宁德市初中毕业班质量检测及答案
福建省宁德市2023-2024学年九年级上学期期末质量检测化学试卷(含答案)

福建省宁德市2023-2024学年九年级上学期期末质量检测化学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.福安坦洋功夫红茶,历史悠久,驰名中外。
制茶包含如下过程,其中发生化学变化的是( )A.鲜叶采摘B.萎凋揉捻C.发酵初焙D.拼配筛分2.化学用语是学习化学的必备工具。
下列化学用语表达正确的是( )Mg+A.氧化铝:A1OB.正二价的镁元素:2C.2个氧原子:2OD.氯离子Cl-3.规范操作是科学实验的基本要求。
下列制备二氧化碳的实验操作中错误的是( ) A.检查装置气密性 B.加入大理石C.取用稀盐酸D.收集气体4.化学观念和科学思维是化学学科核心素养的重要内容。
下列认识正确的是( )A.分类观念:高锰酸钾、二氧化锰、氧气都属于氧化物B.守恒观念:200g乙醇+200g水,总质量等于400g,符合质量守恒定律CO的分子构成不同,化学性质不同C.宏微结合:CO和2D.证据推理:金刚石和石墨都由碳元素组成,它们的性质相同5.日前,中国商务部和海关总署发布公告,宣布限制镓锗两种战略性金属元素的出口。
锗元素的元素符号为Ge,原子核外电子数为32,中子数为41,相对原子质量为72.64。
甲图是镓元素的信息图,请模仿甲图,乙图的①处应填( )A.41B.72.64C.32D.40.646.下图是以氧气为例形成的多角度认识物质思路和方法的示意图。
下列说法中错误的是( )A.从组成角度:氧气由氧元素组成的单质B.从转化角度:222H O H OC.从性质角度:氧气有助燃性可使燃着木条烧得更旺D.从应用角度:氧气可用于医疗急救、航空航天7.为达到实验目的,后者所选的试剂或方法不正确的是( )A.测定空气中氧气的含量:用木炭代替红磷进行实验B.高锰酸钾制取氧气时防止冷凝水倒流使试管炸裂:试管口略向下倾斜C.鉴别双氧水和蒸馏水:二氧化锰D.比较人体吸入气体和呼出气体中氧气的含量:燃着的木条8.过氧化氢可用于消毒杀菌,具有不稳定性。
2020年宁德市初中毕业班教学质量检测

2020年宁德市初中毕业班教学质量检测英语试题满分150分,考试时间:120分钟。
I.听力(共三节,20小题;每小题1.5分,满分30分)第一节听句子。
听下面五个句子,从每小题所给的三幅图中选出与句子内容相符的选项。
(每个句子读两遍)1A B C2A B C3A B C4A B C5A B C第二节听对话听下面七段对话,从每小题所给的A、B、C三个选项中选中正确答案,每段对话读两遍)听第一段对话,回答第6小题.6. How does Alice like the movie?A.Moving.B. Boring.C. Interesting.听第二段对话,回答第7小题.7. How was the weather last night?A. Snowy.B. Cloudy.C. Rainy.听第三段对话,回答第8小题.8. How long has Jim slept?A. 3 hours.B.6 hours.C.9 hours.听第四段对话,回答第9小题.9. What does that color stand for in Mary’s country?A. Danger.B. Luck.C. Violence.听第五段对话,回答第10、11小题。
10. What day is it today?A. Monday.B. Thursday.C. Saturday.11. What will Peter do first?A. Sleep a little longer.B. Help to clean the floor.C. Buy Coke from the shop听第六段对话,回答第12、13小题.12.What size is the man’s new shirt?A. Size 42.B.Size 41.C.Size 40.13.What’s the most probable relationship between the two speakers?A. Mother and son.B. Doctor and patientC. Saleswoman and customer听第七段对话,回答第14、15小题.14.Where will Liu Mei visit this summer?A. Some universities in Hangzhou.B. The West Lake in Hangzhou.C. Xixi Wetland in Hangzhou.15.What are the two speakers talking about?A. Traveling around Hangzhou.B.Liu Mei’s summer vacation plan.C. Places of interest in Hangzhou.第三节听短文根据你所听到的短文内容,完成下面表格,每空填一词.(短文读三遍)II .选择填空(共15小题; 每小题1分,满分15分)从每小题所给的A、B、C三个选项中,选岀可以填入空白处的正确答案.16.—Would you like a cup of black coffee?—No, thanks. I ____ drink it. It’s bad for my stomach.A. almostB.onlyC.hardly17.—Mom, I am going to Fuzhou on business. Bye!—Well, make sure you’ve got _____ ready.A. somethingB. anythingC. everything18.—Tom, why is the boss Mike?—He is often late for meeting.A. satisfied withB. angry withC. popular with19.All of us are especially proud being a Chinese after suffering from COVID-19.A. forB. ofC. on20.一Excuse me, sir. _______is it from here to Wanda supermarket?一It’s about 10minutes'walk.A.How forB. How soonC. How often21.2020’s Spring Festival is Chinese New Year I’ve ever had.A. quietB. more quietC. the most quiet22.—I don't have the_______to tell John about the death of his favorite star, Kobe Bryant.―Never mind. He is old enough to face it bravely.A. courageB. chanceC. choice23.—Look, someone_______the classroom; it is so clean now.—Well. It wasn’t me. I didn't do it.A. is cleaningB. was cleaningC. has cleaned24.—What are you going to do tomorrow afternoon?—The weather report says it will be sunny, so I________to go swimming.A. refuseB. decideC. fail25.—Is that young man in black Michael?—No, it_______be him. He has gone to Shanghai.A. can'tB. shouldn'tC. mustn't26.—What's the meaning of “artificial intelligence”?—Sorry I don't know. Why not________the phrase in the E-dictionary?A. look upB. look atC. look for27.________I’ve been to his house several times, I still can't remember how to get there.A. SinceB. AlthoughC. Unless28.Xi'an is one of ancient capitals in the world. It______“Chang'an” in the Han Dynasty.A. callsB. is calledC. was called29.Many colleges open MOOC(慕课)______is becoming more and more popular in China.A. whatB. whichC. who30.—It is true that being happy is an ability. So can you tell me ?—Yes, happiness is achieved through hard work.A.how we can achieve happinessB.who can help achieve happinessC.why happiness is so important to usIII .完形填空(共10小题; 每小题1.5分,满分15分)从每小题所给的A、B、C三个选项中,选出可以填入空白处的最佳答案。
2024年宁德市初中毕业班质量检测语文试题与答案

2024年宁德市初中毕业班质量检测语文试题(考试时间:120分钟;试卷满分:150分)一、积累与运用(23分)1.补写出古代诗文的名句。
(8分)(1)会当凌绝顶,______________________。
(杜甫《望岳》)(2)富贵不能淫,贫贱不能移,______________________。
(《孟子・富贵不能淫》)(3)关关雎鸠,______________________。
(《关雎》)(4)______________________,东风无力百花残。
(李商隐《无题》)(5)范仲淹《渔家傲•秋思》中表现将士们思家却又不甘无功而返的心理的句子是“______________________,______________________ ”。
(6)当别人不了解甚至误解我们时,我们可用《〈论语〉十二章》中的“______________________,______________________”安慰自己。
2.阅读下面文字,按要求作答。
(9分)乡土文化是见人、见物、见生活的文化生态,这样的文化生态是①(màn)长岁月的积淀,是无数人()地传承。
因此,把活态的乡上文化传下去,就要统②(chóu)保护:既要保护传统村落的风貌和格局,也要保护优秀的传统民风民俗。
留住乡风乡韵乡愁,链接现代生活,游客()其中。
既能感受历史带来的熟悉和亲③(qiè),又不乏创意()的惊喜和独府;村民既不丢掉传统,又能收获效益……如此,乡土文化的传承与发展,多方的助力,展现更加生动、多彩。
(1)根据拼音,依次写出①②③处相应的汉字(正楷字或行楷字)。
(3分)(2)依次填入文中括号内的词语,全都恰当的一项是(3分)A.处心积虑徜徉给予B.处心积虑彷徨赋予C.煞费苦心彷徨给予D.煞费苦心徜徉赋予(3)文中画横线的句子有语病,下列修改最恰当的一项是(3分)A.乡土文化的传承与发展,在多方的助力下,展现更加生动、多彩的旋律。
2024年宁德初中毕业班质检数学试卷答案

数学试题参考答案及评分说明 第 1 页 共 8 页2024年宁德市初中毕业班质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分. ⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分)1.C ;2.B ;3.C ;4.B ;5.D ;6.B ;7.A ;8.D ;9.A ;10.D . 二、填空题:(本大题有6小题,每小题4分,满分24分)11.(2)−x x ;12.1−;13(答案不唯一);14.120;15.23;163−. 三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分8分) 解法一:原式11=1969+×−() ··················································································· 4分 3=112+− ··························································································· 6分 3=2. ······························································································· 8分 解法二:原式11=1969+×−() ··················································································· 4分 1=1918+×························································································· 6分 3=2. ······························································································· 8分 18.(本题满分8分) 证明:∵AB ∥CE ,∴∠BAC =∠ECD . ·········································· ······································· 3分 ∵∠B =∠E ,AC =CD , ······································ ······································· 5分 ∴ABC CED △≌△. ········································ ······································· 8分 19.(本题满分8分) 解:31221)3.−+< ,①(②x x x数学试题参考答案及评分说明 第 2 页 共 8 页解不等式①,得1x . ············································································ 3分 解不等式②,得2>x .············································································ 6分 ∴不等式组的解集是2>x . ······································································ 8分 20. (本题满分8分)解:(1)正确作出图形.(如图所示) ·················· ···································· 3分 方法一:∴菱形ABCD就是所求作的图形. ······························································ 4分 (2)过点A 作AE BC ⊥于点E ,如图所示. 在Rt ABE △中,65ABE =°∠,6AB =. sin =∵∠AE ABE AB, ················································································ 5分 sin 6sin65AE AB ABE =⋅=°∴∠. ······························································· 6分∵四边形ABCD 是菱形,6=AB , ∴6==BC AB . ···················································································· 7分 66sin6532.76=×=×°≈菱形∴ABCD S BC AE . ················································ 8分21.(本题满分8分)问题1:大型. ················································ ···································· 2分 问题2: 解:平均单价=851081524202030350158242031×+×+×+×+×+×+++++ ······························ 5分16.72≈(万元). 答:该品牌的新能源乘用车的平均单价是16.72万元. ··························· 6分 问题3:从材料一数据可知,2024年1月销售数据中,销售量最大的车型为紧凑型车;从材料一来看增长率最高的是紧凑型车,所以建议多生产紧凑型车. ······································· 8分 22. (本题满分10分)数学试题参考答案及评分说明 第 3 页 共 8 页(1)证明:∵BD 平分∠ABC ,∴∠=∠ABD CBD . ··········································································· 1分 ∵ =AD AD , =CDCD , ∴∠=∠ACD ABD ,∠=∠DAC DBC .∴∠=∠DAC ACD . ··········································································· 4分 ∴=DA DC . ··················································································· 5分 (2)∵DE ∥AC ∴∠=∠ACD EDC .∵∠=∠ABD ACD , ∴∠=∠ABD CDE . ··········································································· 6分 ∵四边形ABCD 内接于O ⊙, ∴180∠+∠=°BCD BAD . ∵180∠+∠=°BCD DCE ,∴∠=∠BAD DCE . ··········································································· 7分 ∴△ABD ∽△CDE . ··········································································· 8分 ∴=AB ADCD CE. 又∵=AD CD , ∴=AB CDCD CE. ·················································································· 9分 ∴2326=×=CD . 又∵0>CD ,∴=CD ···················································································· 10分 23.(本题满分10分)解:(1)根据题意,得(32)30.82(3)+=×++x x x . ······························ 2分 解得10=x . ····································································· 3分∴甲种葡萄的实际销售单价=100.88×=(元), 乙种葡萄的实际销售单价=10313+=(元). 答:甲种葡萄的实际销售单价是8元,乙种葡萄的实际销售单价是13元. ···· 5分 (2)方案一的平均单价:(8)(13)2+++a m a m m =2122+a . ·························· 6分方案二的平均单价=2()813÷+++n n n a a=2(8)(13)212+++a a a . ·························· ·· 7分∵2122(8)(13)2212+++−+a a a a2502(212)>=+a . ··········································· ·· 9分 ∴农场选择方案一,合算. ································ ··································· 10分24.(本题满分13分) 证明:(1)∵直线AB 与抛物线有且只有一个交点,∴2134−=+x kx b , ··········································································· ·· 1分即241240−−−=x kx b .∴△=2164(124)0++=k b . ································································· ·· 2分 即23=−−b k . ················································ ···································· 3分 (2)由题意可知,联立221343=− =−− ,,yx y kx k 解得22 3.= =−,x k y k ∴点A 坐标是2(23)−,k k . ······························· ···································· 5分 又∵点B 坐标是2(03)−−,k ,点C 坐标是(02)−,, ∴21=+BC k . ·········································· 6分由勾股定理,得21=+AC k . ·························· 7分 ∴=AC BC . ················································· ···································· 8分 (3)点A 在抛物线上运动的过程中,AODBCDS S △△是定值. 设直线AC 的表达式为2=−y mx , 将点A 坐标是2(23)−,k k 代入2=−y mx , 得 2322−=−k km ,即212−=k m k. 联立221341 2.2 =− − =−,y x k y x k 解得1212 3.= =− ,x k y k (舍去),22221 3.=− =−,x k y k数学试题参考答案及评分说明 第 5 页 共 8 页∴点D 坐标是221(3)−−,k k. ······························ ··································· 10分又∵点A 坐标是2(23)−,k k ,点B 坐标是2(03)−−,k ,点C 坐标是(02)−,, ∴2122(1)2(2)=2+=×+ AODk S k k k , 22121(1)2+=+⋅=BCD k S k k k . ····························· ··································· 12分 ∴2AOD BCDSS =△△. ················································ ··································· 13分25.(本题满分13分) 证明:(1)如图3. 方法1: ∵AB=AC ,∴∠B =∠C . ·················································· ···································· 1分 ∵∠AED =∠B +∠BDE ,∠ADB =∠ADE +∠BDE 且∠AED =∠ADB ,∴∠B =∠ADE . ·············································· ···································· 2分 ∴∠C =∠ADE . ∵AD =CD , ∴∠DAC =∠C .∴∠DAC =∠ADE . ·········································· ···································· 3分 ∴DE ∥AC . ··················································· ···································· 4分 方法2:∵∠AED =∠ADB 且∠EAD =∠DAB ,∴△AED ∽△ADB . ······································································································· 1分 ∴∠ADE =∠B . ∵AB =AC , ∴∠B =∠C .∴∠ADE =∠C .·············································································································· 2分 ∵AD =CD ,∴∠DAC =∠C . ················································································································· 3分 ∴∠ADE =∠DAC .∴DE ∥AC . ··················································· ······································· 4分 方法3:∵AD=CD ,AB =AC ,F A EBCDG图3数学试题参考答案及评分说明 第 6 页 共 8 页∴∠DAC =∠C =∠B . ········································································································· 1分 ∵∠BAD +∠ADB +∠B =180°,∠AED =∠ADB ,∴∠AED +∠EAC =180°. ································································································ 3分 ∴DE ∥AC . ························································································································ 4分 (2)方法1:如图4,延长DE 至点K ,使得FK =FD ,连接BK ,AK . ∵AF ⊥DE , ∴AF 垂直平分DK . ∴AK =AD . ∴∠AKD =∠ADK . ∵∠ABC =∠ADE , ∴∠AKD =∠ABC . 又∵∠AEK =∠DEB ,∴△AEK ∽△DEB . ······································································································· 6分 ∴∠KAB =∠EDB . ∵∠BDE =∠DAC , ∴∠KAB =∠DAC . ∵AB =AC ,∴△AKB ≌△ADC . ···································································································· 7分 ∴∠ABK =∠C . ∵DF =FK ,DG =BG ,∴FG 是△BDK 的中位线. ································ ···································· 8分 ∴FG ∥BK . ∴∠KBD =∠FGD . ∵∠KBD =∠ABK +∠ABC , ∴∠FGD =∠ABK +∠ABC .即∠FGD =2∠ABC . ········································· ···································· 9分 方法2:如图5,取AD 的中点Q ,连结FQ ,GQ ,GQ 与FD 相交于点I . ∵G 是BD 的中点, ∴GQ 是△ABD 的中位线. ∴GQ ∥AB . ∴∠QGD =∠B .由(2)知,∠B =∠ADE ,F AE B C图4KFAEBCDG图5 QI。
福建省宁德市初中语文毕业班质量检测试卷及答案-精品

福建省宁德市初中语文毕业班质量检测(试卷满分:150分:考试时间:120分钟)一、积累与运用(22分)1.补写出下列句子的空缺部分。
(12分)(1)何当共剪西窗烛,。
(李商隐《夜雨寄北》)(2)报君黄金台上意, 。
(李贺《雁门太守行》)(3) ,一览众山小。
(杜甫《望岳》)(4) ,关山度若飞。
(《木兰诗》)(5)无可奈何花落去,。
(晏殊《浣溪沙》)(6) ,直挂云帆济沧海。
(李白《行路难(其一)》)(7)富贵不能淫,。
此之谓大丈夫。
(孟子《富贵不能淫》)(8)苏轼在《江城子·密州出猎》中运用典故表达渴望得到朝廷重用的句子是:,。
(9)《陋室铭》中描写陋室环境清幽的句子是:,。
2.下列表述不正确的一项是( )(2分)A.《论语》是记录孔子和他弟子言行的一部书,是儒家经典著作之一。
孔子是儒家学派的创始人,是中国伟大的教育家。
B.《己亥杂诗》中的“己亥”和“丙辰中秋”中的“丙辰”表示年份,“晋太元中”中的“太元”和“庆历四年春”中的“庆历”表示年号。
C.《威尼斯商人》《就英法联军远征中国给巴特勒上尉的信》的作者分别是法国的剧作家莎士比亚和英国的小说家雨果。
D.消息即狭义的新闻,是新闻报道中经常使用的一种文体。
《人民解放军百万大军横渡长江》是一则消息。
3.阅读下面文字,按要求作答。
(8分)站在新的历史起点上,抚今追昔,心潮澎pài。
中华民族经过100多年前赴后继、浴血奋斗,“”之后,再经历100多年持续拼搏、开拓进取,在“”的基础上,又将“”。
这将最终洗刷1840年鸦片战争以的全部耻辱,重铸辉煌。
透过十九大报告,民族复兴的伟大目标已经挺立前方,鲜活具体,清xī可见。
(1)根据拼音写汉字,给加点字注音。
(4分)①心潮澎pài( ) ②清xī( ) ③耻辱( ) ④辉( )煌(2)下列词语填入文中画线处正确的一组是( )(2分)A.富起站起强起 B.站起富起强起C.站起强起富起 D.富起强起站起(3)画线句有语病,请修改。
2023年宁德市初中毕业班质量检测语文试题(含答案)

2023年宁德市初中毕业班质量检测语文试题(考试时间:120分钟;试卷满分:150分)一、积累与运用(25分)学校社团举办宁德剪纸艺术展览,请你参加并完成任务。
【活动一】小剪纸,传古韵1.下面是小语同学对宁德剪纸的简介,请帮助他完成。
(9分)剪纸艺术是中国最古老的民间艺术之一。
作为一种① (lòu)空艺术,它能给人以视觉上透空的感觉与艺术()。
宁德剪纸历史悠久,具有很强的地域个性:主体风格上,它古朴、② (hún)厚、粗犷、写意;艺术特色上,它造型多变,大胆夸张,不求对③ (chèn),图案美(),与黄河流域出土的陶俑极为相似,具有远古艺术之美。
如作品《迎春图》中的公鸡比树大,花比公鸡大。
即使不符合现实逻辑,但画面整体繁而不乱,给人以欢愉之感。
这幅剪纸丝毫没有人为的饰感,达到了似与不似的传统艺术()。
有专家评论:“宁德剪纸作品可与毕加索、马蒂斯的作品相媲美。
”根据拼音,依次写出相应的汉字(正楷字或行楷字)。
(3分)依次填入文中括号内的词语,全部恰当的一项是(3分)A.享用心照不宣成果B.享受显而易见效果C.享用心照不宣效果D.享受显而易见成果文中划线句子有语病,下列修改正确的一项是(3分)A.即使不符合现实逻辑,也画面整体繁而不乱,给人以欢愉之感。
B.虽然不符合现实逻辑,也画面整体繁而不乱,给人以欢愉之感。
C.这样即使不符合现实逻辑,但画面整体繁而不乱,给人以欢愉之感。
D.这样虽然不符合现实逻辑,但画面整体繁而不乱,给人以欢愉之感。
【活动二】小剪纸,大舞台2.请你从以下展品中任选一幅,向参观者介绍与之对应的名著情节、主要人物特点及名著的主题。
(6分)图A 图B 图C【活动三】小剪纸,撼人心3.下面是小语同学的观后感,请补写出其中的空缺部分。
(10分)本次剪纸作品题材广泛、内容丰富,令我叹为观止。
透过作品,我看到一幅幅四季风景图:“几处早莺争暖树,① ”的江南早春;“ ② ,濯清涟而不妖”的清水芙蓉;“枯虅老树昏鸦,③ ,④ ”的日暮秋景;“忽如一夜春风来,⑤ ”的皑皑白雪……眼前浮现出一个个鲜活的形象:“当窗理云鬓,⑥ ”回乡后梳妆打扮的木兰;“ ⑦ ,君子好逑”执着追求爱情的君子;“ ⑧ ,拔剑四顾心茫然”遇挫后内心苦闷的李白;“ ⑨ ,⑩ ”(《破阵子·为陈同甫赋壮词以寄之》)梦回战场激烈作战的辛弃疾……一把剪刀,一张红纸,剪出精美,剪出春秋。
2020年宁德市初中毕业班质量检测数学试卷含答案
2020年宁德市初中毕业班质量检测数 学 试 题(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;2.抛物线2y ax bx c =++的顶点坐标是(2ba -,244acba-).一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.-2的倒数是A .-2B .2C .21 D .12-2.如图,若a ∥b ,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是A .B .C .D .3.下列运算正确的是A .523a a a =+B .a a a =-23C .623a a a =⨯D .a a a =÷234.在下列调查中,适宜采用普查的是A .了解某校九(1)班学生视力情况B .调查2020年央视春晚的收视率C .检测一批电灯泡的使用寿命D .了解我市中学生课余上网时间5.如图,下列几何体中,左视图不是矩形的是A .B .C .D .6.化简2111x x x ---的结果是A .1x -B .11x +C .1x +D .1x x - 121 21 212a baba ba b7.某商场利用摸奖开展促销活动,中奖率为13,则下列说法正确的是A .若摸奖三次,则至少中奖一次B .若连续摸奖两次,则不会都中奖C .若只摸奖一次,则也有可能中奖D .若连续摸奖两次都不中奖,则第三次一定中奖 8.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且AC =BD ,则下列条件能判定四边形ABCD 为矩形的是 A .AB =CD B .OA =OC ,OB =OD C .AC ⊥BDD .AB ∥CD ,AD =BC9.如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是 A .(一,2) B .(二,4) C .(三,2)D .(四,4)10.某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程:6606606(110%)x x -=+.则方程中未知数x 所表示的量是 A .实际每天铺设管道的长度 B .实际施工的天数 C .原计划每天铺设管道的长度D .原计划施工的天数二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置) 11.计算:113+()2--=________.12.分解因式:236x x -=________.13.“十二五”期间,我市累计新增城镇就业人口147 000人,147 000用科学记数法表示为________.14.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是________.D第8题图 2 3 41甲乙第14题图15.如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成50°角,则拉线AC 的长为________米(精确到0.1米).16.如图,已知矩形ABCD 中,AB =4,AD =3,P 是以CD 为直径的半圆上的一个动点,连接BP ,则BP 的最大值是________.三、解答题(本大题有9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分7分)化简:2(3)(2)a a a +-+.18.(本题满分7分)求不等式组21,223x x x +⎧⎪-⎨⎪⎩<≤的整数解.19.(本题满分8分)如图,M 为正方形ABCD 边AB 上一点,DN ⊥DM 交BC 的延长线于点N . 求证:AM =CN .20.(本题满分8分)某校九年级共有四个班,各班人数比例如图1所示.在一次数学考试中,四个班的平均成绩如图2所示.(1)四个班平均成绩的中位数是________;(2)下列说法:① 3班85分以上人数最少;② 1,3两班的平均分差距最小;③ 本次考试年段成绩最高的学生在4班.其中正确的是________(填序号); (3)若用公式2m nx +=(m ,n 分别表示各班平均成绩)分别计算1,2两班和3,4两班的平均成绩,哪两班的计算结果会与实际平均成绩相同,请说明理由.图2第15题图1班 2班 4班 3班 a % b % 图1c %c %B第16题图21 3A BC D MN21.(本题满分10分)如图,已知△ABC 中,∠ABC =∠ACB ,以点B 为圆心,BC 长为半径的弧分别交AC ,AB 于点D ,E ,连接BD ,ED . (1)写出图中所有的等腰三角形;(2)若∠AED =114°,求∠ABD 和∠ACB 的度数.22.(本题满分10分)如图1,在矩形ABCD 中,动点P 从点A 出发,沿A →D →C →B 的路径运动.设点P 运动的路程为x ,△P AB 的面积为y .图2反映的是点P 在A →D →C 运动过程中,y 与x 的函数关系.请根据图象回答以下问题: (1)矩形ABCD 的边AD =________,AB =________;(2)写出点P 在C →B 运动过程中y 与x 的函数关系式,并在图2中补全函数图象.23.(本题满分10分)如图,已知△ABC ,以AB 为直径的⊙O 交AC 于点D ,CBD A ∠=∠.(1)求证:BC 为⊙O 的切线;(2)若E 为AB ⌒中点,BD =6,3sin 5BED ∠=,求BE 的长.ABECD图1图224.(本题满分12分)如图,直线12y kx=+与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线224cy ax ax=-+(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.(1)当m=5时,①求抛物线的关系式;②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=85;(2)若PQ长的最大值为16,试讨论关于x的一元二次方程hkxaxax=--42的解的个数与h的取值范围的关系.25.(本题满分14分)我们把有一组邻边相等,一组对边平行但不相等的四边形称作 “准菱形”.(1)证明“准菱形”性质:“准菱形”的一条对角线平分一个内角.(要求:根据图1写出已知,求证,证明) 已知: 求证: 证明:(2)已知,在△ABC 中,∠A=90°,AB =3,AC =4.若点D ,E 分别在边BC ,AC 上,且四边形ABDE 为“准菱形”.请在下列给出的△ABC 中,作出满足条件的所有“准菱形”ABDE ,并写出相应DE 的长.(所给△ABC 不一定都用,不够可添)2020年宁德市初中毕业班质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. ⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分)1.D 2.B 3.D 4.A 5.A 6.C 7.C 8.B 9.B 10.CABCD图1CAB DE = ________CAB DE =________CABDE =________CAB DE = ________二、填空题:(本大题有6小题,每小题4分,满分24分)11.5 12.3(2)x x - 13.51.4710⨯ 14.12 15.6.5 16.2三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分7分)解:原式=22692a a a a ++--, ··························································· 4分= 49a +. ···································································· 7分18.(本题满分7分)21,2 2.3x x x +⎧⎪⎨-⎪⎩<①≤②解:解不等式①,得 1x <. ································································ 2分解不等式②,得 4x ≥-. ······························································ 4分 在同一数轴上表示不等式①②的解集,如图∴原不等式组的解集为41x -≤<. ························································ 6分 ∴原不等式组的整数解为-4,-3,-2,-1,0. ··········································· 7分 19.(本题满分8分)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠A =∠ADC=∠BCD=90°. ······· 2分 ∴∠DCN =90°.∴∠DCN =∠A . ······································································ 4分 ∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3. ·············································································· 6分 ∴△ADM ≌△DCN . ······························································· 7分 ∴AM =CN . ··············································································· 8分20.(本题满分8分)(1)69; ······················································································ 2分 (2)②; ······················································································ 5分 (3)用公式2m nx +=计算3,4两班的平均成绩,结果会与实际平均成绩相同,因为213 ACDM N3,4两班权重(人数或比例)相同. ················································ 8分21.(本题满分10分)(1)答:等腰三角形有:△ABC ,△BCD ,△BED ; ··································· 3分 (2)解:∵∠AED =114°,∴∠BED =180°-∠AED=66°. ······· 4分 ∵BD =BE ,∴∠BDE =∠BED=66°.∴∠A BD =180°-66°×2=48°. ······ 6分 解法一:设∠ACB =x °,∴∠ABC =∠ACB =x °. ∴∠A =180°-2x °. ∵BC =BD ,∴∠BDC =∠ACB =x °. 又∵∠BDC 为△ABD 的外角,∴∠BDC =∠A+∠ABD . ·························································· 8分 ∴x =180-2x +48,解得:x =76.∴∠ACB =76°. ·································································· 10分 解法二:设∠ACB =x °,∴∠ABC =∠ACB =x °. ∴∠DBC =x °-48°. ∵BC =BD ,∴∠BDC =∠ACB =x °. ··························································· 8分 又∵∠DBC +∠BCD +∠BDC =180°, ∴x -48+x +x =180,解得:x =76.∴∠ACB =76°. ·································································· 10分22.(本题满分10分)(1) 2,4;(每空2分) ········································································ 4分 (2) 当点P 在C →B 运动过程中,PB =8-x ,∴14(8)2APB y S x ∆==⨯⨯-,即:216y x =-+(68x ≤≤).······· 8分 正确作出图象. ·························· 10分ABECD图2(提示:学生未对函数关系式化简,未写出取值范围不扣分) 23.(本题满分10分)解:(1)∵AB 是⊙O 的直径,∴ ∠ADB =90°. ····································1分 ∴∠A+∠ABD=90°. 又∵∠A=∠CBD , ∴∠CBD+∠ABD=90°. ∴∠ABC =90°.∴AB ⊥BC . ·········································4分 又∵AB 是⊙O 的直径,∴BC 为⊙O 的切线.·····························5分 (2)连接AE .∵AB 是⊙O 的直径, ∴∠AEB =∠ADB =90°. ∵∠BAD=∠BED , ∴3sin sin 5BAD BED ∠=∠=. ························································· 6分 ∴在Rt ABD △中,3sin 5BD BAD AB ∠==. ∵6BD =,∴AB=10. ··················································································· 8分 ∵E 为AB ⌒中点, ∴AE =BE .∴AEB △是等腰直角三角形. ∴∠BAE =45°.∴sin 10BE AB BAE =∠==g . ···········24.(本题满分12分)解:(1)①∵m =5,∴点A 的坐标为(5,0). 将x=0代入12y kx =+,得y =2. ∴点B 的坐标为(0,2).将A (5,0),B (0,2)代入224y ax ax c =-+ B252002.a a c c -+=⎧⎨=⎩, ···································································· 2分 解得 252.a c ⎧=-⎪⎨⎪=⎩,∴抛物线的表达式为2228255y x x =-++. ········································· 4分②将A (5,0)代入12y kx =+,解得:25k =-.∴一次函数的表达为1225y x =-+. ··················································· 5分∴点P 的坐标为2(,2)5x x -+.又∵PQ ∥y 轴,∴点Q 的坐标为228(,2)55x x x -++.∴22822(2)555PQ x x x =-++--+,2225x x =-+. ······································································· 7分∵85PQ =,∴228255x x -+=.解得:11x =,24x =.∴当x =1或x =4时,85PQ =. ·························································· 9分(2)设22214(2)4S y y ax ax c kx ax ax kx =-=-+-+=--.∴S 为x 的二次函数 ∵PQ 长的最大值为16, ∴S 最大值为16. ∵a <0,∴由二次函数的图象性质可知当h =16时,一元二次方程h kx ax ax =--42有一个解; 当h >16时,一元二次方程h kx ax ax =--42无解;当h <16时,一元二次方程h kx ax ax =--42有两个解. ···················· 12分数学试题 第 11 页 共 11 页 (提示:学生答对一种情况即得2分,未说明理由不扣分)25.(本题满分14分)解:(1)已知:如图,“准菱形”ABCD中,AB =AD ,AD ∥BC, (AD BC ≠). ·································································································· 2分 求证:BD 平分∠ABC . ··································································· 3分 证明:∵AB =AD ,∴∠ABD=∠BDA .又∵AD ∥BC ,∴∠DBC=∠BDA .∴∠ABD=∠DBC . 即BD 平分∠ABC . ········································································ 6分(2)可以作出如下四种图形: ····························································· 14分(提示:正确作出一个图形并给出对应的DE 值得2分.若作图不规范适当扣分,最多扣2分)A B C D图1 B 34DE = B 65DE = 127DE = B 158DE =。
2022年福建省宁德市初中毕业班第二次质量检测物理试题+
宁德市 2022 年初中毕业班 5~6 月质检物理试题(考试时间:90分钟:满分:100分)注意事项:1.全卷六大题,共33小题。
试卷共8页,另有答题卡。
2.答案一律写在答题卡上,否则不能得分,其中选择题用2B铅笔在答题区域内填涂。
3.全卷g取10N/kg。
一、单项选择题(本大题有16小题,每小题仅有一个正确答案,每小题2分,共32分)1.最早发现磁偏角的科学家是2.下列数据接近生活实际的是A.人体感觉舒适的环境温度约为37℃B.中学生步行的速度约为1.1 m/sC.体育测试用的篮球质量约为50 gD.眨一次眼所用时间约为1min3.白居易的《琵琶行》中“忽闻水上琵琶声,主人忘归客不发;寻声暗问弹者谁,琵琶声停欲语迟”,能够辨别出是琵琶声,是根据声音的A.响度B.音色C.音调D.音速4.下列属于绝缘体的是A.铁丝B.石墨C.人体D.陶瓷5.歌曲《让我们荡起双桨》中“让我们荡起双桨,小船儿推开波浪,海面倒映着美丽的白塔…”,下列与白塔倒影成像原理一致的是物理试题第1页共8页6.体积300 mL的免洗消毒凝胶质量为360 g。
用去一半后,消毒凝胶的密度为A.0.6 g/cm3B.1.2 g/cm3C.2.4 g/cm3D.1.2kg/m37.《尚书纬•考灵嚁》记载:“地恒动不止,而人不知。
譬如人在大舟中,闭牖(即窗户)而坐,舟行而人不觉也”。
其中“舟行”选取的参照物是A.河岸B.人C.行舟D.8.“肉丸”是宁德的一种美食,如图所示是蒸肉丸的场景,下列说法正确的是A.蒸肉丸时,燃料燃烧是将内能转化为化学能B.肉丸的温度升高,是通过做功的方式改变物体的内能C.锅上方出现大量“白气”,这是汽化现象D.蒸熟的肉丸香味四溢,这是扩散现象9.“安全人人抓,幸福千万家”,下列情况中符合安全用电原则的是A.用湿手触摸开关B.在高压输电线下放风筝C.洗衣机外壳接地D.直接用手拉触电的人10.如图所示,小聪把细铜线紧密排绕在铅笔上,通过测量线圈长度间接测出细铜线的直径。
(完整版)初中毕业班质量检测数学试卷及答案
数学试题 第 1 ⻚页 共 6 ⻚页A MB N注意事项:2019 年年宁德市初中毕业班质量量检测数 学 试 题(满分 150 分考试时间:120 分钟)1.答题前,考⽣生务必在试题卷、答题卡规定位置填写本⽣人准考证号、姓名等信息.考 ⽣生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考⽣生本⽣人准考证号、姓名是否 ⽣一致.2.选择题每⽣小题选出答案后,⽣用 2B 铅笔把答题卡上对应题⽣目的答案标号涂⽣黑.如需 改动,⽣用橡⽣皮擦⽣干净后,再选涂其他答案标号.⽣非选择题答案⽣用 0.5 毫⽣米⽣黑⽣色签字笔在答 题卡上相应位置书写作答,在试题卷上答题⽣无效.3.作图可先使⽣用 2B 铅笔画出,确定后必须⽣用 0.5 毫⽣米⽣黑⽣色签字笔描⽣黑. 4.考试结束,考⽣生必须将试题卷和答题卡⽣一并上交.第 Ⅰ 卷⻚一、选择题:本题共 10 ⻚小题,每⻚小题 4 分,共 40 分.在每⻚小题给出的四个选项中,只有 ⻚一项是符合题⻚目要求的. 1.2019 的绝对值是A .B .C .D . 2.下列列⽣几何体中,主视图与俯视图相同的是AB C D 3.下列列运算正确的是A .B .C .D .4.若三⻆角形的三边⽣长分别为 3,x ,5,则 x 的值可以是A .2B .5C .8D .11 5.如图,在 的正⽣方形⽣网格中,点 A ,B ,M ,N 都在格点上.从 点 M ,N 中任取⽣一点,与点 A ,B 顺次连接组成⽣一个三⻆角形,则 下列列事件是必然事件的是 A .所得三⻆角形是锐⻆角三⻆角形B .所得三⻆角形是直⻆角三⻆角形C .所得三⻆角形是钝⻆角三⻆角形D .所得三⻆角形是等腰三⻆角形第 5 题图数学试题 第 2 ⻚页 共 6 ⻚页6.⽣一元⽣二次⽣方程 x 2﹣2x ﹣1=0 根的情况是A .只有⽣一个实数根B .有两个相等的实数根C .有两个不不相等的实数根D .没有实数根 7.我国古代数学名著《九章算术》有“⽣米⽣谷粒分”题:粮仓开仓收粮,有⽣人送来⽣谷⽣米 1534⽣石,验得其中夹有⽣谷粒.现从中抽取⽣谷⽣米⽣一把,共数得 254 粒,其中夹有⽣谷粒 28 粒, 则这批⽣谷⽣米内夹有⽣谷粒约是 A .134 ⽣石B .169 ⽣石C .338 ⽣石D .1365 ⽣石8.⽣小卖部从批发市场购进⽣一批杨梅梅,在销售了了部分杨梅梅之后, 余下的每千克降价 3 元,直⽣至全部售完.销售⽣金金额 y 元与杨 梅梅销售量量 x 千克之间的关系如图所示.若销售这批杨梅梅⽣一共 赢利利 220 元,那么这批杨梅梅的进价是 A .10 元/千克 B .12 元/千克 C .12.5 元/千克D .14.4 元/千克9.如图,AB 是⊙O 的直径,AB =AC ,AC 交⊙O 于点 E ,BC 交 ⊙O 于点 D ,F 是 C E 的中点,连接 D F .则下列列结论错误的 是A .∠ A=∠ A BEB .⌒B D =⌒D EC .BD =DCD .DF 是⊙O 的切线第 8 题图10.点 A (2,m ),B (2,m -5)在平⽣面直⻆角坐标系中,点 O 为坐 标原点.若△ABO 是直⻆角三⻆角形,则 m 的值不不可能是 A .4B .2C .1D .0第 9 题图注意事项:第 Ⅱ 卷1.⽣用 0.5 毫⽣米⽣黑⽣色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案⽣无效. 2.作图可先使⽣用 2B 铅笔画出,确定后必须⽣用 0.5 毫⽣米⽣黑⽣色签字笔描⽣黑. ⻚二、填空题:本题共 6 ⻚小题,每⻚小题 4 分,共 24 分. E 11.2018 年年国庆假期宁德市接待游客 2 940 000 ⽣人次.将数据B2 940 000 ⽣用科学记数法表示为 .12.如图,DA ⊥ C E 于点 A ,CD ∥ AB ,∠ 1=30°,则∠ D =°.第 12 题图13.学校组织户外研学活动,安排给九年年级三辆⽣车,⽣小明与⽣小慧都可以从三辆⽣车中任选⽣一辆搭乘,则⽣小明和⽣小慧搭乘同⽣一辆⽣车的概率是.数学试题 第 3 ⻚页 共 6 ⻚页14.关于 x 的⽣一元⽣一次不不等式组中两个不不等式的-2- 1123解集在同⽣一数轴上的表示如图所示,则该不不等式组解集 是.第 14 题图15. ⽣小宇计算分式的过程如图所示,他开始出现计算错误的是在第步.(填序号)GADFBE第 16 题图16. 如图,已知正⽣方形 ABC D 中,点 E 是 BC 上的⽣一个动点,EF ⊥ AE 交 CD 于点 F ,以 AE ,EF 为边作矩形 AEFG ,若 AB=4,则点 G 到 AD 距离的最⽣大值是 .三、解答题:本题共 9 ⻚小题,共 86 分.17.(本题满分 8 分)先化简,再求值:,其中.18.(本题满分 8 分)如图,F ,C 是 A D 上两点,且 A F=CD ;点 E ,F ,G 在同⽣一直线上,且 F ,G 分别是 AC ,AB 中点,BC =EF . 求证:△ABC ≌ △DEF .GC DAF19.(本题满分 8 分)春晓中学为开展“校园科技节”活动,计划购买 A 型、B 型两种型号的航模.若购买 8 个 A 型航模和 5 个 B 型航模需⽣用 2200 元;若购买 4 个 A 型航模和 6 个 B 型航模需⽣用 1520 元.求 A ,B 两种型号航模的单价分别是多少元.计算:解:原式…①…②…③ …④FBE OD20.(本题满分 8 分)某校九年年级共有 80 名同学参与数学科托底训练.其中(1)班 30 ⽣人,(2)班 25 ⽣人,(3)班 25 ⽣人,吕⽣老老师在托底训练后对这些同学进⽣行行测试,并对测试成 绩进⽣行行整理理,得到下⽣面统计图表.九年年级托底成绩统计表成绩/分(1)表格中的 m 落在 组;(填序号)①40≤x <50, ②50≤x <60, ③60≤x <70, ④70≤x <80, ⑤80≤x <90, ⑥90≤x ≤100.(2)求这 80 名同学的平均成绩;(3)在本次测试中,(2)班⽣小颖同学的成绩是 70 分,(3)班⽣小榕同学的成绩是 74分,这两位同学成绩在⽣自⽣己所在班级托底同学中的排名,谁更更靠前?请简要说明 理理由.21.(本题满分 8 分)如图,点 O 是菱形 ABCD 对⻆角线的交点,点 E 在 BO 上,EF 垂直平分 AB ,垂⽣足为 F .A(1)求证:△BEF ∽ △DCO ;(2)若 AB =10,AC =12,求线段 EF 的⽣长.C22.(本题满分 8 分)已知反⽣比例例函数图象上两点 A (2,3),B的位置如图 所示.(1)求 x 的取值范围; (2)若点 C也在该反⽣比例例函数的图像上,试⽣比较 ,的⽣大⽣小.数学试题 第 4 ⻚页 共 6 ⻚页23.(本题满分12 分)定义:平⽣面内,如果⽣一个四边形的四个顶点到某⽣一点的距离都相等,则称这⽣一点为该四边形的外⽣心.(1)下列列四边形:平⽣行行四边形、矩形、菱形中,⽣一定有外⽣心的是;(2)已知四边形ABCD 有外⽣心O,且A,B,C 三点的位置如图1 所示,请⽣用尺规确定该四边形的外⽣心,并画出⽣一个满⽣足条件的四边形ABCD;(3)如图2,已知四边形ABCD 有外⽣心O,且BC=8,sin∠BDC= ,求O C 的⽣长.ADOB图1 图224.(本题满分13 分)如图,在矩形A BCD 中,AB=4,AD=6,E 是A D 边上的⽣一个动点,将四边形BCDE 沿直线BE 折叠,得到四边形BC′D′E,连接AC′,AD′.(1)若直线DA 交BC′于点F,求证:EF=BF;(2)当AE= 时,求证:△AC′D′是等腰三⻆角形;(3)在点E的运动过程中,求△AC′D′⽣面积的最⽣小值.D′C′A E DFB C数学试题第5 ⻚页共6 ⻚页25.(本题满分13 分)如图1,已知⽣水⽣龙头喷⽣水的初始速度v0 可以分解为横向初始速度v x 和纵向初始速度v y,是⽣水⽣龙头的仰⻆角,且.图2 是⽣一个建在斜坡上的花圃场地的截⽣面示意图,⽣水⽣龙头的喷射点A 在⽣山坡的坡顶上(喷射点离地⽣面⽣高度忽略略不不计),坡顶的铅直⽣高度O A为15 ⽣米,⽣山坡的坡⽣比为.离开⽣水⽣龙头后的⽣水(看成点)获得初始速度v0 ⽣米/秒后的运动路路径可以看作是抛物线,点M 是运动过程中的某⽣一位置.忽略略空⽣气阻⽣力力,实验表明:M 与A的⽣高度之差d(⽣米)与喷出时间t(秒)的关系为;M 与A的⽣水平距离为⽣米.已知该⽣水流的初始速度为15 ⽣米/秒,⽣水⽣龙头的仰⻆角为.(1)求⽣水流的横向初始速度v x 和纵向初始速度v y;(2)⽣用含t 的代数式表示点M 的横坐标x 和纵坐标y,并求y 与x 的关系式(不不写x的取值范围);(3)⽣水流在⽣山坡上的落点 C 离喷射点 A 的⽣水平距离是多少⽣米?若要使⽣水流恰好喷射到坡脚B 处的⽣小树,在相同仰⻆角下,则需要把喷射点A 沿坡⽣面AB ⽣方向移动多少⽣米?(参考数据:,,)yMAv yCO B x图1 图2v0v数学试题第6 ⻚页共6 ⻚页2019 年宁德市初中毕业班质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数.⑷评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10 小题,每小题4 分,满分40 分)1.B 2.C 3.D 4.B 5.D 6.C 7.B 8.A 9.A 10.B二、填空题:(本大题有6 小题,每小题4 分,满分24 分)11.2.94 ⨯10612.60 13.1314.x≤- 115.②16.1三、解答题(本大题共9 小题,共86 分.请在答.题.卡.的相应位置作答)17.(本题满分8 分)解:原式=x2 - 6x + 9 + 2x + x2 - 9 ····························································4 分当x= 2x2 - 4x .···································································· 5 分原式= 2 ⨯ ( - 4 ⨯ (····························································· 6 分= 6 + .··········································································· 8 分18.(本题满分8 分)证明:∵AF=CD,∴AF+FC =FC+CD.B∴AC=FD.·············································2 分G∵点F,G 分别是AC,AB 的中点,∴GF∥BC.································4分∴∠BCA =∠EFD.································5分∵BC=EF,∴△ABC≌△DEF.·······························8 分A C DFE数学试题参考答案及评分说明第 1 页共 7 页⎩19.(本题满分8 分)解:设A 型号航模单价为x 元,B 型号航模单价为y 元,根据题意,得··········1 分⎧8x + 5 y= 2200 ,⎨4x + 6 y= 1520 .··················································································5 分⎧x = 200 ,解得⎨⎩ y = 120 .··················································································· 7 分答:A 型号航模的单价为200 元,B 型号航模的单价为120 元.··················· 8 分20.(本题满分8 分)解:(1)④;···················································································2 分(2)x =75.2 ⨯ 30 + 71.2 ⨯ 25 + 72.8 ⨯ 2580= 73.2 (分).············································································ 5 分答:这80 名同学的平均成绩为73.2 分;(3)小颖同学在自己班级的托底同学中排名更靠前.··································6 分理由:因为70 > 68 ,所以小颖同学成绩处于自己班级托底同学的中上水平;因为74 < 75 ,所以小榕同学成绩处于自己班级托底同学的中下水平,且这两个班的参加托底训练的人数相同,所以小颖在自己班级的排名更靠前.····· 8 分21.(本题满分8 分)解:(1)证明:∵四边形ABCD 是菱形,∴AC ⊥ BD ,AB∥CD.∴∠FBE=∠ODC.················2 分又∵EF 垂直平分AB,D ∴∠BFE=∠DOC=90°.∴△BEF ∽△DCO.··············· 4 分(2)∵四边形ABCD 是菱形,∴OC =1AC =1⨯ 12 = 6 ,CD = AB = 10 .2 2在Rt△DCO 中,根据勾股定理得OD8 .又∵EF 垂直平分AB,∴BF =1AB =1⨯ 10 = 5 .································································· 6 分2 2由(1)可知△BEF∽△DCO,∴EF=BF,即EF=5.OC OD 6 8∴EF =15.································································· 8 分4数学试题参考答案及评分说明第 2 页共 7 页数学试题参考答案及评分说明 第 3 页 共 7 页22.(本题满分 8 分)解:(1)根据图象上 A ,B 两点的位置可知: x B > 2 . ∴ -2x + 2 > 2 . ·············································································3 分 ∴ x <0 . ············································································· 4 分(2)解法一:∵ x <0 ,∴ x C = -x > 0 . ∴点 C 在第一象限内. ··························································· 5 分由 x B - x C ,得 -2x + 2 - (-x ) = -x + 2 . ∵ -x > 0 , ∴ -x + 2 > 2 > 0 . ∴ x B > x C . ∴ 0<x C <x B . ···········································································7 分 ∵反比例函数在第一象限内,y 随 x 的增大而减小,∴ y 2 > y 1 . ···········································································8 分解法二:∵ x <0 , ∴ -x > 0 . ∴ x C > 0 .∴点 C 在第一象限内.··························································· 5 分①若 x =x ,即 -x = -2x + 2 ,CB得 x = 2 ,这与 x <0 矛盾. ∴点 C 不与点 B 重合. ②若 x > x ,即 -x > -2x + 2 ,CB得 x > 2 ,这与 x <0 矛盾. ∴点 C 不在点 B 右侧. ③若 x C < x B ,即 -x < -2x + 2 , 得 x < 2 .∵ x <0 满足 x < 2 ,∴点 C 在点 B 左侧.(也可由①②直接判断点 C 在点 B 左侧) ····················· 7 分 ∵反比例函数在第一象限内,y 随 x 的增大而减小, ∴ y 2 > y 1 .···········································································8 分数学试题参考答案及评分说明 第 4 页 共 7 页23.(本题满分 12 分) 解:(1)矩形.················································· 2 分(2)如图 1,作图正确.···································· 5 分(作出圆心得 2 分,确定点 D 得 1 分) ∴所作的点 O 是四边形 ABCD 的外心,四边形 ABCD 的就是所求作的四边形.························ 6 分 (3)解法一:如图 2,∵点 O 是四边形 ABCD 的外心, ∴OA =OC =OB =OD ,图1 ∴点 A ,B ,C ,D 都在以 OC 为半径的⊙O 上.······ 8 分 AD 连接 OB ,BC ,作 OM ⊥BC 于点 M . 则∠OMB =90°,∠BOC =2∠BDC . O∵OC =OB ,∴∠COM = 1 ∠BOC =∠BDC ,CM = 1BC =4.········ 11 分BMC2 2 ∴OC =CM= 4 ÷ 4= 5 .····························12 分图 2sin ∠COM 5解法二:如图 3,∵点 O 是四边形 ABCD 的外心, ∴OA =OC =OB =OD ,A D∴点 A ,B ,C ,D 都在以 OC 为半径的⊙O 上.······ 8 分 E延长 CO 交⊙O 于点 E ,连结 EB , 则∠EBC =90°,∠BEC =∠BDC . O∴CE =BC= 8 ÷ 4= 10 .···························· 11 分BCsin ∠BEC 5 ∴OC = 1CE =5 .·············································12 分图 3 2 24.(本题满分 13 分)D ′解:(1)证明:∵四边形 ABCD 是矩形, ∴AD ∥BC .C ′AE D∴∠FEB =∠EBC .······································· 2 分 F 根据对称可得∠FBE =∠EBC , ∴∠FEB =∠FBE .∴BF =EF .················································· 4 分BC图 1ADOBC数学试题参考答案及评分说明 第 5 页 共 7 页(2)解法一:(如图 2) 分别过点 A 作 AG ⊥BC ′于点 G ,AH ⊥ C ′D ′于点 H , ∵四边形 ABCD 是矩形,∴∠BAD =90°.∴tan ∠ABE = AE = AB 4∴∠ABE =30°.·········································· 5 分∴∠FEB =90°-∠ABE =60°. ∴∠FBE =∠FEB =60°.·································6 分∴∠ABG =∠FBE -∠ABE =30°.∴AG = 1 AB =2.·········································· 7 分图 22根据对称可得∠BC ′D ′=∠C =90°, C ′D ′= C D . ∴∠BC ′D ′=∠C ′GA =∠C ′HA = 90°. ∴四边形 AGC ′H 是矩形. ∴AG=C ′H =2. ∴AH 是 C ′D ′′的垂直平分线.··························8 分 ∴AC ′=AD ′.∴△AC ′D ′是等腰三角形.··························· 9 分 法二:(如图 3) 延长 D ′A 交 BF 于点 G . 同解法一得∠FBE =∠FEB =60°.·····················6 分证得 AF =EA ,·············································7 分再证△D ′AE ≌△GAF .································ 8 分 得 A D ′=AG ,从而得 A C ′= A D ′= 1 G D ′.······9 分2解法三:(如图 4) 过点 A 作 M N ∥C ′D ′分别交 BF ,D ′E 于点 M ,N , 同解法一得∠FBE =∠FEB =60°.·····················6 分证得 AF =EA ,·············································7 分证△AFM ≌△AEN 得到 AM =AN .··················· 8 分再证△AMC ′≌△AND ′.得到 A C ′= A D ′.····· 9 分 解法四:(如图 2-4) BC图 3由勾股定理得 BE设 BF =x ,由(1)得 AF = x由勾股定理解得 BF , AF .图 4 ∴AF =EA ,∠ABF =30°.······························· 7 分 以下同各解法.数学试题参考答案及评分说明 第 6 页 共 7 页y(3)解法一:(如图 5)根据对称可得点 C ′与点 D ′的对称点分别为点 C ,D . 作点 A 关于 BE 的对称点点 A ′. 由对称性得 △A ′CD ≌△AC ′D ′,BA ′=BA .∴S △A ′ CD =S △AC ′ D ′ ,点 A ′落在以点 B 为圆心以A B 为半径的弧 AM 上.·············· 11 分 设弧 AM 交 BC 于点 M ,过点 A ′作 A ′N ⊥CD 于 N .由垂线段最短知 B A ′+ A ′N ≥BM +MC . ∵BA ′=BM ,∴ A ′N ≥MC .∴当点 A ′落在点 M 处时△A ′CD 的面积最小. 即△AC ′D ′的面积最小. 此时 MC=BC - B M=2.S △AC ′ D ′ =S △A ′ CD = 1 MC ⋅ DC = 4 .2N∴△AC ′D ′面积的最小值为 4.·····················13 分 图 5解法二:(如图 6)作矩形 BC ′D ′J ,过点 A 作 AH ⊥ C ′D ′于点 H , 延长 HA 交 BJ 于点 I . ∴AH +AI=HI=BC ′=6. ∴AH=6-AI .∴AH 随的 AI 增大而减小.·························· 11 分∵AI ≤AB ,∴AI=AB 时,AI 取得最大值 4.此时,AH 取得最小值 2. 图 6∴S △AC ′ D ′ = 1 C 'D ' ⋅ AH = 4 .2∴△AC ′D ′面积的最小值为 4.·····················13 分 25.(本题满分 13 分)解:(1)如图 1,∵ v 2 = v 2 + v 2,θ= 53︒ .v 0xy3 ∴ v x = v 0 cos θ= 15 ⨯= 9 ,····························2 分5图 1v = v sin θ= 15 ⨯ 4= 12 .·······································································3 分 y 05 (2)由(1)得 v x = 9 , v y = 12 . 根据题意,得 d = v t - 5t 2 = 12t - 5t 2 , y M - y A = d . ∴点 M 的横坐标为: x = v x t = 9t ,①纵坐标为: y = d + 15 = -5t 2 + 12t + 15 .② ···········································6 分由①得 t = 9 ,代入②得 x y = - 5 x 2 + 4x + 15 .···········································8 分81 3数学试题参考答案及评分说明 第 7 页 共 7 页⎩ ⎪(3)∵坡顶的铅直高度为 15 米,山坡的坡比为 1,3∴ OB = 15 ÷ 1= 45 (米).3∴A 点的坐标为(0,15),B 点的坐标为(45,0).设线段 AB 的函数关系式为: y = kx + b .将 A ,B 两点坐标代入上式,得 ⎧15 = b , ⎨0 = 45k + b .⎧b = 15, ⎪ 解得 ⎨k = - 1. ⎩ 3∴线段 AB 的关系式为: y = - 1 x + 15 .··················································· 10 分3 ⎧y = - 5 x 2 + 4 x + 15, ⎪⎪ 81 3⎨ ⎪ y = - 1 x + 15.⎩⎪ 3⎧x = 27, 解得 ⎨⎩ y = 6.图 2∴水流在山坡上的落点 C 离喷射点 A 的水平距离是 27 米.··························11 分 过 C 点作 CD ⊥ x 轴,垂足为 D ,得 CD =6,BD =18. 在 Rt △DCO 中,根据勾股定理,得BC== 米).由平移的性质可得,需要把喷射点沿坡面 AB 方向移动 ·················· 13 分由。
2023年宁德市初中毕业班质量检测道德与法治试卷(含答案)
第 1 页 共 8页2023年宁德市初中毕业班质量检测道德与法治试题(考试时间:90分钟;满分:100分;考试形式:闭卷)注意:1. 选择题用2B 铅笔在答题卡选择题的答题区域内填涂。
2. 非选择题用黑色签字笔在答题卡各题指定的答题区域内书写。
3. 在本试卷上作答无效。
第Ⅰ卷本卷共25小题,每小题2分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“坚持真理、坚守理想,践行初心、担当使命,不怕牺牲、英勇斗争,对党忠诚、不负人民”的精神,是中国共产党饱受磨难而生生不息、历经百年而风华正茂的奥秘所在,是中国共产党的精神之源。
这告诉我们要A.弘扬伟大建党精神B.发展全过程人民民主C.坚持中国式现代化D.推进经济高质量发展2.以下事件反映我国科技方面发展成就的是①国防教育融入考试内容 ②中国空间站建造阶段发射任务完美收官③中小学生普通话水平划分为6级 ④C919大飞机取得中国民航局颁发的型号合格证A.①③B.①④C.②③D.②④3.阅读右框时事,可以得出的共同结论是A.我国实施健康中国发展战略B.我国落实教育强国发展战略C.我国坚持依法治国基本方略D.我国重视黄河流域生态保护4.第三次全国国土调查结果显示,我国现有耕地19.18亿亩,牢牢守住了18亿亩耕地保护红线。
我国严守耕地红线A.提高了农业生产效率B.能缓解农业劳动人口紧缺问题C.事关国家的粮食安全D.能改善耕地资源空间分布不均衡状况5.下列新闻事件与新闻解读相匹配的是序号 新闻事件 新闻解读①人民币成为全球第四位支付货币意味着中国迈入发达国家行列②我国建成世界首条环沙漠铁路线促进沿线地区经济和社会发展③我国继续深化中华文明探源工程有利于将中华文明历史研究引向深入④中国经济2022年上半年同比增长2.5%说明我国已经成为世界第一大经济体A.①②B.①④C.②③D.③④6.小闽在睡前经常思考:今天有哪些收获?有没有哪里做得不够到位?下列古语与小闽认识自己的途径相一致的是第 2 页 共 8页A.吾日三省吾身B.知人者智,自知之明C.当局者迷旁观者清D.士别三日当刮目相看7.下列对“微行为”的“微点评”解读正确的是序号微行为微点评①耐心帮助同学讲解习题能用心关怀同学②与好友一起报名参加演讲比赛友谊不能没有原则③考试时拒绝同桌传递答案的请求正确对待同学间竞争④课后常与老师探讨学习中的问题促进师生之间教学相长A.①②B.①④C.②③D.③④8.帮助小闽化解右框中的烦恼,合理的建议是①直面矛盾心理,学会自我调节②培养批判精神,敢于挑战权威③摆脱依赖,凡事都自己做主④知错就改,提高自我控制能力A.①②B.①④C.②③D.③④9.九年级某班开展“提高安全意识学会自我保护”为主题的安全教育活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁德市初中毕业班质量检测及答案WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】2018年宁德市初中毕业班质量检测数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页.满分150分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号,姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须毫米黑色签字笔描黑. 4.考试结束,考生必须将试题卷和答题卡一并交回.第 Ⅰ 卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2018-的值是A .12018B .2018C .12018-D .2018-2.如图,若a ∥b ,∠1=58°,则∠2的度数是A .58°B .112°C .122°D .142°3.下列事件是必然事件的是A .2018年5月15日宁德市的天气是晴天B .从一副扑克中任意抽出一张是黑桃C .在一个三角形中,任意两边之和大于第三边D .打开电视,正在播广告a b第2题图214.由6个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是 A .主视图的面积最大 B .左视图的面积最大 C .俯视图的面积最大 D .三种视图的面积相等5.不等式组10,10≤>x x -⎧⎨+⎩的解集在数轴上表示正确的是6.在平面直角坐标系中,A ,B ,C ,D ,M ,N 的位置如图所示,若点M 的坐标为(-2 ,0), N 的坐标为(2 ,0),则在第二象限内的点是 A .A 点 B .B 点C .C 点D .D 点7.在“创文明城,迎省运会”合唱比赛中,10位评委给某队的评分如下表所示,则下列说法正确的是 A .中位 C .众数和18.如图,将△OA=4,∠A .∠BDO =60° B .∠BOC =25° C .OC=4D .BD=49.某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球的2倍,购买足球用了4 000元,购买篮球用了2 800元,篮球单价比足球贵16元.若可列方程40002800162x x=-表示题中的等量关系,则方程中x 表示的是 A .足球的单价 B .篮球的单价 C .足球的数量D .篮球的数量C1 0 D第4题图B 1 0 A第8题图第6题图MNA B D CCFEDA BA 1 010.如图,已知等腰△ABC ,AB=BC ,D 是AC 上一点,线段BE 与BA 关于直线BD 对称,射线CE 交射线BD 于点F ,连接AE ,AF .则下列关系正确的是 A .180∠∠AFE ABE +=︒ B .12∠∠AEF ABC = C .180∠∠AEC ABC +=︒D .∠∠AEB ACB =第 Ⅱ 卷注意事项:1.用毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先使用2B 铅笔画出,确定后必须毫米黑色签字笔描黑. 二、填空题:本题共6小题,每小题4分,共24分.11.2017年10月18日,中国共产党第十九次全国代表大会在北京隆重召开.从全国近89 400 000党员中产生的2 300名代表参加了此次盛会.将数据89 400 000用科学记数法表示为 . 12.因式分解:222a -= .13.小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为 .14. 已知一次函数23(0)y kx k k =++≠,不论k 为何值,该函数的图像都经过点A ,则点A 的坐标为 .15.小丽计算数据方差时,使用公式2222221(5)(8)(13)(14)(15)5S x x x x x ⎡⎤=-+-+-+-+-⎣⎦,则公式中x = .16.如图,点A ,D 在反比例函数(0)my m x=<点B ,C 在反比例函数(0)ny n x=>的图像上.若AB ∥CD ∥x 轴,AC ∥y 轴,且AB =4,AC =3,CD =2则n = .第16题图第10题图三、解答题:本题共9小题,共86分.17.(本题满分8分)计算:14cos302-︒+18.(本题满分8分)如图,在△ABC 中, D ,E 分别是AB ,AC 的中点,△ABC 的角平分线AG 交DE 于点F ,若∠ABC =70°,∠BAC =54°,求∠19.(本题满分8如期举行,某校组织一辆A 型车可坐5辆.学校至少要租用B 型车多少辆?20.(本题满分8分)某中学为推动“时刻听党话 永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B :党史手抄报比赛,C :党史知识竞赛,D :红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1(2(31名女生,21.(本题满分8分)如图,已知矩形ABCD ,E (1)如图1,若F 是BC 上一点,在AD ,CD 上分别截取DH =BF ,DG =BE .求证:四边形EFGH 是平行四边形;(2)如图2,利用尺规分别在BC ,CD ,AD 上确定点F ,G ,H ,使得四边形EFGH 是特殊的平行四边形.(提示:①保留作图痕迹,不写作法;②只需作出一种情况即可)22.(本题满分10分)若正整数a ,b ,c b ,c 为一组和谐整数.(1)判断2,3,6是否是一组和谐整数,并说明理由;图ADF H B EG C 图2图1(2)已知x ,y ,z (其中x y z <≤)是一组和谐整数,且1x m =+,3y m =+,用含m 的代数式表示z ,并求当24z =时m 的值.23.(本题满分10分)如图,在△ABC 中,∠ACB =90°,O 是AB 上一点,以OA 为半径的⊙O 与BC 相切于点D ,与AB 交于点E ,连接ED 并延长交AC 的延长线于点F . (1)求证:AE =AF ;(2)若DE =3,sin ∠BDE =13,求AC 的长.24.(本题满分13分)如图1,在△ABC 中,∠BAC =90°,AB =AC =4,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰直角△ADE ,其中∠ADE =90°. (1)如图2,G ,H 分别是边AB ,BC 的中点,连接DG ,AH ,EH .求证:△AGD ∽△AHE ;(2)如图3,连接BE ,直接写出当BD 为何值时,△ABE 是等腰三角形; (3)在点D 从点B 向点C 运动过程中,求△ABE 周长的最小值.25.(本题满分13分)已知抛物线22(y axax c a =-+< (1)当a =-1,m =0时,求抛物线的顶点坐标;(2)若P (t ,n )为该抛物线上一点,且n <m t 的取值范围;(3)如图,直线:(0)l y kx c k =+<交抛物线于B ,两点,点Q (x ,y )是抛物线上点B ,C 个动点,作QD ⊥x 轴交直线 l 于点D ,作QE ⊥y 轴于点E ,连接DE .设∠QED=?x 2≤≤4时,? 恰好满足°°30≤≤60β,求a 的值.2018年宁德市初中毕业班质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.B图1 ABC D E图2 ABC D G H⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分) 1.B 2.C 3.C 4.A 5.D 6.A 7.B 8.D 9.D 10.B 二、填空题:(本大题有6小题,每小题4分,满分24分)11.78.9410⨯ 12.2(1)(1)a a +- 13.100 14.(-2,3) 15.11 16.83三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分8分)解:原式= 142+-························································ 6分 =12··································································· 8分18.(本题满分8分)证明:∵∠BAC =54°,AG 平分∠BAC ,∴∠BAG =12∠BAC =27°. ················ 2分 ∴∠BGA =180 °-∠ABC -∠ BAG =83° · 4分 又∵点D ,E 分别是AB ,AC 的中点, ∴DE ∥BC . ································· 6分 ∴∠AFD =∠BGA =83°. ··················· 8分19.(本题满分8分)解: 设租用B 型车x 辆,则租用A 型车(5-x )辆,根据题意,得 ·· 1分 2820(5)115≥x x +-. ···························································· 5分解得 158≥x . ·································································· 7分因为x 为整数,所以x 的最小值是2.答:学校至少租用了2辆B 型车. ············································ 8分 20.(本题满分8分)(1)40; ·········································································· 2分 (2)图略 ·········································································· 4分CFEDBAG(3)列表如下: ··································································· 6分一名女生的结果有6种,所以抽到一名男生和一名女生的概率是612,即12. 8分21.(本题满分8分)(1)证明:∵四边形ABCD 是矩形, ∴AD =BC ,AB=CD ,∠A =∠B =∠C =∠D =90°,∵DG =BE ,DH =BF ,∴△GDH≌△EBF . ············ 2分 ∴GH = EF .∵AD =BC ,AB =CD ,DH =BF ,DG =BE , ∴AD -DH =BC -BF ,AB -BE =CD -DG . 即AH =CF ,AE =CG .∴△AEH ≌△CGF . ·················· 4分 ∴EH =GF .∴四边形EFGH 是平行四边形. · 5分 (2)作图如下:作法一:作菱形(如图2) ························································ 7分 ∴四边形EFGH 就是所求作的特殊平行四边形. ························· 8分 作法二:作矩形(如图3,图4) ············································ 7分∴·· 8分22(1)····················· 1分 ADFHBE GC图∵111362+=,满足和谐整数的定义,∴2,3,6是和谐整数. ··················································· 4分(2) 解:∵x y z <≤, 依题意,得 111yzx+=.∵1x m =+,3y m =+, ∴11111213(1)(3)zxym m m m =-=-=++++.∴(1)(3)2m m z ++=. ···························································· 7分 ∵24z =,∴(1)(3)242m m ++=. 解得 59,m m ==-. ························································· 9分 ∵x 是正整数,∴5m =. ····································································· 10分23.(本题满分10分)解:(1)证明:连接OD .∵ OD =OE ,∴∠ODE =∠OED .······················ 1分∵直线BC 为⊙O 的切线, ∴OD ⊥BC .∴∠ODB =90°.··························· 2分 ∵∠ACB =90°,∴OD ∥AC . ······························ 3分∴∠ODE =∠F .∴∠OED =∠F . ·········································4分 ∴AE =AF . ················································5分 (2)连接AD . ∵AE 是⊙O 的直径∴∠ADE =90°. ··········································6分 ∵AE =AF ,B图1∴DF =DE =3. ∵∠ACB =90°.∴∠DAF +∠F =90°,∠CDF +∠F =90°, ∴∠DAF =∠CDF =∠BDE . ·········· 7分 在Rt △ADF 中,1sin sin 3∠DF DAF BDE AF ==∠=, ∴39AF DF ==. ························· 8分 在Rt △CDF 中,1sin sin 3∠CF CDF BDE DF ==∠=, ∴113CF DF ==. ························· 9分∴AC =AF -CF =8. ······················· 10分 24.(本题满分13分)解:(1)由题意知△ABC 和△ADE∴∠B =∠DAE =45°.∵G 为AB 中点,H 为BC 中点, ∴AH ⊥BC .∴∠BAH =45°=∠DAE .∴∠GAD =∠HAE . ····················· 1分 在等腰直角△BAH 和等腰直角△DAE 中,AH AB ==,AE .∴AH AE AGAD=. ····························· 3分∴△AGD ∽△AHE . ···················· 4分(2)当BD =0△ABE 是等腰三角形. ····················· 8分(注:给出0和12分) (3)解法一:当点D 与点B 重合时,点E 的位置记为点M .此时,∠ABM =∠BAC =90°,∠AMB =∠BAM =45°,BM = AB = AC .B图1图2∴四边形ABMC 是正方形. ∴∠BMC =90°,∴∠AMC =∠BMC -∠AMB =45°,9分 ∵∠BAM =∠DAE =45°, ∴∠BAD =∠MAE ,在等腰直角△BAM 和等腰直角△DAE中,AM =,AE .∴AM AE ABAD=.∴△ABD ∽△AME . ∴∠AME =∠ABD =45°∴点E 在射线MC 上. ·········10分作点B 关于直线MC 的对称点N ,连接AN 交MC 于点E ′, ∵BE +AE =NE +AE ≥AN =NE ′+AE ′=∴△ABE ′就是所求周长最小的△在Rt △ABN 中,∵AB =4,BN =2BM =2AB =8, ∴AN =AN =∴△ABE 周长最小值为4AB AN +=+ ············································· 13分 解法二:取BC 的中点H ,连接AH , 同解法一证△ACE ∽△AHD . ∴∠ACE=∠AHD=90°.∴点E 在过点C 且垂直于AC 的直线上,记为直线l . ··········· 10分 点A 关于直线l 的对称点M ,连接BM 交直线l 于点E ′, 同解法一,△ABE ′就是所求周长最小的△ABE .∴△ABE 周长最小值为4AB BM +=+. ··························· 13分25.(本题满分13分) 解:(1)当a =-1,m =0时,22y x x c =-++,A 点的坐标为(3,0),图2BACDE ′ MNE∴-9+6+c =0.解得 c =3. ····································································· 2分 ∴抛物线的表达式为223y x x =-++. 即2(1)4y x =--+.∴抛物线的顶点坐标为(1,4). ······································ 4分 (2)∵22y ax ax c =-+的对称轴为直线212ax a-==-, ······················· 5分 ∴点A 关于对称轴的对称点为(-1,m ). ··························· 6分 ∵0<a ,∴当1<x ,y 随x 的增大而增大; 当1>x ,y 随x 的增大而减小. 又∵n <m ,∴当点P 在对称轴左边时,t <-1; 当点P 在对称轴右边时,t >3.综上所述:t 的取值范围为t <-1或t >3.····························· 8分(3)∵点Q (x ,y )在抛物线上,∴22y ax ax c =-+.又∵QD ⊥x 轴交直线 :(0)l y kx c k =+<于点∴D 点的坐标为(x ,kx+c ).又∵点Q 是抛物线上点B ,C ∴222()(2)QD ax ax c kx c ax a k x =-+-+=-+ ············································· 10分 ∵QE =x , ∴在Rt △QED 中,2(2)tan 2QD ax a k x ax a k QE x-+===--β. ································ 11分∴tan β是关于x 的一次函数, ∵a <0,∴tan β随着x 的增大而减小.又∵当x 2≤≤4时,β恰好满足°°30≤≤60β,且tan β随着β的增大而增大, ∴当x=2时,β=60°;当x=4时,β=30°.∴2242a a k a a k ⎧--=⎪⎨--=⎪⎩解得k a ⎧=⎪⎨=⎪⎩∴a =. ·································································· 13分。