线性代数 居余马 第6章 二次型

合集下载

线性代数 第六章二次型

线性代数 第六章二次型

第六章 二次型1、二次型基本概念1º二次型:n 个变量n x x ,,1 的二次齐次多项式n n n x x a x x a x a x x f 11211221111),,(+++=n n x x a x x a 222112++++…+211n nn n n x a x x a ++⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x x 21 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 ∴A A Axx x f T T ==且)( 例如:3221232221453x x x x x x x f -+++=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=52102132022A 结论:二次型与对称矩阵一一对应,称对称矩阵的秩为对应二次型的秩. 2º标准二次型:22111),(n n n y d y d y y f ++=3º规范二次型:2212211)(q P P p q p z z z z z z f +++-+=++4º秩与惯性指数惯性指数:在标准型或规范型中,正平方项的个数称为正惯性;负平方项的个数称为负惯性指数,且正负惯性指数之和为二次型的秩,正负惯性指数之差称为符号差。

化标准形式规范型:①配方;②合同变换二次型的矩阵的秩,正负惯性指数等相关题目思路:1)Ax x x x x f T n =),,(21 将,则秩f =秩A2)将),,(21n x x x f 用合同变换式配方法化为标准型221121),,(n n n y d y d x x x f ++= 负项的个数=负惯性指数,秩f =平方项个数或化为规范型2221v p z z z f --++= 将 秩v f =正惯性指数为P ,负惯性指数为P v -例1. 1)二次型323121321224),,(x x x x x x x x x f ++-=的矩阵是 ,二次型的秩为 3 .2)实二次型2322213213),,(x x x x x x f +-=的秩为 ,正、负惯性指数分别为 例2.设)1()()()()(),,(212222121>++-+++=n x x nx nx nx x x x f n n n则f 的正负惯性指数之和为解:n n n x x x x x n x n f 1212221222)1()1(-----++-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=11111111111111122222222n n n n n n n n n n n A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------→22220000111111111111n n n n2、将二次型化为标准形式已知标准形来求参数标准化方法1º配方法原理:配完全平方情形1:有平方项21⨯n a步骤:对所有含1x 的项配方,使得配方后余下的项不含1x ,如此继续,直至每一项均包含在平方项中。

线性代数第六章二次型试题及答案

线性代数第六章二次型试题及答案

第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii iij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i nj j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。

实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。

规范二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只1,-1,0,称为二次型的规范型。

二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。

居于马线性代数第六章答案

居于马线性代数第六章答案

第六章 二次型将下列1-3题的二次型表示成矩阵形式。

1.22(,)467f x y x xy y =-- 解:()2243(,)46737x f x y x xy y xy y ⎛⎫⎛⎫=--= ⎪⎪-⎝⎭⎝⎭2.222(,,)346f x y z x xy y yz z =+--+解:()222320(,,)346213031x f x y z x xy y yz z xyz y z ⎛⎫⎛⎫⎪⎪=+--+=-- ⎪⎪ ⎪⎪-⎝⎭⎝⎭3.22212341341214232434(,,,)242264f x x x x x x x x x x x x x x x x x =++++--+解:()12123412343412012013(,,,)01121322x x f x x x x x x x x x x ⎛⎫⎛⎫ ⎪ ⎪-- ⎪⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭4.设n 元二次型12(,,,)n f x x x 的矩阵为n 阶三对角对称矩阵1111111111A -⎛⎫⎪-- ⎪⎪=- ⎪- ⎪⎪-⎝⎭, 试写出二次型(二次齐次多项式)的表示式。

解:22221211222311(,,,)222n n n n n f x x x x x x x x x x x x x --=-+-++-+。

5.若二次型12(,,,)T n f x x x x Ax =对一切12(,,,)T n x x x x =恒有12(,,,)0n f x x x =,证明A 为n 阶零矩阵。

证明:取(0,,1,,0)T i x =(其中第i 个分量为1,其余分量全为零),则有11()0,1,2,,nnTi i i ij i j ii i j f x x Ax a x x a i n =======∑∑。

再取(0,,1,,1,,0)T ij x =(其中第i 和第j 个分量为1,其余分量全为零),则有()20,,1,2,,T ij ij ij ij f x x Ax a i j n ====。

6考研基础复习(线性代数)二次型

6考研基础复习(线性代数)二次型

一、二次型的基本内容
3、用正交变换法化二次型为标准形
二 次 型 f ( x1 ,, xn ) xT Ax 经 过 正 交 变换 x Py ( P 为正交阵)化为:
r
f xT Ax yT (P T AP ) y
di
y
2 i

i 1
称为化二次型为标准形的正交变换法.
3、用正交变换法化二次型为标准形
对于任意一组不全为零的实数 x ( x1 ,, xn )T ,都有
f ( x1 ,, xn ) xT Ax 0 ( 0) ,
则称该二次型为正(负)定二次型,正(负) 定二次型的矩阵 A 称为正(负)定矩阵.
4、二次型和矩阵的正定性及其判别
如果实二次型 f ( x1 ,, xn ) xT Ax , 对于任意一组不全为零的实数 x ( x1 ,, xn )T ,都有
i 的单位正交特征向量;
3、用正交变换法化二次型为标准形
(4)以 1 , 2 , , t 的单位正交特 征向量为列向量,可构造出正交矩阵 P ,
, P ( p11 , p12 , , pt1 , , ptnt )
P 就是所求的正交变换矩阵,使:
P 1 AP PT AP
为对角阵,其中: diag{1 , , 2 , , , t }.
相似于对角阵 ,即:
PT AP P 1 AP diag{1 , 2 , , n } , 其中: i 0(i 1,2,n) .
4、二次型和矩阵的正定性及其判别
③ A 负定; 特征值全负;
一切奇数阶主子式全 0 , 且一切偶数阶主子式全 0;
一切奇数阶顺序主子式全 0 , 且一切偶数阶顺序主子式全 0;
z
柱面方程 2 4 2 4 ,求 a, b 的值和正 交矩阵 P .

线性代数第 六章二次型试题及答案

线性代数第    六章二次型试题及答案
相似的矩阵一定有相等的特征值,但是特征值相等的矩阵不 一定等价。
特征值相同的实对称矩阵A和B一定相似,因为实对称矩阵 都能相 似对角化,特征值相同的实对称矩阵相似于同一个对角阵,根 据相似的传递性,A和B一定相似。
特征值相同的普通矩阵A和B可能相似,也可能不相似。 若A和B都能相似对角化,一定相似。 若一个能对角化,一个不能对角化,一定不相似。 若都不能对角化,可能相似,也可能相似。 例题:已知矩阵A和B,判断能否相似,
Abj=0, j=1,2,…,s b1,b2,…,bs均为Ax=0的解(r(A)+r(B)≤n) 若bj≠0且A为n阶方阵时,bj为对应特征值λj=0的特征向量 A的列向量组线性相关,B的行向量组线性相关。
AB=CA(b1, b2,…, br)=(C1, C2,…, Cr)
Abj=Cj,j=1,2,…,r bj为Ax=Cj的解. C1, C2,…, Cr可由A的列向量组α1, α2,…, αs线性表示.
因为(2,1,2)T是A的特征向量,所以,

二、化二次型为标准型
1.用配方法将下列二次型化为标准形,并判断正、负惯性指数的个数, 然后写出其规范形。
(1)Leabharlann 解:先集中含有x1的项,凑成一个完全平方,再集中含有x2的项,凑 成完全平方
=
设,, 标准型:,正惯性指数:,负惯性指数: 规范性:
(2) f(x1,x2,x3)= x12+2x22+2x1x2-2x1x3+2x2x3. 解:f(x1,x2,x3)= (x12+2x1x2-2x1x3)+2x22+2x2x3= 设 ,,标准型: 正惯性指数:,负惯性指数:,规范性: (3) f(x1,x2,x3)= -2x1x2+2x1x3+2x2x3. 解:像这种不含平方项的二次型,应先做线性变换: ,,, 设: , 标准型:,规范性: 2.设二次型f(x1,x2,x3)=X TAX=ax12+2x22-2x32+2bx1x3,(b>0),其中A的特征 值之和 为1, 特征值之积为-12.(1) 求a,b.(2) 用正交变换化f(x1,x2,x3)为标准型。 解:二次型的矩阵:,因为, (2)

线性代数课件--第6章.二次型

线性代数课件--第6章.二次型

2 1/ 2 1 0
A 1 / 2
0
0
2
1 0 1 0
0
2
0
5
一个二次型xTAx也可看成n维向量α的一个函数,即
f (α) xTAx
其中x=(x1, x2, … , xn)T是α在Rn的一组基下的坐标向量。
6.1 二次型的定义和矩阵表示、合同矩阵
二次型的矩阵表示
所以二次型xTAx是向量α的n个坐标的二次齐次函数。 因此二次型作为n维向量α的函数,它的矩阵是与一组
6.2 化二次型为标准形
正交变换法 我们在5.3节讲过,对于任一个n阶实对称阵A,一定存 在正交矩阵Q,使得Q-1AQ=Λ。由于Q-1=QT,所以有
QTAQ=diag(λ1, λ2, …, λn) 因此,对于任一个二次型f(x1, x2, … , xn)=xTAx,有下面 的重要定理。
6.2 化二次型为标准形
正定二次型和正定矩阵 定理:若A是n阶实对称矩阵,则下列命题等价: 1)xTAx是正定二次型(或A是正定矩阵) 2)A的正惯性指数为n,即A合同与I 3)存在可逆矩阵P,使得A=PTP 4)A的n个特征值λ1, λ2, …, λn全大于零
6.4 正定二次型和正定矩阵
正定二次型和正定矩阵 定理:若二次型xTAx正定,则 1)A的主对角元aij>0 (i=1,2,…,n) 2)A的行列式|A|>0
f(x1, x2, … , xn)=xTAx=xTBx 则必有A=B。因此,二次型和它的矩阵是相互唯一确定 的。 所以,研究二次型的性质转化为研究A所具有的性质。
6.1 二次型的定义和矩阵表示、合同矩阵
二次型的矩阵表示
例1:设f(x1, x2, x3, x4)=2x12+x1x2+2x1x3+4x2x4+x32+5x42, 则它的矩阵为

线性代数第六章二次型试题及答案-二次型f

第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii i ij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。

实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。

规二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只 1,-1,0,称为二次型的规型。

二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …12 …n 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。

线性代数第6章二次型


3 2 1 0 0 1 0 1 0 2 0 0 4 1 25
> > A:=matrix([[1,-1,1],[-1,-3,-3],[1,3,4]]);C:=matrix([[1,1/2,-3/2],[0,1/2,1/2],[0,0,1]]);CTAC:=multiply(transpose(C),A, C);
1 1 2 3 2 1 1 2 0 0 1 1 1 1 1 0 1 3 3 0 2 2 1 3 4 1 0 0 0 2
1 2 1 2 0
3 2 1 2 1
1 0 0 0 0 1 0 0 B. 3
20
§2 化二次型为标准形
一 、用配方法化任意二次型为标准形 二、用正交替换化实系数二次型为标准形
21
一 、用配方法化任意二次型为标准形 2 2 p p 配方法 2 x px q x q . 2 4
2 1 2 2 2 3
则得 f y y 4 y . 反解
x3 y3 , x2 (1/ 2) y2 (1/ 2) y3 , x1 y1 x2 x3 y1 (1/ 2) y2 (1/ 2) y3 y3 y1 (1/ 2) y2 (3 / 2) y3 .
2 n 2 n1
2an1n xn1 xn
5
把二次型写成矩阵形式
a1n x1 a11 a12 a a a x 21 22 2 n 2 f ( x1 , , xn ) ( x1 , , xn ) . ann xn a n1 a n 2 an x1 a11 a12 x a a a 2 21 2 2n X ,A , ann xn a n1 a 2 T f ( X ) X AX . A称为二次型的矩阵.二次型和其矩阵一一对应 6 矩阵A的秩称为二次型的秩.

线性代数教学课件第六章二次型第一节二次型及其矩阵

an2
a1n
a2n
,
ann
x1
x
x2
,
xn
则上述二次型可以用矩阵形式表示为
f ( x1 , x2 ,, xn ) xT Ax ,
A称为二次型 f ( x1, x2 ,, xn ) 的矩阵.
8
f ( x1 , x2 ,, xn ) xT Ax ,
A称为二次型 f ( x1, x2 ,, xn ) 的矩阵.
x2
,(Cy,)xT nA)(
xT Ax
Cy ) yT
,得 ( C T AC
)y
yT By
,
其中 B C T AC . 由于 A 是实对称阵,则 B CT AC 也是实对称阵,
于是 yT By 是一个以 y1 , y2 ,, yn 为变量的实二次型.
由于C是可逆矩阵,所以A和B秩相等,从而两个
(1)求二次型的矩阵A以及A秩;
(2)设二次型 g( x1, x2 ) f ( x1, x2 ,0,0), 求二次型 g的矩阵B.
解 (1)
1 2 1 0
2
A
2 1
2 0
0 0 3
0 3 .
2
0
0 0
10
1 2 1 0 1 2 1 0
2
2
A
2 1
2 0
0 0 3
0 2 0
B
1 2
2 0
.
问:矩阵B 与矩阵A 有什么关系?
12
二、 关系式
(线性替
换)定 义
x1 c11 y1 c12 y2 c1n yn x2c21y1 c22 y2 c2n yn
xn cn1 y1 cn2 y2 cnn xn

(完整版)线性代数第六章实二次型(自考经管类原创)


正定 半正定 负定 半负定 不定
二、正定矩阵
n元实二次型f xT Ax,及对称矩阵A一一对 应,能够判定A为正定矩阵,则f 必为正定二 次型.正定矩阵有哪些性质,怎样判定?
正定矩阵的性质 定理 对角矩阵为正定矩阵当且仅当中所 有对角元全大于零. 例 E为正定矩阵.
定理(必要条件) 对称矩阵A为正定矩阵,则A 中所有对角元必全部大于零. 反之,若存着对角元aii 0, 则A必然不正定. 例2 f 4x12 6x22 +15x32 x1x2 2x2 x3是否正定? 定理 正定矩阵的合同矩阵必为正定矩阵. 定理 同阶正定矩阵之和必为正定矩阵.
2a12x1x2 + 2a13x1x3 + ···+ 2an-1,nxn-1xn
为二次型.
取 aij = aji , 则
2aijxixj = aijxixj + ajixjxi ,
nn
于是 二次型可写成 f (x1, x2,..., xn )
aij xi x j .
i1 j1
a11 a12 a1n

y1 y2
x1 x2
2x2 x3
y3 x3
即作可逆变换
x1 x2
y1+2 y2 y2 +y3
+2y3
x3 = y3
x1 1 2 2 y1
即经可逆变换
x2
=
0
1
1
y2
x3 0 0 1 y3
将二次型化为标准形y12 6 y22 4 y32
O
定义 规范形中k称为二次型的正惯性指数,k r称 为负惯性指数,正负惯性指数的差2k r称为二次 型的符号差.
定理 对称矩阵A与B合同当且仅当它们有相同的 秩和相同的正惯性指数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f() = x TA x = yT(C TA C)y ,
B = C TA C
故 f() 在基B1和B2下对应的矩阵分别是A和 B = C TA C
yT(CTA C)y 是 y1,y2,,yn 的一个二次型。
2018/10/17
第二章 矩阵
11
例2 设向量在自然基{1, 2} 下的坐标 x=(x1, x2)T 满足 2 2
T
第二章 矩阵 12
将(2)式x =Cy 代入,得
x T A x = yT (C T AC)y
2 2 2 22 y1 5 3 2 2 2 ( y1 , y2 ) y 2 2 2 2 2 2 3 5 2 2 2 2 0 y1 2 2 ( y1 , y2 ) 2 y 8 y y 1 2 4 0 8 2 在{1, 2}坐标系下,方程(1)化为标准方程
2018/10/17
第二章 矩阵
17
6.2.1 正交变换法
定理6.1(主轴定理) 对于任一个n元二次型 f(x1,x2,,xn)= xTAx ,都存在正交变换 x =Qy (Q为正交 阵),使得QTAQ= diag( 1, 2, , n) (定理5.12), 从而
x TA x = y T(QTAQ) y =1y12++nyn2 其中1,,n 是实对称矩阵A的n个特征值,Q的n个列 向量是A属于1,,n 的n个标准正交的特征向量。
化为标准方程(只含平方项和常数项)。
2018/10/17
第二章 矩阵
21
解 将(1)式中二次项部分
xT Ax x2 2 y2 10z 2 28xy 8 yz 20xz
(2)
用类似例1的正交变换法化为平方和。 取正交矩阵
13 2 T 3 2 3
2 1 2
配方得
1 2 1 2 4 2 ( x 3 ) 2( y 3 ) 2( z 3 ) 1
2018/10/17
第二章 矩阵
23
再令
x ( x 1 3) 1 y ( y 3) z ( z 4 ) 3
2018/10/17
第二章 矩阵
15
6.2 化二次型为标准形
2018/10/17
第二章 矩阵
16
T T 2 2 a x x d y d y x Ax y C ACy ij i j 1 1 2 2 T
n
n
x Cy C 0
i 1 j 1
2 dn yn
二次型化为不含混合项只含平方项的二次型,这 种二次型称其为标准形。 化二次型为标准形共有三种方法:正交变换法, 配方法和初等变换法。
若 A, B都 是实对称矩阵, 且对应的二次型 相同,即
xT Ax aij xi x j bij xi x j xT Bx
i 1 j 1
n
n
n
n
i 1 j 1
则 A=B。
2018/10/17
第二章 矩阵
8
证明:
先取x为单位向量 ei = (0, ,1, ,0)T (第i个分
5 x1 5 x2 6 x1 x2 4
(1)
若做基变换,把{1, 2}逆时针旋转45 变成{1, 2,} 即 cos 45 sin 45 (1 , 2 ) (1 , 2 )
sin 45 cos 45
则在 {1, 2,}下的坐标 y=(y1, y2)T 满足
1 2
2018/10/17 第二章 矩阵 19
用Schmidt正交化方法(正交化,单位化) 得
1
5 5
2,
1, 0 , 2
T
1 3
5 15
2,
T
4, 5
T
2=10 时,得 3 1, 2, 2
取正交矩阵
2 5 5 5 T 1 , 2 , 3 5 0
6

设 X = (x1 , x2 , x3)T ,则
f (x1 , x2 , x3) = XTAX
5 1 1 x1 ( x1 , x2 , x3 ) 1 1 3 x2 1 x 3 2 3
2 2 2 5 x1 2 x1 x2 2 x1 x3 x2 6 x2 x3 2 x3
第二章 矩阵
14
定义6.2
对矩阵Aห้องสมุดไป่ตู้B, 如果存在可逆矩阵C ,使得
B= CTA C, 就称矩阵A 相合(或合同)于B ,
(记作A ≃ B)。
矩阵的相合关系是一种等价关系,具有以下性质: (1) 自反性, A Mn(F), A ≃ A; (2) 对称性, A, B Mn(F), 若A ≃ B, 则 B ≃ A; (3) 传递性, A, B, C Mn(F), 若A ≃ B, B ≃ C,则 A≃C。
1 2
y 2y 1
2 1 2 2
这是一个椭圆
2018/10/17
第二章 矩阵
13
一般二次型
f ( x1 , x2 , , xn ) x Ax y C ACy
T T T
x Cy
d y d y d y
2 1 1 2 2 2
2 n n
即找矩阵C,使B =CTA C 为对角阵。
2018/10/17
3 3 3
2 3 1 3
2 3
令x = T y, 其中 x=(x, y, z)T, y=(x', y ', z ', )T
2 2 x y x 1 3 3 3 z 1 2 x Ty , 即 y 2 x y 3 3 3 z z 2 x 2 y 1 z 3 3 3
第二章 矩阵
1
6.1 二次型的定义和矩阵表示 合同矩阵
定义6.1 n元变量x1,x2,,xn的二次齐次多项式
f ( x1 , x2 , , xn ) a x 2a12 x1 x2 2a13 x1 x3
2 11 1
2a1n x1 xn
a x 2a23 x2 x3
2 22 2
量为1, 其余为 0),代入上式得
aii=bii (i=1, 2, , n) 再取 x 为向量 eij = (0, ,1, ,1, ,0)T(第 i, j个分 量为1, 其余为0),代入上式得 aij=bij (ij)
2018/10/17
第二章 矩阵
9
例1 设
2 f ( x1 , x2 , x3 , x4 ) 2 x12 x1 x2 2 x1 x3 4 x2 x4 x3 5 x42
x1 cos 45 x x2 sin 45 sin 45 y1 Cy cos 45 y2
(2)
(1)式用矩阵表示为
2018/10/17
5 3 x1 x Ax ( x1 , x2 ) 4 3 5 x2
(3)
2018/10/17
第二章 矩阵
22
则 则
T1AT = diag (9, 18, 18) x TA x = yT(TTAT)y=9 x'2+18 y'2 18z' 2
将(3)式代入(1)式的一次项部分,曲面方程化为
38 4 16 x2 2 y2 2z2 2 x y z 3 3 3 9 0
i 1 j 1 i 1 j 1
f xi aij x j
i 1 j 1
n
n
[ x1 , x2 ,
a11 x1 a12 x2 a x a x , xn ] 21 1 22 2 an1 x1 an 2 x2
a11 a12 a a22 21 , xn ] an1 an 2
2 5 4 5 5
15 15
3
2 3 2 3
1 3
则T1AT = diag(1, 1, 10) x TA x = yT(CTAC)y = y12+ y22 +10y32
2018/10/17
第二章 矩阵
20
例2
将一般二次曲面方程
x2 2 y2 10z 2 28 xy 8 yz 20 xz 26 x 32 y 28z 38 0 (1)
2018/10/17
1 2 3 3 4 2 4 1 0 2 0 4
第二章 矩阵 5

已知矩阵
5 1 1 A 1 1 3 1 3 2
求 A 对应的二次型 f (x1 , x2 , x3) .
2018/10/17
第二章 矩阵
例1 用正交变换化二次型 2 2 f ( x1, x2 , x3 ) 2x12 4x1x2 4x1x3 5x2 8x2 x3 5x3 为标准型。 解
2 2 2 A 2 5 4 2 4 5
2 2 2 I A 2 5 4 ( 1)2 ( 10) 0 2 4 5 1 1(二重) 所以 ,1=1时,有线性无关的特征 得 2 10 T T 向量x =(2, 1, 0) , x =(2, 0, 1) 。
2a2 n x2 xn

a x
2 nn n
其中系数是数域F 中的数,叫做数域F上的n 元二次型 (简称二次型)。实数域上的二次型简称实二次型。
2018/10/17
第二章 矩阵
2
如果令aji = aij (1i<jn) ,则上式可以表示为
相关文档
最新文档