材料成形技术基础 第二版 施江澜 课后答案[1-3章].khda

合集下载

材料成形基本原理课后答案

材料成形基本原理课后答案

第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 .如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型工艺基础习题解答

材料成型工艺基础习题解答

第一章金属材料与热处理1、常用的力学性能有哪些?各性能的常用指标是什么?答:刚度:弹性模量E强度:屈服强度和抗拉强度塑性:断后伸长率和断面收缩率硬度:冲击韧性:疲劳强度:2、4、金属结晶过程中采用哪些措施可以使其晶粒细化?为什么?答:过冷细化:采用提高金属的冷却速度,增大过冷度细化晶粒。

变质处理:在生产中有意向液态金属中加入多种难溶质点(变质剂),促使其非自发形核,以提高形核率,抑制晶核长大速度,从而细化晶粒。

7、9、什么是热处理?钢热处理的目的是什么?答:热处理:将金属材料或合金在固态范围内采用适当的方法进行加热、保温和冷却,以改变其组织,从而获得所需要性能的一种工艺。

热处理的目的:强化金属材料,充分发挥钢材的潜力,提高或改善工件的使用性能和加工工艺性,并且可以提高加工质量、延长工件和刀具使用寿命,节约材料,降低成本。

第二章铸造成型技术2、合金的铸造性能是指哪些性能,铸造性能不良,可能会引起哪些铸造缺陷?答:合金的铸造性能指:合金的充型能力、合金的收缩、合金的吸气性;充型能力差的合金产生浇不到、冷隔、形状不完整等缺陷,使力学性能降低,甚至报废。

合金的收缩合金的吸气性是合金在熔炼和浇注时吸入气体的能力,气体在冷凝的过程中不能逸出,冷凝则在铸件内形成气孔缺陷,气孔的存在破坏了金属的连续性,减少了承载的有效面积,并在气孔附近引起应力集中,降低了铸件的力学性能。

6、什么是铸件的冷裂纹和热裂纹?防止裂纹的主要措施有哪些?答:热裂是在凝固末期,金属处于固相线附近的高温下形成的。

在金属凝固末期,固体的骨架已经形成,但树枝状晶体间仍残留少量液体,如果金属此时收缩,就可能将液膜拉裂,形成裂纹。

冷裂是在较低温度下形成的,此时金属处于弹性状态,当铸造应力超过合金的强度极限时产生冷裂纹。

防止措施:热裂——合理调整合金成分,合理设计铸件结构,采用同时凝固原则并改善型砂的退让性。

冷裂——对钢材材料合理控制含磷量,并在浇注后不要过早落砂。

材料成形技术基础答案_第2版_施江澜_赵占西主编

材料成形技术基础答案_第2版_施江澜_赵占西主编

材料成形技术基础答案_第2版_施江澜_赵占西主编材料成形技术基础答案_第2版_施江澜_赵占西主编第一章金属液体成型1。

液态合金的填充能力是多少?它与合金的流动性有什么关系?为什么不同化学成分的合金有不同的流动性?为什么铸钢的填充能力比铸铁差?①液态合金的填充能力是指液态合金填充型腔并获得轮廓清晰、形状完整的高质量铸件的能力②流动性好,合金熔体充型能力强,容易获得尺寸准确、外观完整的铸件如果流动性不好,填充能力差,铸件容易出现冷隔、气孔等缺陷。

不同成分的③合金具有不同的结晶特征。

共晶合金的流动性最好,其次是纯金属,最后是固溶体合金④与铸钢相比,铸铁更接近共晶成分,结晶温度范围更小,流动性更好。

2.既然提高浇注温度可以提高液态合金的填充能力,为什么要防止浇注温度过高呢?铸造温度过高()会增加合金的收缩率,增加空气吸力,并导致严重氧化。

相反,铸件容易出现缺陷,如缩孔、缩松、粘砂、夹杂物等。

3。

缩孔和气孔的存在会减小铸件的有效承载面积,并引起应力集中,导致铸件的力学性能下降。

缩孔大且集中,容易发现。

它可以通过特定的工艺从铸件主体上移除。

缩孔较小且分散,多多少少存在于铸件中。

对于普通铸件来说,它通常不被视为缺陷,只有当铸件具有高气密性时,才可以防止它液态合金填充型腔后,如果在冷却和凝固过程中液态收缩和凝固收缩的量没有得到补充,在铸件的最终凝固部分将形成一些型腔。

大而集中的空洞变成了缩孔,而小而分散的空洞被称为缩孔的不足之处是砂类充填不充分。

冷绝缘是指在施加一定的力之后,铸造工件出现裂纹或断裂,并且氧化物夹杂出现在断裂表面或没有熔合在一起。

出风口的作用是在铸造过程中排出型腔内的气体,防止铸件产生气孔,便于观察铸件情况。

冒口是附加在铸件顶部或侧面的辅助部件,以避免铸造缺陷。

在分步凝固过程中,其横截面上的固相和液相被边界线清楚地分开。

在定向凝固中,熔融合金根据所需的晶体取向在与热流相反的方向上凝固。

5。

定向凝固的原理是将冒口放置在铸件可能出现缩孔的厚而大的部分,同时采用其他技术措施,从铸件远离冒口的部分到冒口建立逐渐增加的温度梯度,从而实现从远离冒口的部分如冒口方向的顺序凝固。

材料成型工艺基础第二版课后答案

材料成型工艺基础第二版课后答案

材料成型工艺基础第二版课后答案【篇一:《材料成型工艺基础》部分习题答案】class=txt>第一章⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响?答:①合金的流动性是指合金本身在液态下的流动能力。

决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。

②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。

⑷.何谓合金的收縮?影响合金收縮的因素有哪些?答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。

②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。

⑹.何谓同时凝固原则和定向凝固原则?答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。

②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。

第二章⑴ .试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。

答:石墨在灰铸铁中以片状形式存在,易引起应力集中。

石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。

灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。

石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。

⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同?答:①主要因素:化学成分和冷却速度。

②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。

在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。

⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁?答:①经孕育处理后的灰铸铁称为孕育铸铁。

材料成形技术基础答案_第2版_施江澜_赵占西主编

材料成形技术基础答案_第2版_施江澜_赵占西主编

第一章金属液态成形1.什么是液态合金的充型能力?它与合金的流动性有何关系?不同化学成分的合金为何流动性不同?为什么铸钢的充型能力比铸铁差?①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。

②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。

流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。

③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。

④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。

2.既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高?浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。

3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。

缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。

4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。

浇不足是沙型没有全部充满。

冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。

出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。

而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。

逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。

定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。

5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。

材料成形技术基础答案_第2版_施江澜_赵占西主编-推荐下载

材料成形技术基础答案_第2版_施江澜_赵占西主编-推荐下载

第一章金属液态成形1.什么是液态合金的充型能力?它与合金的流动性有何关系?不同化学成分的合金为何流动性不同?为什么铸钢的充型能力比铸铁差?1 液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。

2 流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。

流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。

3 成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。

4 相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。

2. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高?浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。

3. 缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。

缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。

4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。

浇不足是沙型没有全部充满。

冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。

出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。

而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。

逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。

定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。

5. 定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。

工程材料与技术成型基础课后习题答案

工程材料与技术成型基础课后习题答案

工程材料与技术成型基础课后习题答案第一章1-1由拉伸试验可以得出哪些力学性能指标?在工程上这些指标是如何定义的? 答:强度和韧性.强度(σb)材料抵抗塑性变形和断裂的能力称为强度;塑性(δ)材料在外力作用下产生永久变形而不被破坏的能力.强度指标里主要测的是:弹性极限,屈服点,抗拉强度等.塑性指标里主要测的是:伸长率,断面收缩率.1-21-3锉刀:HRC 黄铜轴套:HB 供应状态的各种非合金钢钢材:HB 硬质合金刀片:HRA,HV 耐磨工件的表面硬化层:HV调质态的机床主轴:HRC 铸铁机床床身:HB 铝合金半成品:HB1-4公式HRC=10HBS,90HRB=210HBS,HV=HBS800HV>45HRC>240HBS>90HRB1-7材料在加工制造中表现出的性能,显示了加工制造的难易程度。

包括铸造性,锻造性,切削加工性,热处理性。

第二章2-2 答:因为γ-Fe为面心立方晶格,一个晶胞含4个原子,致密度为0.74;γ-Fe冷却到912°C 后转变为α-Fe后,变成体心立方晶格,一个晶胞含2个原子,致密度为0.68,尽管γ-Fe 的晶格常数大于α-Fe的晶格常数,但多的体积部分抵不上因原子排列不同γ-Fe变成α-Fe 体积增大的部分,故γ-Fe冷却到912℃后转变为α-Fe时体积反而增大。

2-3.答:(1)过冷度理论结晶温度与实际结晶温度只差。

(2)冷速越快则过冷度越大,同理,冷速越小则过冷度越小(3)过冷度越大则晶粒越小,同理,过冷度越小则晶粒越大。

过冷度增大,结晶驱动力越大,形核率和长大速度都大,但过冷度过大,对晶粒细化不利,结晶发生困难。

2-4:答:(1)在一般情况下,晶粒越小,其强度塑性韧性也越高。

(2)因为晶粒越小则晶界形成就越多,产生晶体缺陷,在晶界处晶格处于畸变状态,故晶界能量高因此晶粒的大小对金属的力学性能有影响。

(3)在凝固阶段晶粒细化的途径有下列三种:①提高结晶时的冷却速度增加过冷度②进行变质处理处理:在液态金属浇筑前人工后加入少量的变质剂,从而形成大量非自发结晶核心而得到细晶粒组织。

材料成型工艺基础习题解答

材料成型工艺基础习题解答

材料成型工艺基础习题解答第一章金属材料与热处理1、常用的力学性能有哪些,各性能的常用指标是什么,答:刚度:弹性模量E强度:屈服强度和抗拉强度塑性:断后伸长率和断面收缩率硬度:冲击韧性:疲劳强度:2、4、金属结晶过程中采用哪些措施可以使其晶粒细化,为什么,答:过冷细化:采用提高金属的冷却速度,增大过冷度细化晶粒。

变质处理:在生产中有意向液态金属中加入多种难溶质点(变质剂),促使其非自发形核,以提高形核率,抑制晶核长大速度,从而细化晶粒。

7、9、什么是热处理,钢热处理的目的是什么,答:热处理:将金属材料或合金在固态范围内采用适当的方法进行加热、保温和冷却,以改变其组织,从而获得所需要性能的一种工艺。

热处理的目的:强化金属材料,充分发挥钢材的潜力,提高或改善工件的使用性能和加工工艺性,并且可以提高加工质量、延长工件和刀具使用寿命,节约材料,降低成本。

第二章铸造成型技术2、合金的铸造性能是指哪些性能,铸造性能不良,可能会引起哪些铸造缺陷, 答:合金的铸造性能指:合金的充型能力、合金的收缩、合金的吸气性; 充型能力差的合金产生浇不到、冷隔、形状不完整等缺陷,使力学性能降低,甚至报废。

合金的收缩合金的吸气性是合金在熔炼和浇注时吸入气体的能力,气体在冷凝的过程中不能逸出,冷凝则在铸件内形成气孔缺陷,气孔的存在破坏了金属的连续性,减少了承载的有效面积,并在气孔附近引起应力集中,降低了铸件的力学性能。

6、什么是铸件的冷裂纹和热裂纹,防止裂纹的主要措施有哪些,答:热裂是在凝固末期,金属处于固相线附近的高温下形成的。

在金属凝固末期,固体的骨架已经形成,但树枝状晶体间仍残留少量液体,如果金属此时收缩,就可能将液膜拉裂,形成裂纹。

冷裂是在较低温度下形成的,此时金属处于弹性状态,当铸造应力超过合金的强度极限时产生冷裂纹。

防止措施:热裂——合理调整合金成分,合理设计铸件结构,采用同时凝固原则并改善型砂的退让性。

冷裂——对钢材材料合理控制含磷量,并在浇注后不要过早落砂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档