微生物的代谢调节

合集下载

微生物的代谢及调控

微生物的代谢及调控

设备环境基本配置
• 设备名称设置
在实际使用时,网络设备名称可根据用户需求进行 配置。为便于日后的运行与维护,所有的网络设备 都应该有统一明确的命名规范。一般来说,网络设 备的名称建议包括所在机房、所在机架、设备功能、 设备层次、设备型号、设备编号等信息,具体的命 名规范在网络方案设计时根据实际需求指定。 <例Hu:awe某i>s设ys 备物理位置位于核心机房03机架,设备层 E次nte位r sy于ste汇m v聚iew层, re,turn用use于r v汇iew聚with生Ct产rl+Z部. 门流量,设备型号 [为Hua华we为i]sy“sSna5m7e 0Co0re”0,3-S则C-可HJ-命S57名00 为Core03-SC-HJS5700
设备环境基本配置
• 系统时钟设置
– 定义:系统时钟=UTC+时区偏移+夏令时偏移
。 其中,UTC表示通用协调时间(Universal Time Coordinated)
– 系统时钟设置在用户视图下进行,包括时区设置、
当前时间设置和夏令时设置
功能
命令参数
设置当前时区
clock timezone
设置当前时间和日期
第一节 微生物的能量代谢
(一) 发酵(fermentation) 广义的发酵是指利用好氧或厌氧性微生物来生产有用 代谢产物的一类生产方式。这里介绍的是生物体能量代谢 中的狭义发酵概念,是指微生物细胞将有机物底物氧化释 放的电子或脱下的氢原子直接交给某种中间代谢物,同时 释放能量并产生各种不同的发酵产物。在发酵条件下有机 化合物只是底物水平磷酸化获取能量,因此,只释放出一 小部分的能量。发酵过程的氧化是与有机物的还原偶联在 一起的。被还原的有机物来自于发酵过程中的中间代谢物, 即不需要外界提供电子受体或受氢体。

微生物的代谢及其调控

微生物的代谢及其调控

1微生物的代谢微生物代谢包括微生物物质代谢和能量代谢。

微生物物质代谢微生物物质代谢是指发生在微生物活细胞中的各种分解代谢与合成代谢的总和。

分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。

—般可将分解代谢分为TP。

三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH及FADH2。

第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。

大分子有机物的分解(1)淀粉的分解淀粉是许多种微生物用作碳源的原料。

它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。

一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。

直链淀粉为α一l、4糖苷键组成的直链分子;支链淀粉只是在支点处由α—1、6糖苷键连接而成。

微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。

淀粉酶是一类水解淀粉糖苷键酶的总称。

它的种类很多,作用方式及产物也不尽相同,主要有液化型淀粉酶、糖化型淀粉酶(包括β—淀粉酶、糖化酶、异淀粉酶)。

以液化型淀粉酶为例,这种酶可以任意分解淀粉的。

α-l、4糖苷键,而不能分解α-1、6糖苷键。

淀粉经该酶作用以后,黏度很快下降,液化后变为糊精,最终产物为糊精、麦芽糖和少量葡萄糖。

由于这种酶能使淀粉表现为液化,淀粉黏度急速下降,故称液化淀粉酶;又由于生成的麦芽糖在光学上是α型,所以又称为“α—淀粉酶。

(2)纤维素的分解纤维素是葡萄糖由β—1,4糖苷键组成的大分子化合物。

它广泛存在于自然界,是植物细胞壁的主要组成成分。

人和大部分动物均不能消化纤维素。

但是很多微生物,如木霉、青霉、某些放线茵和细菌均能分解利用纤维素,原因是它们能产生纤维素酶。

第五章 微生物工程的代谢调节和代谢工程

第五章 微生物工程的代谢调节和代谢工程

二、酶活性的调节
代谢调节是指在代谢途径水平上酶活性 和酶合成的调节。 酶活性调节: 激活剂→酶激活作用; 抑制剂→酶抑制作用; 可以是外源物,也可是自身代谢物。
1、酶激活作用与抑制作用
微生物代谢中,普遍存在酶既有激活作 用又有抑制作用的现象。 如:天门冬氨酸转氨甲酰酶受ATP激活, 受CTP抑制(终产物)。 大肠杆菌糖代谢过程中,许多酶都有 激活剂和抑制剂(表5-1)。共同控制糖 代谢。
酶的共价修饰。
生产目的:高浓度地积累人们所期望的产物。 办法:①育种,得到根本改变代谢的基因突变株;
②控制微生物培养条件,影响其代谢过程。 代谢工程:利用基因工程技术,扩展和构建、连接,形 成新的代谢流。(也称途径工程)
一、微生物的代谢类型和自我调节
1.代谢类型:分解代谢和合成代谢。 相互关联,相互制约。 细胞优先合成异化可维持更快生长的化合物 的酶。利用完后,再合成下一个酶。 2.微生物自我调节部位: ①细胞膜的屏障作用(多数亲水分子)和通道; ②控制通量,调节酶量和改变酶分子活性; ③限制基质的有形接近,可存在于不同细胞 器各个代谢库中,其酶量差别大。
价连接物(腺苷酰基)。
五、能荷调节
细胞的能荷计算式:
[ATP]+1/2[ADP] 能荷=—————————— [ATP]+ [ADP]+[AMP]
能荷高时,ATP的酶合成系统受抑制, ATP消耗酶系统被活化。 呈抑制与活化的中间状态的能荷大约是 0.85,此时两种酶系统达到平衡。
六、代谢调控
根据代谢调节理论,通过改变发酵工艺条 件(温度、PH、风量、培养基组成)和菌 种遗传特性,达到改变菌体内的代谢平 衡,过量产生所需产物的目的。 1.发酵条件的控制 2.改变细胞透性 3.菌种遗传特性的改变

3、微生物的代谢调节

3、微生物的代谢调节

B 环状3‘,5’-腺苷单磷酸(C‘AMP)的不足
支持低生长速率的碳源比迅速利用的碳源造成细 胞内更高的C‘AMP浓度。
环化AMP在细胞内的浓度与供给ATP 的多少成反 比。环状AMP在真核生物中不仅在酶的表达方面而且 在细胞分化方面起作用。
应当注意:一种能源可起分解代谢阻遏物作用的 效能不取决于它的特有的化学结构,只取决于它作为 碳和能源的效率。 在一种生物中可最为有效地起分解代谢阻遏物作 用的化合物可能在另一生物中并不起作用。
B 分枝途径的终点产物阻遏作用
分枝生物合成途径上的酶合成的阻遏作用机制很复 杂。如表3-3所示。
C 细菌调节机制的多样性
从生化观点看大多数微生物的生物合成途径都是 相同的。但是同一途径在不同的生物中可能受到不同 方式的调节。这种调节型式往往存在族的特异性。 从生化角度看各种不同的细菌类群的分解代谢途 径亦是相同的,其调节方式既不相同又呈族特异性。
3.8 微生物代谢的协调作用
为了生长和维持生命活力,微生物必须进行大量的 酶催化反应。以提供能量和中间体,又转化为大约 2000种蛋白质(DNA和三种类型的RNA,粘多肽,多 糖,辅酶和脂质)。它再利用这些高聚物来形成细胞 的结构(核、核辩体、细胞壁、细胞膜和线粒体)。
尽管其基因型是稳定的,微生物在改变其成份和 代谢以响应环境的变化方面具有惊人的灵活性。
细胞大分子成分随生长速率的变化可解释如下:
快速生长的细胞必须比缓慢生长的细胞合成蛋白 质快得多,这种高速蛋白质合成要求细胞含有更多的 核糖体,因单位核糖体的蛋白质合成速率是不变的。 细菌具有调整它的核糖体含量的能力。这对在环 境条件变化下维持高速率生长有着很重要的意义。 对核糖体的补给不足常会明显地限制生长速率, 核糖体的过量也会这样。

微生物工程--5--代谢调节和工程

微生物工程--5--代谢调节和工程

微生物工程--5--代谢调节和工程∙代谢类型:分解代谢和合成代谢⌝代谢调节(regulation ofmetablism)是指微生物的代谢速度和方向按照微生物的需要而改变的一种作用,即自我调节。

∙微生物代谢的控制是指运用人为的方法对微生物的代谢调节进行遗传改造和条件的控制,以期按照人们的愿望,生产有用的微生物制品。

∙代谢调节的方式∙ 1.细胞透性的调节:细胞质膜的透性直接影响物质的吸收和代谢产物的分泌,从而影响到细胞内代谢的变化。

⌝细胞质膜的透性的调节是微生物代谢调节的重要方式,由它控制着营养物质的吸收和产物分泌。

∙ 2.代谢途径区域化:原核微生物细胞结构虽然简单,但也划分出不同的区域,对于某一代谢途径有关的酶系则集中某一区域,以保证这一代谢途径的酶促反应顺利进行,避免了其他途径的干扰。

∙ 3.代谢流向的调控:微生物在不同条件下可以通过控制各代谢途径中某个酶促反应的速率来控制代谢物的流向,从而保持机体代谢的平衡。

它包括两种形式ϖ由一个关键酶控制的可逆反应由两种酶控制的逆单向反应∙ 4.代谢速度的调控:在不可逆反应中,微生物通过调节酶的活性和酶量来控制代谢物的流量。

⌝微生物在不同条件下能按照需要,通过激活或抑制原有酶的活性或通过诱导或阻遏酶的合成来自我调节其代谢速度,使之高度经济有效地利用能量和原料进行生长繁殖。

∙酶合成的调节:概念:⌝酶活性调节是指一定数量的酶,通过其分子构象或分子结构的改变来调节其催化反应的速率。

影响因素:底物和产物的性质和浓度,环境因子(如压力、p H、离子强度和辅助因子等) 调节方式:激活已有酶的活性,抑制已有酶的活性∙(一)激活:在激活剂的作用下,使原来无活性的酶变成有活性,或使原来活性低的酶提高了活性的现象。

⌝代谢调节的激活作用:主要是指代谢物对酶的激活。

ϖ前(体)馈激活,指代谢途径中后面的酶促反应,可被该途径中较前面的一个中间产物所促进。

ϖ代谢中间产物的反馈激活,指代谢中间产物对该代谢途径的前面的酶起激活作用∙(二)抑制:由于某些物质的存在,降低酶活性的现象。

微生物的代谢可以通过什么方式调节

微生物的代谢可以通过什么方式调节

微生物的代谢可以通过什么方式调节引言:微生物是一类微小的生物体,包括细菌、真菌、病毒等。

微生物的代谢是指微生物体内化学过程的总和,包括营养物质的摄取、分解、合成和转化等。

微生物的代谢方式的调节对于微生物的生长、繁殖以及产生有用的代谢产物具有重要意义。

本文将介绍微生物代谢调节的几种方式。

概述:微生物的代谢调节可以通过包括基因表达调控、信号传导、环境响应、代谢产物反馈调控以及细胞内能量平衡等多种方式来实现。

这些调控方式可以使微生物根据外界环境的变化,调整代谢途径,以适应不同的生存条件。

正文:一、基因表达调控1. 转录调控:微生物的代谢调节最基本的方式是通过转录调控。

微生物通过启动子区域的结构特征和转录因子的结合来调控基因的转录,从而调节酶的合成。

例如,当微生物需要产生某种特定酶时,相关的转录因子被激活并与启动子结合,启动基因的转录。

2. 翻译调控:除了通过转录调控来调节基因的表达外,微生物还可以通过翻译调控来影响蛋白质的合成水平。

这可以通过调控转录后修饰、mRNA稳定性和翻译效率等途径实现。

二、信号传导1. 孤立态信号传导:微生物可以通过发送和接收特定的信号分子来进行细胞间的通信。

这些信号分子可以是激素、激活因子或抑制因子等,它们通过特定的信号传导通路传递信号,从而调节代谢途径的活性。

2. 确定信号:微生物还可以通过环境感知来进行代谢调节。

例如,当微生物感知到特定的环境因素,如温度、pH值、氧气浓度等发生变化时,它们可以通过转导途径来调整代谢途径以适应外界环境的改变。

三、环境响应1. 高温应激响应:高温是微生物生长和代谢的重要限制因素之一。

为了适应高温环境,微生物可以通过调节热休克蛋白表达、膜脂组分改变以及调节酶的热稳定性等途径来进行代谢调节。

2. 氧气响应:氧气是微生物代谢的重要底物和能量供应者。

微生物可以通过调节酶的氧气需求以及调整氧气通透性等途径来适应不同氧气浓度的环境。

四、代谢产物反馈调控1. 酶的反馈抑制:微生物的代谢途径中,常常存在着反馈抑制机制。

微生物的代谢调节

微生物的代谢调节

因此,只有当两个末端产物都过量时,才能对途
径中的第一个酶起到抑制作用。

枯草芽孢杆菌合成芳香族氨基酸的代谢途径就采
取这种方式进行调节。
E D A B C
F
G
顺序反馈抑制
4.2.1.3 酶活性调节的机制 P51
变构调节理论+酶分子的化学修饰调节理论 ①酶的变构调节理论: 受最终代谢产物调节的酶是一种变构酶。其 分子有两个中心: 与底物结合的活性中心(又称催化中心), 与末端产物结合的调节中心(即变构中心)。

典型实例:大肠杆菌天冬氨酸族氨基酸的合成 有3个天冬氨酸激酶催化途径的第一个反应,分别受 赖氨酸,苏氨酸,甲硫氨酸的调节。
D
E
A
B
C
F
G
H
同功酶的反馈抑制
② 协同反馈抑制

在分支代谢途径中,几种末端产物同时都过量, 才对途径中的第一个酶具有抑制作用。 若某一末端产物单独过量则对途径中的第一个 酶无抑制作用。 如,在多粘芽孢杆菌合成赖氨酸、蛋氨酸和苏 氨酸的途径中,终点产物苏氨酸和赖氨酸协同 抑制天冬氨酸激酶。


复杂分子
(有机物)
分解代谢酶系
简单分子+ATP+[H]
合成代谢酶系
4.1 微生物初级代谢及次级代谢P64

微生物的初级代谢:微生物从外界吸收各种营 养物质,通过分解代谢和合成代谢,生成维持 生命活动所必需的物质和能量的过程。
初级代谢产物:糖、氨基酸、脂肪酸、核苷酸 以及它们聚合成的大分子化合物:多糖、蛋白 质、酯类、核酸等

次级代谢只存在于某些生物(如植物和某些微生 物)中,代谢途径和代谢产物因生物不同而不同, 同种生物由于培养条件不同而产物不同。

微生物的代谢调节

微生物的代谢调节

变构效应:调节物或效应物与酶分子的别构中 心结合后,诱导或稳定住该分子的某种构象, 因结合后的该亚基形状即改变――并可促使其 他亚基的结合部位发生变化,从而导致酶活性 中心与底物的结合受到影响,调节酶的反应速 度及代谢过程。
➢变构效应有2种情况:
(1) 同促效应,调节物即底物,一般有2个以 上底物结合中心,其调节作用取决于被占据 的底物结合中心数。
▪ 由两种酶控制的逆单向反应:即在一个“可逆”反应中,其中 一种酶催化正反应,而另一种酶则催化逆反应。
葡萄糖+ATP 己糖激酶 6-磷酸葡萄糖
6-磷酸葡萄糖+H2O 6-磷酸葡萄糖酯酶 葡萄糖+Pi
4、代谢速度的调控
▪ 在不可逆反应中,微生物通过调节酶的活性 和酶量来控制代谢物的流量。
▪ 细胞代谢的调节主要是通过控制酶的作用而 实现的,也就是说,细胞内各种酶类的活性 都处在受控制的状态下,必须根据细胞对能 量以及对合成某些组分的要求而进行各种酶 促反应,并可随时减慢或加速某一物质(氨 基酸等)的合成。
➢也有负协同效应的别构酶, 底物与酶分子结合后,构象 的变化使后续分子与酶的亲 和性降低――负协调性。
可以用Rs来判断三类酶:
典型的米氏类型酶 Rs=81 正协同别构酶 Rs<81 负协同别构酶 Rs>81
3.变构作用机制的分子模型
①协调模型(齐变、对称模型)
➢ 变构酶存在两种构象状态,,即R状态(催化状态或松弛态) 和T状态(抑制状态或紧张态),在两种状态间有一个平衡, 添加底物、激活剂或抑制剂可以使R状态和T状态两种构象状态 的平衡发生移动,底物和激活剂对R状态亲和性大,当激活剂 与酶的一个亚基结合后,所有亚基都变成易于与底物结合的活 化型,结果提高了酶的活性,反之,抑制剂与酶结合后变成抑 制型,使酶活性降低或消失。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.改变代谢途径
改变分支途径流向,阻断其他产物合成,提高目标 产物产量。 ①加速限速反应
如:头孢霉素C的代谢工程菌的构建。青霉素N积累,下一酶克隆、导
入、产量上升25%;
②改变分支途径流向
提高目的产物支路的酶活性,占据优势、提高产量;
③构建代谢旁路
将抑制物分解或转化成影响小的其他物质;如:乙酸→乙醇(乳酸)。
第三章 微生物的代谢调节 和代谢工程
提纲
微生物的代谢调节类型和自我调 节 酶活性调节 酶合成调节 分支生物合成途径的调节 能荷调节 代谢调控 次级代谢与次级代谢调节 代谢工程
微生物的代谢调节和代谢工程
微生物细胞有着一整套可塑性极强和极精确的 代谢调节(regulation of metabolism)系统,
四、分支生物合成途径的调节
1.同 功 酶 调 节:催化相同反应,但酶分子结构有差异; 2.协同反馈调节:一个不能少;
3.累加反馈调节:按比例累加,无协同效应,无拮抗作用;
4.增效反馈调节:1+1>2; 5.顺序反馈调节:按①→②→③顺序逐步抑制; 6.联合激活或抑制调节:途径产物各自调节,同一中间产

7.酶的共价修饰:一酶两形式,活力有差异,关键在有无共
价连接物(腺苷酰基)。
五、能荷调节
细胞的能荷计算式:
[ATP]+1/2[ADP] 能荷=—————————— [ATP]+ [ADP]+[AMP]
能荷高时,ATP的酶合成系统受抑制, ATP消耗酶系统被活化。 呈抑制与活化的中间状态的能荷大约是 0.85,此时两种酶系统达到平衡。
初级代谢产物的调节
A有共用合成途径,反馈抑制;B初产物参与次合成,自反馈而影响。
磷酸盐调节(高于10mmol/L抑制许多抗生素合成)
A抑制酶的作用;B导致细胞能荷变化;C竞争某些金属离子的作用。
八、代谢工程
代谢网络理论:
将细胞的生化反应以网络整体来考虑,而 不是孤立地来考虑。将代谢网络分流处的代谢 产物称为节点,对终产物合成起决定作用的少 数节点称主节点。根据节点下游分支的可变程 度,节点分为柔性、半柔性和刚性三类。 1.改变代谢途径 2.扩展代谢途径 3.转移或构建新的代谢途径
①将多基因酶克隆到不产目的产物的菌中, 使之获得产目的产物的能力。(建路) ②克隆少数基因,使原无关的两条途径联结, 形成新途径,产目的产物。(连路) ③将催化某一代谢途径的基因组克隆到另一 菌种中,使之发生代谢转移,产目的产物。 (改路)
本章知识结构
微生物的代谢调节类型和自我调节部位 ★诱导酶和组成酶 ★酶活性调节机制 ★酶合成调节的机制。 微生物其他调节 代谢工程
并非必需,但有一定价值;某一时产;不同种,不 同;受环境敏影响大;酶专一性不强。
2.次级代谢的调节类型
①酶合成的诱导调节 有些酶也是诱导酶,以底物或底物类似物(内 源、外源)为诱导剂。 ②反馈调节 次级代谢物的自身反馈抑制和反馈阻遏
末端产物反馈调节;生产能力与抑制浓度正相关。
分解代谢产物的调节
葡萄糖等一些碳、氮源及代谢产物有反馈抑制、阻遏作用。
酶活性调节:细,快; 酶量调节:粗,慢。 1、酶合成的诱导作用 ①组成酶:细胞内总是适量存在的,不依赖于 酶底物或底物结构类似物的存在而合成的酶。 ②诱导酶:依赖于酶底物或底物结构类似物的 存在而合成的酶。其基因以隐性状态存在于染 色体中。
1、酶合成的诱导作用
诱导酶的合成需要诱导剂,它可是底 物,也可是底物的结构类似物。 一种酶可有多种诱导剂,其能力与诱 导剂的种类和浓度有关。 如:大肠杆菌在加入乳糖前β-半乳糖苷 酶的分子数为5个;加入后的1-2分钟内就 增加到5000个。(诱导作用,非激活作用)
如:1-5ml/L生物素控制膜中脂质合成; 青霉素抑制肽聚糖中肽链交联; 土温80或阳离子表面活性剂使壁中脂类流出; 控制Mn2+、Zn2+浓度干扰膜、壁形成;
②通过细胞膜缺损突变而控制其渗透性:
筛选透性突变株。
3.菌种遗传特性的改变
营养缺陷型突变株;
营养缺陷型是指某一野生菌株因发生基因突变 而丧失合成一种或几种生长因子、碱基或氨基酸的 能力,因而无法再在基本培养基上正常生长繁殖的 变异类型。 如赖氨酸发酵: 又如:利用谷氨酸棒状杆菌营养缺陷型(转氨甲 酰酶缺陷)突变株生产鸟氨酸。
3、酶合成调节的机制
操纵子模型:在DNA分子的不同区段上 至少有四种基因,即调节基因R(编码阻 遏物)、操纵基因O(阻遏物结合、控 制结构基因)、启动基因P(RNA聚合 酶结合位点)和结构基因S(转录 mRNA)。 操纵基因、启动基因和结构基因又 构成了操纵子。
3、酶合成调节的机制
①单一效应物调节:
②使用诱导物
可用底物或底物类似物有效增加诱导酶的产量。
③添加生物合成的前体
加前体,避开受抑制酶,大量合成终产物。
④培养基成分和浓度的控制
速效碳、氮源可能引起分解代谢阻遏。应与迟效碳、 氮源适量搭配。
2.改变细胞透性
①通过生理学手段控制细胞膜的渗透性: 培养基中加改变细胞透性物质,利于产物 分泌,避免反馈抑制。
2、酶活性调节的机制
①变构调节理论: 变构酶基础上提出,酶有催化和变构调节位 点。酶的多个亚基,多相同,也可不相同。 ②化学修饰调节理论: 变构酶与某物质共价结合而提高或降低活性。 如:柠檬酸裂解酶的乙酰化。 乙酰-酶+柠檬酸柠檬酸-S-酶+乙酸 柠檬酸-S-酶乙酰-酶+草酰乙酸
三、酶合成的调节
以确保上千种酶能准确无误、有条不紊和高度
协调地进行极其复杂的新陈代谢反应。
在发酵工业中,调节微生物生命活动的方法很
多,包括生理水平、代谢途径水平和基因调控
水平上的各种调节。
微生物的代谢调节和代谢工程
原则:经济合理地利用和合成所需的各种物
质和能量,使细胞处于平衡生长状态。
方式:反馈抑制、反馈阻遏、酶的诱导调节、
二、酶活性的调节
代谢调节是指在代谢途径水平上酶活性 和酶合成的调节。 酶活性调节: 激活剂→酶激活作用; 抑制剂→酶抑制作用; 可以是外源物,也微生物代谢中,普遍存在酶既有激活作 用又有抑制作用的现象。 如:天门冬氨酸转氨甲酰酶受ATP激活, 受CTP抑制(终产物)。 大肠杆菌糖代谢过程中,许多酶都有 激活剂和抑制剂(表3-1)。共同控制糖 代谢。
④改变能量代谢途径
不直接作用于合成途径,而在限氧条件下提高ATP产率、碳源转化率。
2.扩展代谢途径
引入外源基因后,使原来的代谢途径向 后延伸,产生新的末端产物; 如:2-KLG合成。 引入外源基因后,使原来的代谢途径向 前延伸,可利用新的原料。 如:啤酒酵母淀粉产乙醇。
3.转移或构建新的代谢途径
酶的共价修饰。
生产目的:高浓度地积累人们所期望的产物。
平衡→ 打破→ 建新平衡→高浓度地积累
办法:①育种,得到根本改变代谢的基因突变株;
②控制微生物培养条件,影响其代谢过程。 代谢工程:利用基因工程技术,扩展和构建、连接,形 成新的代谢流。(也称途径工程)
一、微生物的代谢类型和自我调节
1.代谢类型:分解代谢和合成代谢。 相互关联,相互制约。 细胞优先合成异化可维持更快生长的化合物 的酶。利用完后,再合成下一个酶。 2.微生物自我调节部位: ①细胞膜的屏障作用(多数亲水分子)和通道; ②控制通量,调节酶量和改变酶分子活性; ③限制基质的有形接近,可存在于不同细胞 器各个代谢库中,其酶量差别大。
3.菌种遗传特性的改变
抗反馈调节突变株;
抗反馈调节突变株是指一种对反馈抑制不敏 感或对阻遏有抗性的组成型菌株,或兼而有之的 菌株。如苏氨酸发酵:
组成型突变株; 抗性突变株。
七、次级代谢与次级代谢调节
主要包括:抗生素、刺激素、生物碱、 维生素、色素、毒素等。 1.初级代谢和次级代谢
初级代谢:与生物生存有关的,涉及能量产生和能量消 耗的代谢类型。 生存必需;始终产;不同种,相同;环境敏感性 小;酶专一。 次级代谢:某些生物为避免某种代谢物积累造成不利作 用而产生的一类有利生存的代谢。
2、酶合成的阻遏
某种代谢物积累除抑制酶活性外,还可反馈阻 遏酶合成,降低反应速度。 ①末端产物阻遏: 常普遍存在与氨基酸、核苷酸生物合成途 径中。 ②分解代谢物阻遏: 如:“葡萄糖效应”。其代谢物阻遏“缓 慢利 用能源”酶的合成。并有一停滞期。 葡萄糖代谢阻遏实际上是其分解代谢物引 起的阻遏作用。
预习内容—微生物优良菌种 的选育
微生物优良生产菌种的特征 诱变选育菌种的分离 杂交选育方法。
基因工程技术
谢谢!!!!
负调节:调节基因R的产物阻止转录进行。 如:大肠杆菌乳糖操纵子; 正调节:R基因的产物在诱导物存在下,成为转录 激 活剂。 如:阿拉伯糖操纵子。
②两种效应物的共同调节:

乳糖操纵子的效应物(如:乳糖)和活化蛋 (如: CRP)的调节。
③弱化调节
大肠杆菌色氨酸合成操纵子的R、O、P 远离S,除阻遏调节外,有弱化调节方式。 色氨酸存在时,使转录未到终点时,80-90% 转录停止。是通过弱化子实现的。 色氨酸贫乏时,核糖体停在UGG,2、3链配 对,聚合酶过,酶合成; 色氨酸充足时,转录至UGA(69-71),3、 4链配对,不利于RNA聚合酶过,酶不合成。
六、代谢调控
根据代谢调节理论,通过改变发酵工艺 条件(温度、PH、风量、培养基组成)和 菌种遗传特性,达到改变菌体内的代谢 平衡,过量产生所需产物的目的。 1.发酵条件的控制 2.改变细胞透性 3.菌种遗传特性的改变
1.发酵条件的控制
①各种发酵条件对微生物的影响
同菌种,同培养基,培养条件不同,可获不同代谢产物 (途径不同)。啤酒酵母,用葡萄糖,中性产乙醇,酸 性产CO2,碱性产甘油。
相关文档
最新文档