流体流动阻力和孔板流量计孔流系数的测定

合集下载

化工实验-流量计-数据处理计算过程举例

化工实验-流量计-数据处理计算过程举例

数据处理计算过程举例以第四组为例1、孔板流量计性能测定(1)流体粘度μ=0.000001198+EXP(1972.53/(273.15+27.7))=0.695×10-3(Pa·s)(2)流体密度ρ=-0.003589285×27.72-0.0872501×27.7+1001.44 =996.1(kg·m3)(3)流体流量qv=6.0(m3÷h)÷3600(s)=1.67×10-3(m3÷s)(4)因流速u=qv÷A=qv÷(3.14×d²÷4)=1.67×10-3÷(3.14×(0.0262)÷4=3.14(m·s)(5)因qv =C×A×√(2ΔP÷ρ)则孔流系数C0=qv/((A×√(2ΔP/ρ))=1.67×10-3/[(3.14×0.0172÷4)×√(2×36.2×1000÷996.1)] =0.862(6)雷诺数Re=d×u×ρ÷μ=0.026×1.67×996.1÷(0.695×10-3)=1170882、文丘里流量计性能测定(1)流体粘度μ=0.000001198+EXP(1972.53/(273.15+29.8))=0.673×10-3(Pa·s)(2)流体密度ρ=-0.003589285×29.82-0.0872501×29.8+1001.44=995.7(kg·m3)(3)流体流量qv=6.9(m3·h)÷3600(s)=1.92×10-3(m3÷s)(4)因流速u=qv ÷A=qv÷(3.14×d²÷4)=1.92×10-3÷(3.14×(0.0262)÷4 =3.61(m·s)(5)因qv =Cv×A×√(2ΔP÷ρ)则孔流系数Cv =qv/((A×√(2ΔP/ρ))=1.92×10-3/[(3.14×0.0152÷4)×√(2×6.0÷995.7)]=0.998(7)雷诺数Re=d×u×ρ÷μ=0.026×1.67×996.1÷(0.695×10-3)=139023 3、转子流量计性能测定涡轮流体流量qv=2.3(m3·h)÷3600(s)=6.39×10-4(m3·s) 流体密度ρ=-0.003589285×25.82-0.0872501×25.8+1001.44=996.8(kg·m3)校正后转子流量:由公式qv ’/qv=√[ρ(ρf-ρ’)]÷√[ρ’(ρf-ρ)]=2.2×√[996.779(7900-996.8)]÷√[996.8(7900-996.779)]÷3600 =6.1×10-4 (m3·s)4、用最大误差法对节流式流量计的流量系数进行误差估算和分析。

食品工程原理实验报告

食品工程原理实验报告

姓名:陈蔚婷 学号:1363115 班级:13级食安1班实验一:流体流动阻力的测定一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。

2.测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。

3.测定流体流经管件、阀门时的局部阻力系数?。

4.学会倒U 形压差计和涡轮流量计的使用方法。

5.识辨组成管路的各种管件、阀门,并了解其作用。

二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为: 2221u d l p p p w ff λρρ=-=∆= (1) 即,22lu p d f ρλ∆=(2)式中: λ —直管阻力摩擦系数,无因次;d —直管内径,m ; f p ∆—流体流经l 米直管的压力降,Pa ;f w —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ —流体密度,kg/m 3;l —直管长度,m ;u —流体在管内流动的平均流速,m/s 。

滞流(层流)时,Re64=λ (3) μρdu =Re (4) 式中:Re —雷诺准数,无因次;μ —流体粘度,kg/(m·s)。

湍流时λ是雷诺准数Re 和相对粗糙度(ε/d )的函数,须由实验确定。

由式(2)可知,欲测定λ,需确定l 、d ,测定f p ∆、u 、ρ、μ等参数。

l 、d 为装置参数(装置参数表格中给出), ρ、μ通过测定流体温度,再查有关手册而得, u 通过测定流体流量,再由管径计算得到。

2.局部阻力系数? 的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。

(1) 当量长度法流体流过某管件或阀门时造成的机械能损失看作与某一长度为e l 的同直径的管道所产生的机械能损失相当,此折合的管道长度称为当量长度,用符号e l 表示。

流体流动阻力的测定

流体流动阻力的测定

测数据的准确性,每组数据之间稳定时间不得低于5min。 记录数据列表。 5、实验终了,首先关闭阀7,停泵、关闭发生器、仪表、 电源。 五、实验报告编写 (一)实验目的
(二)实验原理
(三)实验装置 (四)实验数据记录表 (五)实验数据处理 (六)思考题
实验数据处理
由所测得的Vs,t1、t2,确定流体密度,计算Q
数据处理结果表 序号 1 2 3 4 5 6 7 8 9

流量
m3/h
光滑管
粗糙管
Re


闸阀阻 力系数
Re
log()
粗糙管
光滑管
log(Re)
全开闸阀阻力系数实验数据处理: 根据流量、管径确定流速,根据该流量下所对应的闸 阀阻力(mH2O)代入下式,确定阻力系数。

2 gH f u2
计算三个流量下的阻力系数,并将其平均得全开闸阀平 均阻力系数。
Q Ki S i t m
确定流体被加热给热热阻占总热阻的比例
所占热阻比例 1 i 100% 1 Ki
确定蒸汽冷凝的给热系数o 1 1 1 o S o K i Si i Si
So d o L
do—换热管外径。 计算每一个流量下的给热系数和总传热系数,将处理 结果列入计算结果表中(表的格式见书)。 注意:在实验报告中仅写出一组实验数据的计算过程, 其他只要在计算结果表中表达出来即可。
再由已知的t1、t2、 Q,Si,并根据测得的加热蒸汽温度 T,确定传热平均温度差 tm,代入传热速率方程即可 确定Ki,与所测到的给热系数i进行比较,分析管内流 体给热热阻占总热阻的比例。若将管壁热阻忽略,也可 求出水蒸气冷凝的给热系数o 。
Q Ki S i t m

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告流体流动阻力的测定17321001 1120162761 王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。

2. 测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区λ与Re的关系曲线。

3. 测定流体流经管件、阀门时的局部阻力系数ξ。

4. 学会流量计和压差计的使用方法。

5. 识辨组成管路的各种管件、阀门,并了解其作用。

二、实验原理流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:?pfp1?p2lu2hf===λ 即,2d?pfλ= 式中:λ—直管阻力摩擦系数,无因次;d—直管内径,m;?pf—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。

层流流时,64λ= 湍流时λ是雷诺准数Re和相对粗糙度的函数,须由实验确定。

欲测定λ,需确定l、d,测定?pf、u、ρ、μ等参数。

l、d 为装置参数,ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。

?pf可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。

求取Re和λ后,再将Re和λ标绘在双对数坐标图上。

2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。

本实验采用阻力系数法。

流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。

即:fhf′==ξ因此,2?pf′ξ=式中:ξ—局部阻力系数,无因次;?pf′-局部阻力压强降,Pa;ρ—流体密度,kg/m3;u—流体在管内流动的平均流速,m/s。

离心泵性能测定实验分析

离心泵性能测定实验分析

离心泵性能测定实验一、实验目的:1、了解离心泵的构造,掌握其操作和调节方法;2、测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围;3、测量管路特性曲线及双泵并联时特性曲线;4、了解工作点的含义及确定方法;5、测定孔板流量计孔流系数C 0与雷诺数Re 的关系(选做)。

二、基本原理:1、离心泵特性曲线测定离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。

离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。

因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。

在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。

泵的扬程可由进、出口间的能量衡算求得:He = H压力表+ H 真空表+ H 0 [ m ] 其中:H 真空表,H 压力表分别为离心泵进出口的压力 [ m ]; H0为两测压口间的垂直距离,H 0= 0.3m 。

N 轴= N 电机?η电机?η传动 [ kw ]其中:η电机—电机效率,取0.9;η传动—传动装置的效率,取 1.0;102HeQ N [ kw ]因此,泵的总效率为:轴N Ne2、孔板流量计孔流系数的测定孔板流量计孔板孔径处的流速u 0可以简化为:u 0=C 0(2gh )1/2根据u 0和S 0,即可算出流体的体积流量Vs 为:Vs=u 0S 0=C0S 0(2gh )1/2或: Vs= C0S 0(2△p/ρ)1/2式中Vs ——流体的体积流量,m 3/s ;△p ——孔板压差,Pa ;S 0——孔口面积,m 2;ρ——流体的密度,kg/m 3;C 0——孔流系数。

孔流系数的大小由孔板锐孔的形状、测压口的位置、孔径与管径比和雷诺数共同决定,具体数值由实验确定。

当d0/d1一定,雷诺数Re超过某个数值后,C0就接近于定值。

通常工业上定型的孔板流量计都在C0为常数的流动条件下使用。

流体流动阻力的测定

流体流动阻力的测定

流体流动阻⼒的测定⼀、实验⽬的1、掌握层流流体经直路和管件时阻⼒损失的测定⽅法。

通过实验了解流体流动中能量损失的变化规律。

2、测定直管摩擦系数λ与雷诺准数Re 的关系。

3、测定流体流经闸阀等管件时的局部阻⼒系数ξ。

4、学会压差计和流量计的使⽤⽅法。

5、观察组成管路的各种管件、阀件,并了解其作⽤。

⼆、实验原理1、直管摩擦系数λ与雷诺数Re 的测定:流体在管道内流动时,由于流体的粘性作⽤和涡流的影响会产⽣阻⼒。

流体在直管内流动阻⼒的⼤⼩与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f =ρfP ?=22u d l λ(1-1)λ=22u P l d fρ (1-2) Re =µρu d (1-3)式中:-d 管径,m ;-?f P 直管阻⼒引起的压强降,Pa ;-l 管长,m ;-u 流速,m/s ;-ρ流体的密度,kg/m 3; -µ流体的粘度,N ·s/m 2。

直管摩擦系数λ与雷诺数Re 之间有⼀定的关系,这个关系⼀般⽤曲线来表⽰。

在实验装置中,直管段管长l 和管径d 都已固定。

若⽔温⼀定,则⽔的密度ρ和粘度µ也是定值。

所以本实验实质上是测定直管段流体阻⼒引起的压强降△P f 与流速u (流量V)之间的关系。

根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,⽤式(1-3)计算对应的Re ,从⽽整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

2、局部阻⼒系数ζ的测定22'u P h ff ζρ=?=' (1-4)2'2uP f ?????? ?=ρζ (1-5) 式中:-ζ局部阻⼒系数,⽆因次;-?'f P 局部阻⼒引起的压强降,Pa ;-'f h 局部阻⼒引起的能量损失,J/kg 。

图1-1 局部阻⼒测量取压⼝布置图局部阻⼒引起的压强降'f P ? 可⽤下⾯的⽅法测量:在⼀条各处直径相等的直管段上,安装待测局部阻⼒的阀门,在其上、下游开两对测压⼝a-a'和b-b',见图1-1,使ab =bc ;a'b'=b'c'则:△P f ,a b =△P f ,bc ;△P f ,a 'b '= △P f ,b 'c '在a-a'之间列⽅程式: P a -P a '=2△P f ,a b +2△P f ,a 'b '+△P 'f (1-6) 在b-b'之间列⽅程式: P b -P b '=△P f,bc +△P f ,b 'c '+△P 'f=△P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联⽴式(1-6)和(1-7),则:'f P ?=2(P b -P b ')-(P a -P a ')为了实验⽅便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。

化工原理实验

化工原理实验

实验一 流体流动阻力的测定一、 实验目的和任务1.了解流体流过管路系统的阻力损失的测定方法;2.测定流体流过圆形直管的阻力,确定摩擦系数λ与流体Re 的关系;3.测定流体流过管件的阻力,局部阻力系数ξ;4.学会压差计和流量计的使用方法;5.识别管路中各个管件、阀门,并了解其作用; 二、实验原理流体的流动性,即流体内部质点之间产生相对位移。

真实流体质点的相对运动表现出剪切力,又称内摩擦力,流体的粘性是流动产生阻力的内在原因。

流体与管壁面的摩擦亦产生摩擦阻力,统称为沿程阻力。

此外,流体在管内流动时,还要受到管件、阀门等局部阻碍而增加的流动阻力,称为局部阻力。

因此,研究流体流动阻力的大小是十分重要的。

I .直管摩擦系数λ测定 流体在管道内流动时,由于流体粘性作用和涡流的影响产生阻力。

阻力表现为流体的能量损失,其大小与管长、管径、流体流速等有关。

流体流过直管的阻力计算公式,常用以下各种形式表示:)2( 2gu d L H 2f λ=或 )3( 2L P P P 221f u d ρλ=-=-∆ 式中h f ——以能量损失表示的阻力,J /kg ; H f ——以压头损失表示的阻力,m 液柱; △P f ——以压降表示的阻力,N /m 2 L ——管道长,md ——管道内径,m ;u ——流体平均流速,m/s ; P ——流体密度,kg /m 3; λ——摩擦系数,无因次;g ——重力加速度,g 一9.81m/s 2。

.λ为直管摩擦系数,由于流体流动类型不同,产生阻力的原因也不同。

层流时流体流动主要克服流体粘性作用的内摩擦力。

湍流时除流体的粘性作用外,还包括涡流及管壁粗糙度的影响,因此λ的计算式形式各不相同。

层流时,利用计算直管压降的哈根-泊谡叶公式: )4( duL 32P P P 221f μ=-=-∆ 和直管阻力计算公式(3),比较整理得到λ的理论计算式为 )5( Re64du 232==ρμλ⨯ 由此式可见,λ与管壁粗糙度ε无关,仅为雷诺数的函数。

阻力试验

阻力试验

实验三 阻力实验一.实验目的:1、测定流体在直管内流动时摩擦阻力,计算摩擦系数,并在双对数坐标纸上绘出二者之间的关系曲线。

2、测定突扩管、弯头及阀门的局部阻力系数。

3、学习液位计的使用方法。

4*、测定孔板流量计的孔流系数与雷诺数Re 的关系。

带*项为教学大纲要求之外项目。

二. 基本原理:流体在管内流动时,由于流体粘性作用和涡流的影响,会产生阻力损失,其大小与管长、管径、流体流速和管道摩擦系数等有关。

记为:(2-3-1)式中:—压头损失,m—管长,m —管径,m—流体在管内的流速,—摩擦系数,无因次。

由柏努力方程得知:流体在水平直管段做稳定流动时,阻力损失直接表现为流体的压强降,流体由截面1流到截面2所产生的阻力损失可由两端分别与这二截面相接的液位计示值测出。

即: (2-3-2)式中:—1截面的静压强,N/㎡—2截面的压强,N/㎡—两测压截面上液位计读数之差,m 。

摩擦因数受到很多因素的影响,主要与流体的流动型态密切相关,当流体在管内作滞流流动时,可以从理论上推得的计算式为:(2-3-3)当流体在管内作湍流流动时,由于流动情况复杂,不能完全用理论分析建立摩擦因素关系式,只能借助因次分析,将诸因素归并整理为准数关联式,得出如下结论:(2-3-4)e R 和雷诺准数λ090l d u λg u d l H f 22⋅=λfH l d u s mλRg p P H f ∆=-=ρ211p 2p R ∆λλe R 64=λ⎪⎭⎫ ⎝⎛=d R e εφλ,即为和管壁相对粗糙度的函数,其函数的具体关系只能通过实验方法加以确定。

对照(2-3-1),(2-3-2)式有:= (2-3-5)又因 (2-3-6)将(2-3-5)代入(2-3-6)得:(2-3-7)式中:Vs —水的流量,㎡/s又: (2-3-8) 实验过程中,水温变化不大,、可视为常数。

改变水的流量、测定流量和压强降,计算出和的数值,在双对数坐标纸上绘出~关系曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2324
d5pf
lqV2
局部阻力系数ζ的测定
对于不可压缩流体流经管件、阀门等局部地方造成的 机械能损失,可由柏努利方程式和范宁公式得到:
Hf
P1 P2
g
u2 2g
0.3081d4qVp2f
孔板流量计孔流系数C0的测定
qV A2u2 A2 1 ( A2 )2 A1
2p f
qV
CA0 1( A0 )2
A1
2pf
令孔流系数 C 0
C0
C 1 ( A0 )2
A1
C 0
AO
qV 2p f
四、实验装置及流程
阻力实验装置流程图
1、3、4、12. 球阀 2、截止阀 5、6. 涡轮流量计 7. 不锈钢直管 8. 塑料直管 9. 孔板流量计 10.闸阀或截止阀 11. 90°弯头(弯管) 13. 闸阀
主要设备规格:
钢管长度: 1650 mm 钢管直径: Φ45mm×3.5mm 孔口直径: 29.664 mm 塑料管长度: 2000 mm 塑料管直径: Φ50×5 mm
五、实验操作过程
❖ 检查各有关阀门(包括测压口阀门)是否符合 要变 送器两端是否有气泡,有气泡要及时排气。
❖ 调节大回路截止阀2的开度,改变不同的流量, 记录有关数据;
❖ 关闭大回路阀门2,实验结束。
六、实验注意事项
❖ 在所测流量范围内(3~11m3/h),测点不得 少于8个,并注意测点间隔基本均匀;
❖ 当流量<6m3/h时,应适当关小球阀12的开度, 保证整个管路满管流,保证气体不进入压差变 送器;
❖ 在测取数据过程中,每次调节阀门改变流量时, 应力求变化缓慢些,不要大起大落,以免流量 突然改变,引起额外扰动。
七、实验报告要求
❖ 实验前必须进行预习并完成相应的预习报告; ❖ 将处理后的数据填写在数据记录表中; ❖ 计算出的数据必须有示例演算; ❖ 根据实验结果在坐标纸中绘制Co-Re,λ-Re图; ❖ 得出实验结论并进行相应的讨论。
八、思考题
❖ 为什么要排除压差计中的气泡?如何排除? ❖ 本实验用水为介质做出的λ与Re的曲线,对其它
流体能否使用?为什么?
❖ 孔流系数C0与哪些因素有关? ❖ 本实验是测定等直径水平直管的流动阻力,若将
水平管改为流体自下而上流动的垂直管,从测量 两取压点压差读数到Hf的计算过程和公式是否与水 平管路完全相同?
三、实验原理
总阻力
直管阻力
流体流经一定直径的直管时由于内摩 擦而产生的阻力;
局部阻力 流体流经管件、阀门等局部地方由于流 速大小及方向的改变而引起的阻力。
直管摩擦系数λ的测定
对于同直径的水平管内不可压缩流体流动造成的机 械能损失,可由柏努利方程式和范宁公式得到:
Hf
pf
g
l u2
d 2g
❖ 涡轮流量计测量流量的原理是什么?
❖ 根据实验装置,如何设计一个高阻和低阻的并联 管路系统,并如何验证两分支管路中流量的分配 规律?
❖ 从教材中可查到,90°标准弯头的局部阻力系数 ζ=0.75, 90°弯管的局部阻力系数ζ≈0.175,你 的实验结果如何?ζ随着雷诺准数Re的改变变化 大吗?
谢谢
相关文档
最新文档