极坐标方程与直角坐标方程的互化复习讲义

极坐标方程与直角坐标方程的互化复习讲义
极坐标方程与直角坐标方程的互化复习讲义

装--------------------

订--------------------线

-------------------------------------------------------------

试题共

页第

试题共

页第

极坐标与极坐标方程

极坐标及极坐标方程的应用 1.极坐标概述 第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。瑞士数学家J.贝努力利于1691年在《教师学报》上 发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝 努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。 在平面内建立直角坐标系,是人们公认的最容易接受并且被经常采用的方法,但它并 不是确定点的位置的唯一方法。有些复杂的曲线用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理,在此基础上解决平面解析几何问题也变的极其简单。通过探究极坐标在平面解析几何中的广泛应用,使我们能够清楚的认识到,用极坐标来解决某些平面解析几何问题和某些高等数学问题比用直角坐标具有很大的优越性,故本文对其进行了初步探讨。 国内外研究动态,不仅在数学理论方面,很多学者对极坐标以及极坐标方程做了深入探究,而且在如物理、电子、军事等领域,很多学者对极坐标也有较深的研究。由此看来,极坐标已应用到各个领域。 1.1极坐标系的建立 在平面内取一个定点0,叫作极点,引一条射线0X,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。 对于平面内任意一点M,用表示线段0M的长度,表示从0X到0M的角度,叫点M的极径,叫点M的极角,有序数对,就叫点M的极坐标。这样建立的坐标系叫极坐标系,记作M , ?若点M在极点,则其极坐标为=0,可以取任意值。

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公 在一般情况下,由确定角时,可根据点所在的象限最小正角. 4.常见曲线的极坐标方程

注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程. 二、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的那么,由方程组①所确定的点都在这条曲线上,并且对于的每一个允许值,函数①. 方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. (2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周

极坐标系与极坐标方程

一、坐标系 1、数轴 它使直线上任一点P 都可以由惟一的实数x 确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P 都可以由惟一的实数对(x,y )确定。 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z )确定。 二、平面直角坐标系的伸缩变换 定义:设P (x ,y )是平面直角坐标系中的任意一点,在变换???>=>=). 0(')0(,':μμλλφy y x x ④的作用下,点P (x ,y )对应到点P ’(x ’,y ’),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 三.例题讲解 例1 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 (1)2x+3y=0; (2)x 2+y 2=1 三、极坐标系 1、极坐标系的建立: 在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。 (其中O 称为极点,射线OX 称为极轴。) 2、极坐标系内一点的极坐标的规定 对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到 OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫 做M 的极坐标。 特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角. 3、负极径的规定 在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角 当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。 M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈ 4、数学应用 例1 写出下图中各点的极坐标 A (4,0) B (2 ) C ( ) D ( ) E ( ) F ( ) G ( ) 规定:极点的极坐标是ρ=0,θ可以取任意角。 变式训练

极坐标与极坐标方程精编版

……………………………………………………………最新资料推荐………………………………………………… M M 图1-2 图1-1 ,此时点的极坐标可以有两种表示方法:如图1-2M??????(1) >0,?,M?????,?,0(2) >M??????????,?,与同理,也是同一个点的坐标。???Zn?后都是和原角终边相同的角,所以一个点的 极坐标不唯又由于一个角加n2????????或0???2,那么除极点外,平面内的点和极坐标就可一。但若限定,0?以一一对应了。曲线的极坐标方程1.2 ???????0,?来表示,这种方在极坐标系中,曲线可以用含有这两个变数的方程,程叫曲线的极坐标方程。求曲线的极坐标方程的方法与步骤:????,的坐标为;1°建立适当的极坐标系,并设动点M的集合;2°写出适合条件的点M?????0列方程,?3°;4°化简所得方程;°证明得到的方程就是所求曲线的方程。5三种圆锥曲线统一的极坐标方程: 2 ……………………………………………………………最新资料推荐………………………………………………… yMO 图1-3为极轴,,以焦点为极点,的反向 延长线过点作准线的垂线,垂足为FXFLKFFK????,M,垂,⊥建立极坐标系。设是曲线上任意一点,连结,作⊥FXMAMBMFL??MF. 足分别为.那么曲线就是集合BA,eM?p???MA????? COS?PMF??MAFK?P,由?BK,的距离到准线设焦点LF? 得e???cosp?ep?即??cos1?e时,方程表示椭 这就是椭圆、双曲线、抛物线的统一的极坐标方程。其中当1e?0?方程表示开口向右的抛物线。是它的左准线。时,是它的左焦点,圆,定点定直线1e?LF是它的右准线。若允许时,方程只表示双曲线右支,定点是它的右焦点,定直线 1e?LF?,方程就表示整个双曲线。0?极坐标和直角坐标的互化1.3 轴的正半轴作为极轴,并在两种坐标系中取相同的把直角坐标系的原点作为极点,X??????,y x,,极坐标是长度单位,设是平面内任意一点,其直角坐标作, 从点MM????. ,由三角函数定义,得⊥sinx?cos,?y OXMN 3 ……………………………………………………………最新资料推荐…………………………………………………

极坐标与参数方程题型及解题方法

一、复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为),(y x ,在极坐标系下的坐标为),(θρ,则有下列关系成立:ρ θx = cos ,ρ θy = sin , 3、 参数方程?? ?==θ θ sin cos r y r x 表示什么曲线? 4、 圆2 2 2 )()(r b y a x =-+- 的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设ρ=OP OP ,又θ=∠xOP . ρ和θ的值确定了,则P 点的 位置就确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置. 6、参数方程的意义是什么? 二、题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化

(3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 22 2(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可 消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有42 2=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即2≥y ,可见与以上参数方程等价的普通方程为)2(422≥=-y y ,显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B. 练习1、与普通方程2 10x y +-=等价的参数方程是( )(t 为能数) 解析:所谓与方程2 10x y +-=等价,是指若把参数方程化为普通方程后不但形式一致而且,x y 的变化范围也对应相同,按照这一标准逐一验证即可破解. 对于A 化为普通方程为[][]2 101101x y x y +-=∈-∈,,,,; 对于B 化为普通方程为2 10(1]x y x R y +-=∈∈-∞,,,; 对于C 化为普通方程为2 10[0)(1]x y x y +-=∈+∞∈-∞,, ,,; 对于D 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,. 而已知方程为2 10(1]x y x R y +-=∈∈-∞,,,,显然与之等价的为B . 练习2、设P 是椭圆2 2 2312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 . 分析:注意到变量),(y x 的几何意义,故研究二元函数2x y +的最值时,可转化为几何问题.若设2x y t +=,则方程2x y t +=表示一组直线,(对于t 取不同的值,方程表示不同的直线),显然),(y x 既满足2 2 2312x y +=,又满足2x y t +=,故点),(y x 是方程组 222312 2x y x y t ?+=? +=?的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一???==t y t x A 2cos sin ???-==t y t x B 2tan 1tan ???=-=t y t x C 1???==t y t x D 2sin cos

极坐标与参数方程题型及解题方法

Ⅰ复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立: ρθρ θy sin x cos = = 3、 参数方程{ cos sin x r y r θθ ==表示什么曲线? 4、 圆(x-a)2+(y-b)2=r2的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ. ρ和θ的值确定了,则P 点的位置就 确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么?

Ⅱ 题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化 (3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程22 22 t t t t x t y --?=-??=+??(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,() ()2 2 2222224t t t t x y ---=--+=-, 即有22 4y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为 2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B 练习1、与普通方程2 10x y +-=等价的参数方程是( )(t 为能数)

极坐标与参数方程知识讲解

极坐标与参数方程知识 讲解 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

参数方程和极坐标系 一、 知识要点 (一)曲线的参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ? ??==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线: αα sin cos 00t y y t x x +=+= (t 为参数) 其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○ 1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ?--4)(2. ○ 2.线段AB 的中点所对应的参数值等于2 B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆: θθ sin cos 00r y y r x x +=+= (θ为参数) 3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:

θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程 为参数)ααα(.sin ,cos 00? ??+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线: θθtg sec b y a x == (θ为参数) (或 θ θec a y b x s tg ==) 5.顶点在原点,焦点在x 轴正半轴上的抛物线: pt y pt x 222 == (t 为参数,p >0) 直线的参数方程和参数的几何意义 过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ? ??+=+=ααsin cos 00t y y t x x (t 为参数). 极坐标系 1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点M 的极坐标。这样建立的坐标系叫做极坐标系。 2、极坐标有四个要素:①极点;②极轴;③长度单位;④角度单位及它的方 向.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+

高中数学选修4-4:极坐标系与极坐标方程综合练习一

极坐标系与方程综合练习一 (满分100分,考试时间:60分钟) 一、选择题:(共6小题,每小题5分) 1.设点M 的直角坐标为(-1,-3),则它的极坐标为 ( ) A .(2,π3) B .(2,2π3) C .(2,4π 3) D .(2,5π 3 ) 2.极坐标方程ρcos θ=2sin2θ表示的曲线为 ( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 3.极坐标方程ρ=cos θ化为直角坐标方程为 ( ) A .(x +12)2+y 2=1 4 B .x 2+(y +12)2=14 C .x 2+(y -12)2=1 4 D .(x -12)2+y 2=1 4 4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是 ( ) A .(1,π 2 ) B .(1,-π 2 ) C .(1,0) D .(1,π) 5.在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点(4,π 6)作曲线C 的切线,则切线长为 A .4 B.7 C .22 D .2 3 6.(2013·西城期末)在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是 ( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 二、填空题:(共10小题,每小题5分) 7.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 8.在极坐标系中,点P (2,-π6)到直线l :ρsin(θ-π 6 )=1的距离是________. 9.在极坐标系中,已知两点A ,B 的极坐标分别为(3,π3),(4,π 6),则△AOB (其中O 为极点)的面积为________. 10.在极坐标系中,直线ρsin(θ+π 4 )=2被圆ρ=4截得的弦长为________. 11.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是________,它与方程θ=π 4(ρ>0)所表示的图形的交点的极坐 标是________. 12.(2013·西安五校)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________. 13.(2013·沧州七校联考)在极坐标系中,直线ρ(cos θ-sin θ)+2=0被曲线C :ρ=2所截得弦的中点的极坐标为________. 14.已知点M 的极坐标为(6,11π 6 ),则点M 关于y 轴对称的点的直角坐标为________. 15.在极坐标系中,点P (2, 3π 2 )到直线l :3ρcos θ-4ρsin θ=3的距离为________.

极坐标与极坐标方程

极坐标及极坐标方程的应用 1.极坐标概述 第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。瑞士数学家J.贝努力利于1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。 在平面内建立直角坐标系,是人们公认的最容易接受并且被经常采用的方法,但它并不是确定点的位置的唯一方法。有些复杂的曲线用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理,在此基础上解决平面解析几何问题也变的极其简单。通过探究极坐标在平面解析几何中的广泛应用,使我们能够清楚的认识到,用极坐标来解决某些平面解析几何问题和某些高等数学问题比用直角坐标具有很大的优越性,故本文对其进行了初步探讨。 国内外研究动态,不仅在数学理论方面,很多学者对极坐标以及极坐标方程做了深入探究,而且在如物理、电子、军事等领域,很多学者对极坐标也有较深的研究。由此看来,极坐标已应用到各个领域。 极坐标系的建立 在平面内取一个定点O ,叫作极点,引一条射线OX ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。 对于平面内任意一点M ,用ρ表示线段OM 的长度,θ表示从OX 到OM 的角度,ρ叫点M 的极径,θ叫点M 的极角,有序数对()ρθ,就叫点M 的极坐标。这样建立的坐标系叫极坐标系,记作M ()ρθ,.若点M 在极点,则其极坐标为ρ=0,θ可以取任意值。

(完整word版)参数方程和极坐标方程知识点归纳

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩 变换。 2、极坐标系的概念 在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与 ),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出: )0(tan ≠= x x y θ? ?? y 图1

参数方程和极坐标系 知识要点 图解

参数方程和极坐标系 一、 知识要点 (一)曲线的参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ? ? ?==)() (t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线: α α sin cos 00t y y t x x +=+= (t 为参数) 其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○ 1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ?--4)(2. ○ 2.线段AB 的中点所对应的参数值等于2 B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆: θ θ sin cos 00r y y r x x +=+= (θ为参数) 3.中心在原点,焦点在x 轴(或y 轴)上的椭圆: θ θsin cos b y a x == (θ为参数) (或 θ θ sin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程 为参数)ααα(.sin , cos 00? ? ?+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:

相关文档
最新文档