分数乘整数

合集下载

分数与整数相乘

分数与整数相乘

分数与整数相乘分数与整数相乘,用分数的分子和整数相乘的积做分子,分母不变。

整数与分数相乘,用整数和分数的分子相乘的积做分子,分母不变。

分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。

三个数相乘,为了简便,可以先把所有分数的分子和分母约分,再把分的分子、分母相乘。

乘积是1的两个数互为倒数。

求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

分数除法的意义与证书出发的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

分数除以整数(0除外),等于分数乘这个整数的倒数。

表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

把小数化成百分数,要把小数点向右移动两位,同时在后面添上百分号(位数不够要用0补齐)。

把百分数化成小数,要把百分号去掉,同时小数点向左移动两位。

把化成百分数,通常先把分数化成小数(遇到除不尽或小数位数多时,一般保留三位小数),再把小数化成百分数。

把百分数化成分数,先把分数改写成分母是100的分数,再把能约分的约分成最简分数。

画圆时,固定的一点叫做圆心,圆心通常用字母O表示;从圆心到圆上任意一点的线段,叫做半径,半径通常用字母r表示;通过圆心,并且两端都在圆上的线段,叫做直径,直径通常用字母d表示。

如果一个平面图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是对称轴图形。

折痕所在的这条直线叫做对称轴。

围成圆的曲线的长是圆的周长。

对于大小不同的圆,周长总是直径的3倍多一些。

这个倍数是个固定的数,我们把它叫做圆周率,用字母(读pāi)表示。

发芽率=发芽种子数/试验种子总数*100%y=kx(k>0),y随x的增大而增大,则y与x成正比,y=k/x(k>0),y随x的增大而减小,则y与x成反比,1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒5、角直线;直线是无限的。

分数乘整数的三种方法

分数乘整数的三种方法

分数乘整数的三种方法
分数乘以整数是数学中常见的运算,有三种方法可以实现这个操作。

第一种方法是将整数转化为分数,然后进行分数乘法。

例如,假设我们要计算
2/3乘以4,可以将4转化为4/1,然后进行分数乘法:(2/3) * (4/1) = (2*4)/(3*1) = 8/3。

这种方法的优点是直观易懂,但需要进行分数的转化,对于较大的整数可能会比较繁琐。

第二种方法是将整数视为分数的特殊情况,即将整数作为分子,分母为1。

例如,计算2/3乘以4,可以将4视为4/1,然后进行分数乘法:(2/3) * (4/1) =
(2*4)/(3*1) = 8/3。

这种方法相对于第一种方法更加简便,省去了将整数转化为分数的步骤。

第三种方法是利用整数的乘法分配律,将分数的分子与整数相乘,分母保持不变。

例如,计算2/3乘以4,可以将2/3拆分为2*(1/3),然后进行分数乘法:(2/3) * 4 = 2 * (1/3) * 4 = (2 * 4) / 3 = 8/3。

这种方法也比较简单,只需要进行整数的乘法和分数的乘法。

总的来说,分数乘以整数有三种方法:将整数转化为分数进行分数乘法、将整数视为分数的特殊情况进行分数乘法、利用整数的乘法分配律进行分数乘法。

根据具体情况选择合适的方法可以简化计算过程。

六年级上册数学分数乘整数

六年级上册数学分数乘整数
想:求3个12L,就是求12L的
( 3倍)是多少。
想:求12 L的一半,就是求12 L 的( 1 )是多少。 2
12×1=6( L )
2
6
探索新知
1桶水有12 L 。
想:求1 桶是多少,就是求12 L
4
1
的( 4 )是多少。
12×1=3( L )
4
一个数乘几分之几表示的是求这 个数的几分之几是多少。
人教版
六年级 数学 上册
情景导入1
小新、爸爸、妈妈一起吃一个蛋糕,每人 吃 2 个,3人一共吃多少个?
9
?个
2
第1单元 分数乘法
1 分数乘整数
3
探索新知
用自己 的方法列 式计算:
小新、爸爸、妈妈一起吃一
个蛋糕, 每人吃 2 个,3
9
人一共吃多少个?
用乘法计算:
23 2 2 2 222
9
999 9
3.整数乘分数就是求整数的几分之几是多少,用乘 法计算。
19
20
2
×2=1(袋)
小Байду номын сангаас:
1 3
×2=2(袋)
3
妈妈买了一盒(一盒有6袋),够不够他们 俩吃3天?
爸爸:1×3=3(袋)
小红: 2
3
×3=2(袋)
3+2=5(袋)够
18
课堂小结
你学会了哪 些知识?
计算过程中要 注意约分的过程, 结果要化为最简 分数。
1.分数乘整数的意义与整数乘法的意义相同,都是求 几个相同加数的和的简便运算。 2.分数乘整数的计算方法是用分数的分子和整数相 乘的积作分子,分母不变。
5
5
16

整数乘以分数的算理

整数乘以分数的算理

整数乘以分数的算理整数乘以分数是数学中的一种基本运算,它涉及到整数和分数的相乘。

在运算中,整数可以看作是分母为1的分数。

整数乘以分数的结果仍然是一个分数,其分子等于整数与分数的分子相乘,分母等于分数的分母。

我们来看一个具体的例子,假设有一个整数3和一个分数1/2,我们要计算3乘以1/2的结果。

根据乘法的定义,我们可以将整数3看作是分母为1的分数,即3可以表示为3/1。

然后,我们将3/1乘以1/2,根据乘法分数的规则,我们可以将分子相乘得到3乘以1等于3,分母相乘得到1乘以2等于2,所以3/1乘以1/2的结果为3/2。

通过上述例子,我们可以得出整数乘以分数的一般规律:整数乘以分数的结果的分子等于整数与分数的分子相乘,分母等于分数的分母。

接下来,我们来看一个更复杂的例子,假设有一个整数-2和一个分数2/3,我们要计算-2乘以2/3的结果。

根据乘法的定义,我们可以将整数-2看作是分母为1的分数,即-2可以表示为-2/1。

然后,我们将-2/1乘以2/3,根据乘法分数的规则,我们可以将分子相乘得到-2乘以2等于-4,分母相乘得到1乘以3等于3,所以-2/1乘以2/3的结果为-4/3。

通过上述例子,我们可以看出,整数乘以分数的结果可能是正数、负数或零,具体取决于整数和分数的正负以及相乘的结果。

在实际应用中,整数乘以分数的运算经常出现在比例和百分数的计算中。

比如,某商品原价为100元,现在打8折出售,我们可以通过将原价100乘以8/10来计算打折后的价格。

又如,某材料中含有25%的纯度,我们可以通过将材料的重量乘以1/4来计算纯度的重量。

除了乘法运算,整数和分数还可以进行加法、减法和除法运算。

加法和减法的运算规则与乘法类似,分别是将整数和分数的分子相加或相减,分母保持不变。

而除法的运算规则是将整数或分数的分子乘以倒数的分数,即将分子乘以分母的倒数。

例如,整数5除以分数2/3,可以将5看作是分母为1的分数,即5可以表示为5/1,然后将5/1除以2/3,根据除法分数的规则,我们可以将分子相乘得到5乘以3等于15,分母相乘得到1乘以2等于2,所以5/1除以2/3的结果为15/2。

《分数乘整数》教案5篇

《分数乘整数》教案5篇

《分数乘整数》教案5篇作为一名无私奉献的老师,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。

我们该怎么去写教案呢?为了加深您对于分数乘整数的写作认知,下面作者给大家整理了5篇《分数乘整数》教案,欢迎您的阅读与参考。

《分数乘整数》教案篇一教学目标使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.教学重点使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.教学难点引导学生总结分数乘整数的计算法则.教学过程()一、设疑激趣(一)下面各题怎样列式?你是怎样想的?5个12是多少?10个23是多少?25个70是多少?(概括:整数乘法表示求几个相同加数的和的简便运算)(二)计算下面各题,说说怎样算?+ + = + + =说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.同学之间交流想法:+ + = = 3× ×3=×3这个算式表示什么?为什么可以这样计算?教师板书:+ + = ×3=二、自主探索(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?1.读题,说说块是什么意思?2.根据已有的知识经验,自己列式计算三、交流、质疑(一)学生汇报,并说一说你是怎样想的?方法1:+ + = = = (块)方法2:×3= + + = = = = (块)(二)比较这两种方法,有什么联系和区别?联系:两种方法的结果是一样的.区别:一种方法是加法,另一种方法是乘法.教师板书:+ + = ×3(三)为什么可以用乘法计算?加法表示3个相加,因为加数相同,写成乘法更简便.(四)×3表示什么?怎样计算?表示3个的和是多少?+ + = = = = ,用分子2乘3的积做分子,分母不变.(五)提示:为计算方便,能约分的要先约分,然后再乘.四、归纳、概括:(一)结合= ×3= 和+ + = ×3= ,说一说一个分数乘整数表示什么?求几个相同加数的和的简便运算.(二)分数乘整数怎样计算?用分子和分母相乘的积做分子,分母不变五、巩固、发展(一)巩固意义1.改写算式+ + + =()×()+ + + + + + + =()×()2.只列式不计算:3个是多少?5个是多少?(二)巩固法则1.计算(说一说怎样算)×4 ×6 ×21 ×4 ×8思考:为什么先约分再相乘比较简便?2.应用题(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?(三)对比练习1.一条路,每天修千米,4天修多少千米?2.一条路,每天修全路的,4天修全路的几分之几?六、课后作业(一)的3倍是多少?的10倍是多少?(二)一个正方形的边长是米,它的周长是多少米?(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?七、板书设计分数乘整数分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?用加法算:+ + = = = (块)用乘法算:×3= + + = = = = (块)答:3人一共吃了块.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.教学设计点评1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。

分数乘法乘整数算式

分数乘法乘整数算式

分数乘法乘整数算式
分数乘法乘整数算式是数学中一种经典的运算,学习它可以更好地理解这些数学概念。

本文将详细介绍分数乘法乘整数的算式和规则,以及解决不同问题的示例,为读者提供一些有用的知识点。

首先要熟悉的是,分数乘法乘整数算式的基础。

它涉及到计算一个分数乘以一个整数就会得到一个新的分数,这里的整数可以是正数、负数或零。

可以把它概括为下面的算式:
(分数)×(整数)=(新的分数)
在计算时,可以按照以下几条规则:
(1)乘以一个正整数:计算分子和分母都乘以该整数,然后根
据需要简化分数。

(2)乘以一个负整数:计算分子和分母都乘以该整数,然后把
分子和分母的符号反转。

(3)乘以零:所有分数均视为0。

下面举几个例子来详细说明如何应用上面的规则:
(1)7/8×4=
根据规则,我们需要把7和8都乘以4,得到28/32。

让我们根
据需要简化这个分数,结果为7/8。

(2)-3/5×(-2)=
根据规则,要把-3和5都乘以-2,得到6/10。

然后把符号反转,得到-6/10。

根据需要简化分数,结果为3/5。

(3)3/4×0=
根据规则,我们把3和4都乘以0,得到0/0。

根据需要简化分数,结果为0/1,也就是数学上的0。

以上就是分数乘法乘整数算式的详细介绍,包括它的算式和规则,以及解决不同问题的示例。

希望读者可以仔细阅读,学会使用这些经典算式,在实践中运用它们来学习和运算。

分数乘整数

分数乘整数
我每分钟能跑600米,3分钟就 能跑多少米呢? 我每分钟跑
600×3=1800(米)
3 米, 10
3分钟能跑多少米呢?
3 10 米
1米
分数和整数相乘可以怎样计算?
用自己的话说一说,再在小组里交流。
我每分钟能跑600米,3分钟就 能跑多少米呢? 我每分钟跑
600×3=1800(米)
3 米, 10
感谢您对文章的阅读跟下载,希望本 篇文章能帮助到您,建议您下载后自 己先查看一遍,把用不上的部分页面 删掉哦,当然包括最后一页,最后祝 您生活愉快!
每个福娃需要 米绒布 如果全班每人做一个福娃,9米的绒 布够吗?
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

分数与整数相乘及实际问题

分数与整数相乘及实际问题

分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。

或者先将整数与分数的分母进行约分,再应用前面计算法则。

注:【任何整数都可以看作为分母是1的分数】2.求一个数的几分之几是多少,可以用乘法计算。

3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。

分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。

2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。

倒数的认识:1.乘积是1的两个数互为倒数。

2.求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。

【整数是分母为1的分数】3.1的倒数是1,0没有倒数。

4.假分数的倒数都小于或等于1(或者说不大于1);真分数的倒数都大于1。

例题一:1.5个 23相加,用乘法表示是________或________。

2.3× 27表示________。

3.爸爸的体重是84千克,欣欣的体重是爸爸的 14。

求欣欣的体重就是求________的( ) ( )________是多少。

算式是________。

妈妈的体重比爸爸少 13,少的体重的部分是(________)的 13,妈妈的体重是多少千克?算式是________。

4.a× 23=b× 45=c× 34,那么a 、b 、c 这三个数中,最大的是________,最小的是________。

5.2千克的 25是________千克 5米的 37是________米 反馈练习一1.一辆汽车每千米耗油 120升,照这样计算,行10千米耗油________升,行100千米耗油________升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师板书:211 +211 +211 =2+2+211 = 2×36 = 611
③总结分数乘整数的计算方法。
A、学生口述分数乘整数的计算方法;
B、教师整理并板书:
分数乘整数,整数与分子相乘的乘积作分子,分母不变。(此环节达成目标1)
展示享趣(10分钟)
2、教学例2
计算: ×6
(1)学生独立计算。
(2)交流计算方法和步骤。
1、教学例1
(1)出示例题
根据题意,电脑课件呈现示意图。
(2)根据题意列出解答算式:
211 + 211 + 211 = 2+2+211 = 611
211 ×3= 611
(3)探索分数乘整数的计算方法。
师:211 ×3= 611 ,说一说你是怎么想的?
①学生在小组交流各自的想法
②小组讨论后反馈思维的过程和结果
实验小学“和乐课堂”导学案
课题:分数乘整数
课型:新授课
主备人:安新莲
审核人:张建娜
学习目标:
1、通过现实情境会说出分数乘正整数的计算方法。
2、会准确地进行计算。
学习重难点:
分数乘整数的计算方法。
评价设计:
1、通过课堂提问、观察。小组交流检测学习目标1,达成率100%。
2、通过评价样题来检测本节课的学习目标2,达成率95%。
(3)比较计算过程,看一看哪一种更为简单。
9
×6= = =
4
3
×6 = =
4
(3)归纳:能约分的要先约分,再计算。
反馈引趣
(10分钟)
1、完成课本“做一做”。
(1)学生独立完成,然后计算过程和结果。
(2)第3题,说一说你是怎样计算的?怎样想的?
一般要求学生列综合算式计算。如:
1
×10×7= =60(kg)
1
(此环节达成目标1)
2、课本练习Βιβλιοθήκη 第1、2题练习得趣(7分钟)
1、填空:看图写算式
+ + =
+ + =
×( ) =
教后反思:
方法习得:
自主探究,合作交流。
“五趣”课道学习流程
问题
激趣
(3分钟)
一、旧知铺垫
1、计算下列各题
15 + 25 310 +110 +710 314 +314 +314
(1)写出计算过程。
(2)说一说分数加法的计算方法。
2、想一想,能不能把 314 +314 +314 改写成乘法算式呢?
探究生趣
(10分钟)
相关文档
最新文档