x=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴ 1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.设第二次购进A种茶叶m盒,则购进B种茶叶(100−m)盒,依题意,得:(300−200)×m2+(300×0.7−200)×m2+(400−280)×100−m2+(400×0.7−280)×100−m2=5800,解得:m=40,∴100−m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90∘.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.【答案】四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90∘,B是DE的中点,∴∠E=∠BAE=45∘,∠ABE=90∘,∵△ABC是等腰三角形,∠BAC=90∘,∴∠ABC=∠BAE=45∘,∠ABE=∠BAC=90∘,∴BC // AE,AC // BE,∴四边形BEAC是平行四边形;①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90∘,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≅△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≅△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.【考点】三角形中位线定理全等三角形的性质与判定【解析】(1)由等腰三角形的性质可得∠E=∠BAE=45∘,∠ABE=90∘,∠ABC=∠BAE=45∘,∠ABE=∠BAC=90∘,可证BC // AE,AC // BE,可得四边形BEAC是平行四边形;(2)①由“SAS”可证△AEB≅△ADC,可得BE=CD;②延长FG至点H,使GH=FG,由“SAS”可证△EGH≅△CGF,可得∠BFC=∠H,CF=EH,可得EH=BE,由等腰三角形的性质可得结论.【解答】四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90∘,B是DE的中点,∴∠E=∠BAE=45∘,∠ABE=90∘,∵△ABC是等腰三角形,∠BAC=90∘,∴∠ABC=∠BAE=45∘,∠ABE=∠BAC=90∘,∴BC // AE,AC // BE,∴四边形BEAC是平行四边形;①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90∘,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≅△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≅△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90∘,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?________.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB =6,CE =9,求AD 的长.【答案】 是结论成立:理由:∵ BD ⊥DF ,ED ⊥AD ,∴ ∠BDC +∠CDF =90∘,∠EDF +∠CDF =90∘, ∴ ∠BDC =∠EDF , ∵ AB =BD , ∴ ∠A =∠BDC , ∴ ∠A =∠EDF ,∵ ∠A +∠ACB =90∘,∠E +∠ECD =90∘,∠ACB =∠ECD , ∴ ∠A =∠E , ∴ ∠E =∠EDF , ∴ EF =FD ,∵ ∠E +∠ECD =90∘,∠EDF +∠FDC =90∘, ∴ ∠FCD =∠FDC , ∴ FD =FC , ∴ EF =FC ,∴ 点F 是EC 的中点.如图3中,取EC 的中点G ,连接GD .则GD ⊥BD .∴ DG =12EC =92,∵ BD =AB =6,在Rt △BDG 中,BG =√DG 2+BD 2=√(92)2+62=152,∴ CB =152−92=3,在Rt △ABC 中,AC =√AB 2+BC 2=√62+32=3√5, ∵ ∠ACB =∠ECD ,∠ABC =∠EDC , ∴ △ABC ∽△EDC , ∴ ACEC =BCCD , ∴3√59=3CD ,∴ CD =9√55,∴AD=AC+CD=3√5+9√55=24√55.【考点】三角形综合题【解析】(1)证明∠FDC+∠BDC=90∘可得结论.(2)结论成立:利用等角的余角相等证明∠E=∠EDF,推出EF=FD,再证明FD=FC 即可解决问题.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.利用(1)中即可以及相似三角形的性质解决问题即可.【解答】如图(2)中,∵∠EDC=90∘,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90∘,∴∠A+∠ACB=90∘,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90∘,∴∠FDB=90∘,∴BD⊥DF.故答案为是.结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90∘,∠EDF+∠CDF=90∘,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90∘,∠E+∠ECD=90∘,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90∘,∠EDF+∠FDC=90∘,∴∠FCD=∠FDC,∴ FD =FC , ∴ EF =FC ,∴ 点F 是EC 的中点.如图3中,取EC 的中点G ,连接GD .则GD ⊥BD .∴ DG =12EC =92,∵ BD =AB =6,在Rt △BDG 中,BG =√DG 2+BD 2=√(92)2+62=152,∴ CB =152−92=3,在Rt △ABC 中,AC =√AB 2+BC 2=√62+32=3√5, ∵ ∠ACB =∠ECD ,∠ABC =∠EDC , ∴ △ABC ∽△EDC , ∴ ACEC =BCCD , ∴3√59=3CD ,∴ CD =9√55,∴ AD =AC +CD =3√5+9√55=24√55.若一次函数y =−3x −3的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为(3, 0),二次函数y =ax 2+bx +c 的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD // x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC 恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=12时,求点P的坐标;②求m的最大值.【答案】一次函数y=−3x−3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(−1, 0)、(0, −3),将点A、B、C的坐标代入抛物线表达式得{0=a−b+c0=9a+3b+cc=−3,解得{a=1b=−2c=−3,故抛物线的表达式为:y=x2−2x−3;设直线BE交y轴于点M,从抛物线表达式知,抛物线的对称轴为x=2,∵CD // x轴交抛物线于点D,故点D(2, −3),由点B、C的坐标知,直线BC与AB的夹角为45∘,即∠MCB=∠DCD=45∘,∵BC恰好平分∠DBE,故∠MBC=∠DBC,而BC=BC,故△BCD≅△BCM(AAS),∴CM=CD=2,故OM=3−2=1,故点M(0, −1),设直线BE的表达式为:y=kx+b,则{b=−13k+b=0,解得{k=13b=−1,故直线BE的表达式为:y=13x−1;过点P作PN // x轴交BC于点N,则△PFN∽△AFB,则AFPF =ABPN,而S△BFP=mS△BAF,则AFPF =1m=4PN,解得:m=14PN,①当m=12时,则PN=2,设点P(t, t2−2t−3),由点B、C的坐标知,直线BC的表达式为:y=x−3,当x=t−2时,y=t−5,故点N(t−2, t−5),故t−5=t2−2t−3,解得:t=1或2,故点P(2, −3)或(1, −4);②m=14PN=14[t−(t2−2t)]=−14(t−32)2+916,∵−14<0,故m的最大值为916.【考点】二次函数综合题【解析】(1)函数y=−3x−3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(−1, 0)、(0, −3),将点A、B、C的坐标代入抛物线表达式,即可求解;(2)证明△BCD≅△BCM(AAS),则CM=CD=2,故OM=3−2=1,故点M(0, −1),即可求解;(3)过点P作PN // x轴交BC于点N,则△PFN∽△AFB,则AFPF =ABPN,而S△BFP=mS△BAF,则AFPF =1m=4PN,解得:m=14PN,即可求解.【解答】一次函数y=−3x−3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(−1, 0)、(0, −3),将点A、B、C的坐标代入抛物线表达式得{0=a−b+c0=9a+3b+cc=−3,解得{a=1b=−2c=−3,故抛物线的表达式为:y=x2−2x−3;设直线BE交y轴于点M,从抛物线表达式知,抛物线的对称轴为x=2,∵CD // x轴交抛物线于点D,故点D(2, −3),由点B、C的坐标知,直线BC与AB的夹角为45∘,即∠MCB=∠DCD=45∘,∵BC恰好平分∠DBE,故∠MBC=∠DBC,而BC=BC,故△BCD≅△BCM(AAS),∴CM=CD=2,故OM=3−2=1,故点M(0, −1),设直线BE的表达式为:y=kx+b,则{b=−13k+b=0,解得{k=13b=−1,故直线BE的表达式为:y=13x−1;过点P作PN // x轴交BC于点N,则△PFN∽△AFB,则AFPF =ABPN,而S△BFP=mS△BAF,则AFPF =1m=4PN,解得:m=14PN,①当m=12时,则PN=2,设点P(t, t2−2t−3),由点B、C的坐标知,直线BC的表达式为:y=x−3,当x=t−2时,y=t−5,故点N(t−2, t−5),故t−5=t2−2t−3,解得:t=1或2,故点P(2, −3)或(1, −4);②m=14PN=14[t−(t2−2t)]=−14(t−32)2+916,∵−14<0,故m的最大值为916.。

2020年山东省泰安市中考数学试卷

2020年山东省泰安市中考数学试卷

2020年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:−(−2)+(−2)0的结果是()A.0B.−3C.3D.−1【答案】此题暂无答案【考点】零因优幂【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A.y2⋅y3=y6B.2y3+y3=3y6C.y3÷y−2=y5D.(3y2)3=9y6【答案】此题暂无答案【考点】合较溴类项同底水水的乘法幂的乘表与型的乘方同底射空的除法负整明指养幂【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】此题暂无答案【考点】由三视正活断几何体【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评4. 如图,将一张含有30∘角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44∘,则∠1的大小为()A.16∘B.14∘C.α−44∘D.90∘−α【答案】此题暂无答案【考点】平行体的省质【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)3538424440474545,则这组数据的中位数、平均数分别是()A.43、42B.42、42C.44、43D.43、43【答案】此题暂无答案【考点】中位数算三平最数【解析】此题暂无解析【解答】此题暂无解答【点评】根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.{x+y=5300150x+200y=30 B.{x+y=5300200x+150y=30C.{x+y=30150x+200y=5300 D.{x+y=30200x+150y=5300【答案】此题暂无答案【考点】由实正问构抽他加二元一次方程组【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.7. 二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=ax与一次函数y= ax+b在同一坐标系内的大致图象是()A. B.C. D.【答案】此题暂无答案【考点】二次来数的斗象一次射可的图象反比例射数的图放【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了二次函数图象,一次函数图象,反比例函数图象,关键是根据二次函数图象确定出a、b、c的符号.8. 不等式组{x−13−12x<−14(x−1)≤2(x−a)有3个整数解,则a的取值范围是( )A.−6<a≤−5B.−6≤a<−5C.−6≤a≤−5D.−6<a<−5【答案】此题暂无答案【考点】一元三次实等另组每整数解解一元表次镜等式组【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.9. 如图,BM与⊙O相切于点B,若∠MBA=140∘,则∠ACB的度数为()A.50∘B.40∘C.70∘D.60∘【答案】此题暂无答案【考点】切表的木质【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评10. 一元二次方程(x+1)(x−3)=2x−5根的情况是( )A.有两个负根B.有一个正根,一个负根C.有两个正根D.无实数根【答案】此题暂无答案【考点】解因末二什方似-配方法【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了一元二次方程的解法,正确解方程是解题关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2, 1.4)平移后对应点为P1,点P1绕原点顺时针旋转180∘,对应点为P2,则点P2的坐标为()A.(−2.8, −3.6)B.(2.8, 3.6)C.(−3.8, −2.6)D.(3.8, 2.6)【答案】此题暂无答案【考点】坐标与图体变某-平移坐标与图正变化-旋知【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评12. 如图,⊙M的半径为2,圆心M的坐标为(3, 4),点P是⊙M上的任意一点,PA⊥PB,且PA,PB与x轴分别交于A,B两点,若点A,点B关于原点O对称,则AB的最小值为( )A.4B.3C.8D.6【答案】此题暂无答案【考点】点与圆常位陆关系关验掌陆箱称的点的坐标勾体定展一次常数图按上点入适标特点【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.二、填空题(本大题共6小题,满分18分。

山东省泰安市2020版中考数学试卷B卷

山东省泰安市2020版中考数学试卷B卷

山东省泰安市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(-1)2013的绝对值是()A . 1B . -1C . 0D . 20132. (2分)(2016·贵阳) 如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A . 38°B . 52°C . 76D . 142°3. (2分) (2020九下·江阴期中) 若a+b=3,a-b=7,则的值为()A . -21B . 21C . -10D . 104. (2分) (2019八下·泰兴期中) 下列分式中,最简分式是()A .B .C .D .5. (2分)(2019·青白江模拟) 为了解居民用水情况,小明在某小区随机抽查了20户家庭的月用水量,结果如下表:月用水量(m3)45689户数45731则关于这20户家庭的月用水量,下列说法不正确的是()A . 中位数是6mB . 平均数是5.8mC . 众数是6mD . 极差是6m6. (2分) (2019八上·天山期中) 已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有()( 1 )AD平分∠EDF;(2)△EBD≌△F CD;(3)BD=CD;(4)AD⊥BC.A . 1个B . 2个C . 3个D . 4个7. (2分) (2020九下·卧龙模拟) 在平面直角坐标系中,将点绕原点O逆时针旋转180°,得到的对应点的坐标是()A .B .C .D .8. (2分)如图1为图2中三角柱ABCEFG的展开图,其中AE,BF,CG,DH是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A . 2B . 3C . 4D . 59. (2分)(2020·顺德模拟) 如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图不发生改变的是()A . 主视图B . 左视图C . 俯视图D . 主视图、左视图、俯视图都不改变10. (2分)(2019·南县模拟) 二次函数的图象如图所示,则下列结论:;;;中,正确的结论的个数是()A . 1个B . 2个C . 3个D . 4个11. (2分)把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是()A .B .C .D .12. (2分) (2019九上·北京期中) 已知锐角∠AOB如图,①在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;②分别以点C,D为圆心,CD长为半径作弧,交于点M,N;③连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A . ∠COM=∠CODB . 若OM=MN,则∠AOB=20°C . MN∥CDD . MN=3CD二、填空题 (共6题;共6分)13. (1分) (2020七下·云南月考) 下列实数中,无理数有________.(填序号)①-2,② ,③ ,④ ,⑤ ,⑥ ,⑦ ,⑧1.101001.14. (1分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了________ 道题.15. (1分) (2017八下·定州期中) 如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为________.16. (1分) (2017八上·建昌期末) 如图,已知∠MON=30°,点A1 , A2 , A3 ,…在射线ON上,点B1 ,B2 , B3 ,…在射线OM上,△A1B1A2 ,△A2B2A3 ,△A3B3A4 ,…均为等边三角形,若OA1=2,则△A5B5A6的边长为________.17. (1分) (2016九上·朝阳期末) 已知y是x的反比例函数,且在每个象限内,y随x的增大而减小.请写出一个满足以上条件的函数表达式________.18. (1分)按一定规律排列的一列数依次为:,,,,按此规律排列下去,这列数中的第7个数是________三、解答题: (共6题;共53分)19. (5分) (2017八下·淅川期末) 先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a的值代入求值.20. (5分)(2019·淮安) 某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?21. (8分) (2015九上·宜昌期中) 如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF 的位置.(1)旋转中心是点________,旋转角度是________度;(2)若连结EF,则△AEF是________三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.22. (10分)(2019·雁塔模拟) 由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)23. (10分) (2017八下·宜兴期中) 如图,□ABCD中,E、F为对角线BD上的两点,且DF=BE,连接AE,CF.(1)求证:∠DAE=∠BCF.(2)连接AC交于BD点O,求证:AC,EF互相平分.24. (15分)(2017·黄冈模拟) 如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共6题;共53分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年山东省泰安市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.的倒数是()A.﹣2 B.﹣C.2 D.2.下列运算正确的是()A.3xy﹣xy=2 B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x63.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元4.将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A.80°B.100°C.110°D.120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册 1 2 3 4 5人数/人 2 5 7 4 2根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3 B.3,7 C.2,7 D.7,36.如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC 等于()A.20°B.25°C.30°D.50°7.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,698.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A.4 B.4C.D.29.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A.B.C.D.10.如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A.lcm B.cm C.(2﹣3)cm D.(2﹣)cm11.如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE ∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个12.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1 B.+C.2+1 D.2﹣二、填空题(每小题4分,共24分)13.方程组的解是.14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m 时,才能确保山体不滑坡.(取tan50°=1.2)16.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.17.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x ﹣5 ﹣4 ﹣2 0 2y 6 0 ﹣6 ﹣4 6下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)18.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.三、解答题(本大题共7小题,满分78分)19.(10分)(1)化简:(a﹣1+)÷;(2)解不等式:﹣1<.20.(9分)如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B(14﹣2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.(12分)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.(13分)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=时,求点P的坐标;②求m的最大值.参考答案与试题解析一、选择题1.【解答】解:的倒数是﹣2.故选:A.2.【解答】解:A.3xy﹣xy=2xy,故本选项不合题意;B.x3•x4=x7,故本选项不合题意;C.x﹣10÷x2=x﹣12,故本选项不合题意;D.(﹣x3)2=x6,故本选项符合题意.故选:D.3.【解答】解:4000亿=400000000000=4×1011,故选:C.4.【解答】解:如图所示,∵AB∥CD∴∠ABE=∠1=50°,又∵∠2是△ABE的外角,∴∠2=∠ABE+∠E=50°+60°=110°,故选:C.5.【解答】解:这20名同学读书册数的众数为3册,中位数为=3(册),故选:A.6.【解答】解:连接OA,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∴∠AOP=90°﹣∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC∥AB,∴∠BOC=∠OBA=50°,由圆周角定理得,∠BAC=∠BOC=25°,故选:B.7.【解答】解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.8.【解答】解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°﹣30°﹣30°=120°,∴∠D=180°﹣∠B=60°,∴∠CAD=30°,∵AD是直径,∴∠ACD=90°,∵AD=8,∴CD=AD=4,∴AC===4,故选:B.9.【解答】解:A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;∵D、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误;故选:C.10.【解答】解:过F作FH⊥BC于H,∵高AG=2cm,∠B=45°,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30°,∴EH=,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG∥FH,∵AG=FH,∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2=6,∴AF=2﹣(cm),故选:D.11.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD∥BC,∴∠DAN=∠BCM,∵BF⊥AC,DE∥BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA和△BMC中,,∴△DNA≌△BMC(AAS),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE﹣DN=BF﹣BM,即NE=MF,∵DE∥BF,∴四边形NEMF是平行四边形,∴EM∥FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°﹣∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,故选:D.12.【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.二、填空题13.【解答】解:②﹣3×①,得2x=24,∴x=12.把x=12代入①,得12+y=16,∴y=4.∴原方程组的解为.故答案为:.14.【解答】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).15.【解答】解:在BC上取点F,使∠FAE=50°,过点F作FH⊥AD于H,∵BF∥EH,BE⊥AD,FH⊥AD,∴四边形BEHF为矩形,∴BF=EH,BE=FH,∵斜坡AB的坡比为12:5,∴=,设BE=12x,则AE=5x,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得,x=2,∴AE=10,BE=24,∴FH=BE=24,在Rt△FAH中,tan∠FAH=,∴AH==20,∴BF=EH=AH﹣AE=10,∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,故答案为:10.16.【解答】解:连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD∥OB,∴∠DAO=∠AOB=60°,∵OA=OD,∴∠AOD=60°,∵∠AOB=∠AOD=60°,∴∠DOE=60°,∵DC⊥BE于点C,∴CD=OD=4,OC==4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD=×+2×﹣=﹣8故答案为﹣8.17.【解答】解:将(﹣4,0)(0,﹣4)(2,6)代入y=ax2+bx+c得,,解得,,∴抛物线的关系式为y=x2+3x﹣4,a=1>0,因此①正确;对称轴为x=﹣,即当x=﹣时,函数的值最小,因此②不正确;把(﹣8,y1)(8,y2)代入关系式得,y1=64﹣24﹣4=36,y2=64+24﹣4=84,因此③正确;方程ax2+bx+c=﹣5,也就是x2+3x﹣4=﹣5,即方x2+3x+1=0,由b2﹣4ac=9﹣4=5>0可得x2+3x+1=0有两个不相等的实数根,因此④正确;正确的结论有:①③④,故答案为:①③④.18.【解答】解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),则a4+a200=×4×(4+1)+×200×(200+1)=20110.故答案为:20110.三、解答题19.【解答】解:(1)原式=[+]÷=(+)•=•=;(2)去分母,得:4(x+1)﹣12<3(x﹣1),去括号,得:4x+4﹣12<3x﹣3,移项,得:4x﹣3x<﹣3﹣4+12,合并同类项,得:x<5.20.【解答】解:(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,故反比例函数的表达式为:y=;(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),设直线AB的表达式为:y=kx+b,则,解得,故一次函数的表达式为:y=﹣x+6;当x=0时,y=6,故点C(0,6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=×CD•x A=×12×3=18.21.【解答】解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80﹣16﹣18﹣20﹣8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为.22.【解答】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.23.【解答】解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC∥AE,AC∥BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.24.【解答】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DG=EC=,∵BD=AB=6,在Rt△BDG中,BG===,∴CB==3,在Rt△ABC中,AC===3,∵∠ACB=∠ECD,∠ABC=∠EDC,∴△ABC∽△EDC,∴=,∴=,∴CD=,∴AD=AC+CD=3=.25.【解答】解:(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),将点A、B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设直线BE交y轴于点M,从抛物线表达式知,抛物线的对称轴为x=2,∵CD∥x轴交抛物线于点D,故点D(2,﹣3),由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCD=45°,∵BC恰好平分∠DBE,故∠MBC=∠DBC,而BC=BC,故△BCD≌△BCM(AAS),∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),设直线BE的表达式为:y=kx+b,则,解得,故直线BE的表达式为:y=x﹣1;(3)过点P作PN∥x轴交BC于点N,则△PFN∽△AFB,则,而S△BFP=mS△BAF,则=,解得:m=PN,①当m=时,则PN=2,设点P(t,t2﹣2t﹣3),由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),故t﹣5=t2﹣2t﹣3,解得:t=1或2,故点P(2,﹣3)或(1,﹣4);②m=PN=[t﹣(t2﹣2t)]=﹣(t﹣)2+,∵<0,故m的最大值为。

相关文档
最新文档