结构化学习题总结
结构化学考前复习题

结构化学复习题一、判断题sp2等性杂化是指同一杂货轨道中s成分和p成分相等。
( )在形成CH4分子的过程中,C原子的2P轨道和H原子的1s轨道组成sp3杂化轨道。
选择题()3、两个能量不同的原子轨道线性组合成两个分子轨道。
在能量较低的分子轨道中,能量较低的原子轨道贡献较大;在能量较高的分子轨道中,能量较高的原子轨道贡献较大。
()4、杂化轨道的成键能力高于原轨道的成键能力。
()5、电子自旋量子数s=+1/2或s=-1/2。
()6、量子数n、l、m、ms都是通过求解薛定谔方程所得。
()7、量子数n的最小允许值为零。
()8、在同核双原子分子中,两个2p原子轨道线性组成只产生π分子轨道。
()9、同一周期元素由左到右随着族数的增加,元素的电负性也增加。
()10、H2+基态在原子核上出现电子的概率最大。
()二、选择题原子的电子云形状应该用_____来作图。
()A.Y2 B. R2 C. D2 D. R2Y22、通过变分法计算得到的微观体系的能力总是:()A.等于真实基态能量 B. 大于真实基态能量C. 不小于真实基态能量D. 小于真实基态能量3、Rn,l(r)-r图中,R=0称为节点,节点数有:()A.(n-l)个 B. (n-l-1)个 C. (n-l+1)个 D. (n-l-2)个4、下列哪些算符是线性算符:()A.sinex B.C.d2/dx2 D.cos2x5、在多电子体系中,采用中心力场近似的可以写为:()A. B.C. D.一个在一维势箱中运动的粒子,其能量随着量子数n的增大:()A. 减小B. 增大C. 不变D. 先增大后减小7、一个在一维势箱中运动的粒子,其能级差En+1-En随着势箱长度的增大:()A. 减小B. 增大C. 不变D. 先增大后减小8、H2+的= (2- - +,此种形式已采用了下列哪几种方法:()A.波恩-奥本海默近似B.单电子近似C.原子单位制D.中心力场近似9、对于"分子轨道"的定义,下列叙述中正确的是:( )A.分子中电子在空间运动的波函数B.分子中单个电子空间运动的波函数C.分子中单电子完全波函数(包括空间运动和自旋运动)D.原子轨道线性组合成的新轨道10、若以x轴为键轴,下列何种轨道能与py轨道最大重叠( )A.s B.dxy C.pz D.dxz11、多电子原子的能量与下例哪些量子数有关()A.n, l B.n, l, m C.n D.n, m12、BF3分子呈平面三角形,中心原子采取了()杂化。
结构化学复习题及答案

结构化学复习题及答案一、选择题1. 原子轨道的波函数是关于原子核对称的,下列哪个轨道是关于z轴对称的?A. s轨道B. p轨道C. d轨道D. f轨道答案:A2. 根据分子轨道理论,下列哪个分子具有顺磁性?A. O2B. N2C. COD. NO答案:A3. 氢键通常影响分子的哪种性质?A. 熔点B. 沸点C. 密度D. 折射率答案:B二、填空题4. 原子轨道的电子云图是按照______概率密度绘制的。
答案:最高5. 根据价层电子对互斥理论,水分子H2O的几何构型是______。
答案:弯曲6. 一个分子的偶极矩为零,则该分子可能是______分子。
答案:非极性三、简答题7. 简述杂化轨道理论中sp^3杂化的特点。
答案:sp^3杂化是指一个原子的1个s轨道和3个p轨道混合形成4个等价的杂化轨道,这些杂化轨道的电子云呈四面体分布,通常用于描述四面体构型的分子,如甲烷。
8. 什么是分子轨道理论?它与价键理论的主要区别是什么?答案:分子轨道理论是一种化学理论,它将分子中的原子轨道组合成分子轨道来描述分子的电子结构。
与价键理论不同,分子轨道理论不假设电子成对形成共价键,而是将电子视为分布在整个分子空间中的分子轨道上的粒子。
分子轨道理论可以解释分子的磁性和电子的离域性,而价键理论则不能。
四、计算题9. 假设一个氢原子的电子从n=3的能级跃迁到n=2的能级,计算该过程中释放的光子能量。
答案:根据氢原子能级公式E_n = -13.6 eV / n^2,电子从n=3跃迁到n=2时释放的光子能量为ΔE = E_3 - E_2 = -13.6 eV / 3^2 - (-13.6 eV / 2^2) = 1.89 eV。
10. 计算一个CO分子的键能,已知C和O的电负性分别为2.55和3.44,CO的键长为1.128 Å。
答案:根据键能公式E = (χ1 - χ2)^2 / (4 * χ1 * χ2) * (1 - r / r0)^2,其中χ1和χ2分别是C和O的电负性,r是CO的键长,r0是C和O单键的标准键长1.43 Å。
结构化学题库(完整版)

第一章量子力学基础知识--要点1.1 微观粒子的运动特征光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为:E=h5νP=h/λ其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过Plank常数h联系起来。
h=6.626×10-34J.S。
实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。
λ=h/mν量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。
如微观体系的能量和角动量等物理量就是量子化的,能量的改变为E=hν的整数倍。
测不准关系可表示为:ΔX·ΔPx≥hΔX是物质位置不确定度,ΔPx为动量不确定度。
该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。
对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。
1.2量子力学基本假设假设1:对于一个微观体系,它的状态和有关情况可用波函数ψ(x,y,z)来描述,在原子体系中ψ称为原子轨道,在分子体系中ψ称为分子轨道,ψ2d τ为空间某点附近体积元dτ中出现电子的几率,波函数ψ在空间的值可正、可负或为零,这种正负值正反映了微观体系的波动性。
ψ描述的是几率波,根据几率的性质ψ必须是单值、连续、平方可积的品优函数。
假设2. 对于微观体系的每一个可观测量,都有一个对应的线性自轭算符。
其中最重要的是体系的总能量算符(哈密顿算符)H假设3. 本征态、本征值和Schròdinger方程体系的力学量A的算符与波函数ψ若满足如下关系式中a为常数,则称该方程为本征方程,a为A的本征值,ψ为A的本征态。
Schr òdinger方程就是能量算符的本征值E和波函数ψ构成的本征方程:将某体系的实际势能算符写进方程中,通过边界条件解此微分方程和对品优波函数的要求,求得体系不同状态的波函数ψi以及相应的能量本征值Ei。
结构化学习题解答

又
,
因此有两个光谱支项:
J113或 J111
22
22
2 P3 和 2 P1
2
2
对C原子激发态(1s)2(2s)2(2p)1(3p)1,只考虑组态(2p)1(3p)1即可。2P和3P电子是不等价电子,因而(2p)1(3p)1组态不受 Pauli原理限制,可按下述步骤推求其谱项:由
。因此可得6个光谱项:3D,3P,3S,1D,1P,1S。根据自旋一轨道相互作用,每一光谱项又分裂为数目不等的光谱
r =0 1 s
2
的表达式可
r 最大,因而 也最大。但实际上 不能为0(电子不可能落1到s 原子核上),因此更确切的说法是
趋近于0时1s电子6 的几率密度最大。
e r ((de))LLii原2+为子单的 电基a 0子组r“态原为子(1s”)2,(2s组)1态。的.对能2量s电只子与来主1说2s量,子1s数电有子关为,其所相以邻2内s和一2组p态电简子并,,=即0即.85E。2因s=而E:2p.
S2 1/ 2
F原子的基组态为(1s)2(2s)2(2p)5。与上述理由相同,该组态的光谱项和光谱支项只决定于(2p)5组态。根据
等价电子组态的“电子—空位”关系,(2p)5组态与(2p)1组态具有相同的谱项。因此,本问题转化为推求
(2p)1组态的光谱项和光谱支项。这里只有一个电子,S= ½ , L=1 ,故光谱项为2P。
r
e a0
ra0和 r2a0
而
1
1 a0
3/
2
a0
e a0
e1 e 2.71828
1
1 a0
3/
2
2a0
e a0
e2
12s在ra0和r2a0两处的比较 e2值 7.为 389: 06
结构化学习题问题详解(2)

《结构化学》第四章习题4001I3和I6不是独立的对称元素,因为I3=,I6=。
4002判断:既不存在C n轴,又不存在h时,S n轴必不存在。
---------------------------- ( )4003判断:在任何情况下,2ˆS=Eˆ。
---------------------------- ( )n4004判断:分子的对称元素仅7种,即,i及轴次为1,2,3,4,6的旋转轴和反轴。
---------------------------- ( )4005下面说确的是:---------------------------- ( )(A) 分子中各类对称元素的完全集合构成分子的对称群(B) 同一种分子必然同属于一个点群,不同种分子必然属于不同的点群(C) 分子中有S n轴,则此分子必然同时存在C n轴和h面(D) 镜面d一定也是镜面v4006下面说确的是:---------------------------- ( )(A) 如构成分子的各类原子均是成双出现的,则此分子必有对称中心(B) 分子中若有C4,又有i,则必有(C) 凡是平面型分子必然属于C s群(D) 在任何情况下,2ˆS=Eˆn4008对称元素C2与h组合,得到___________________;C n次轴与垂直它的C2组合,得到______________。
4009如果图形中有对称元素S6,那么该图形中必然包含:---------------------------- ( )(A) C6,h(B) C3,h(C) C3,i(D) C6,i4010判断:因为映轴是旋转轴与垂直于轴的面组合所得到的对称元素,所以S n点群分子中必有对称元素h和C n。
---------------------------- ( )4011给出下列点群所具有的全部对称元素:(1) C2h(2) C3v(3) S4(4) D2(5) C3i4012假定CuCl43-原来属于T d点群,四个Cl 原子的编号如下图所示。
结构化学练习题集与答案解析

结构化学练习题集与答案解析结构化学练习题一、填空题试卷中可能用到的常数:电子质量(9.110×10-31kg ), 真空光速(2.998×108m.s -1), 电子电荷(-1.602×10-19C ),Planck 常量(6.626×10-34J.s ), Bohr 半径(5.29×10-11m ), Bohr 磁子(9.274×10-24J.T -1), Avogadro 常数(6.022×1023mol -1)1. 导致"量子"概念引入的三个著名实验分别是___, ________ 和__________.2. 测不准关系_____________________。
3. 氢原子光谱实验中,波尔提出原子存在于具有确定能量的(),此时原子不辐射能量,从()向()跃迁才发射或吸收能量;光电效应实验中入射光的频率越大,则()越大。
4. 按照晶体部结构的周期性,划分出一个个大小和形状完全一样的平行六面体,以代表晶体结构的基本重复单位,叫。
程中,a 称为力学量算符A的。
5. 方6. 如果某一微观体系有多种可能状态,则由它们线性组合所得的状态也是体系的可能状态,这叫做原理。
7. 将多电子原子中的其它所有电子对某一个电子的排斥作用看成是球对称的,是只与径向有关的力场,这就是近似。
8. 原子单位中,长度的单位是一个Bohr 半径,质量的单位是一个电子的静止质量,而能量的单位为。
9. He + 离子的薛定谔方程为()。
ψψa A =?10. 钠的电子组态为1s22s22p63s1,写出光谱项______,光谱支项__________。
11. 给出下列分子所属点群:吡啶_______,BF3______,NO3-_______,二茂铁_____________。
12. 在C2+,NO,H2+,He2+,等分子中,存在单电子σ键的是________,存在三电子σ键的是__________,存在单电子π键的是________,存在三电子π键的是_____________。
结构化学期末复习题资料

结构化学复习题一.选择题1. 比较 2O 和 2O + 结构可以知道 ( D )A. 2O 是单重态 ; B .2O +是三重态 ; C .2O 比2O + 更稳定 ; D .2O +比2O 结合能大2. 平面共轭分子的π型分子轨道( B )A.是双重简并的.; B .对分子平面是反对称的; C.是中心对称的;D .参与共轭的原子必须是偶数.3. 22H O 和22C H 各属什么点群?( C )A.,h h D D ∞∞ ; B .2,h C D ∞ ; C .,h D C ν∞∞ ; D .,h D D ν∞∞ ; E22,h C C4. 下列分子中哪一个有极性而无旋光性?( B )A.乙烯 ;B.顺二卤乙烯 ; C 反二卤乙烯; D.乙烷(部分交错); E. 乙炔5. 实验测得Fe (H 2O )6的磁矩为5.3μ.B,则此配合物中央离子中未成对电子数为( C )A. 2 ; B .3 ; C .4 ; D .5.6. 波函数归一化的表达式是 ( C ) A. 20d ψτ=⎰ ; B.21d ψτ>⎰ ; C. 21d ψτ=⎰ ; D.21d ψτ<⎰7. 能使2ax e - 成为算符222d Bx dx-的本征函数的a 值是( B )A .a=;B .a= ; C .a= ; D .a=8. 基态变分法的基本公式是:( D ) A.0ˆH d E d ψψτψψτ**≤⎰⎰ ;B.0ˆH d E d ψψτψψτ**<⎰⎰ ;C .0ˆH d E d ψψτψψτ**>⎰⎰ ;D .0ˆH d E d ψψτψψτ**≥⎰⎰9. He +体系321ψ的径向节面数为:( D )A . 4 B. 1 C. 2 D. 010. 分子的三重态意味着分子中 ( C )A.有一个未成对电子;B.有两个未成对电子;C.有两个自旋相同的未成对电子; D.有三对未成对电子.11. 下列算符不可对易的是 ( C )A.∧∧y x 和 ; B y x ∂∂∂∂和 ; C .ˆx p x i x ∧∂=∂和 ; D .x p y ∧∧和12. 波函数归一化的表达式是 ( C ) A. 20d ψτ=⎰ ; B.21d ψτ>⎰ ; C. 21d ψτ=⎰ ; D.21d ψτ<⎰ 13. 在关于一维势箱中运动粒子的()x ψ和2()x ψ的下列说法中,不正确的是( B )A. ()x ψ为粒子运动的状态函数;B.2()x ψ表示粒子出现的概率随x 的变化情况;C . ()x ψ可以大于或小于零, 2()x ψ无正、负之分; D.当n x ∞→,2x ψ图像中的峰会多而密集,连成一片,表明粒子在0<x<a 内各处出现的概率相同.14. 氯原子的自旋量子数s 在满足保里原理条件下的最大值及在s 为最大值时,氯原子的轨道量子数l 的最大值分别为( C )。
结构化学第四章习题及答案

第四章习题一、 选择题1. 下面说法正确的是:---------------------------- ( D )(A) 分子中各类对称元素的完全集合构成分子的对称群(B) 同一种分子必然同属于一个点群,不同种分子必然属于不同的点群(C) 分子中有 Sn 轴,则此分子必然同时存在 Cn 轴和σh 面(D) 镜面σd 一定也是镜面σv2. 下面说法正确的是:---------------------------- ( B )(A) 如构成分子的各类原子均是成双出现的,则此分子必有对称中心(B) 分子中若有C4,又有i ,则必有σ(C) 凡是平面型分子必然属于Cs 群(D) 在任何情况下,2ˆn S =E ˆ3. 如果图形中有对称元素S6,那么该图形中必然包含:---------------------------- ( C )(A) C6, σh (B) C3, σh (C) C3,i (D) C6,i二、 填空题1. I3和I6不是独立的对称元素,因为I3= +I ,I6= +σh 。
2. 对称元素C2与σh 组合,得到__ i __;Cn 次轴与垂直它的C2组合,得到_n 个C2__。
3. 有两个分子,N3B3H6和 C4H4F2,它们都为非极性,且为反磁性,则N3B3H6几何构型_平面六元环__,点群 _。
C4H4F2几何构型_平面,有两个双键_,点群 。
三、 判断题1. 既不存在C n 轴,又不存在σh 时,S n 轴必不存在。
---------------------------- ( × )2. 在任何情况下,2ˆnS =E ˆ 。
---------------------------- ( × ) 3. 分子的对称元素仅7种,即σ ,i 及轴次为1,2,3,4,6的旋转轴和反轴。
---------------------------- ( × )四、 简答题1. 写出六重映轴的全部对称操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构化学习题习题类型包括:选择答案、填空、概念辨析、查错改正、填表、计算、利用结构化学原理分析问题;内容涵盖整个课程,即量子力学基础、原子结构、分子结构与化学键、晶体结构与点阵、X射线衍射、金属晶体与离子晶体结构、结构分析原理、结构数据采掘与QSAR 等;难度包括容易、中等、较难、难4级;能力层次分为了解、理解、综合应用。
传统形式的习题,通常要求学生在课本所学知识范围内即可完成,而且答案是唯一的,即可以给出所谓“标准答案”。
根据21世纪化学演变的要求,我们希望再给学生一些新型的题目,体现开放性、自主性、答案的多样性,即:习题不仅与课本内容有关,而且还需要查阅少量文献才能完成;完成习题更多地需要学生主动思考,而不是完全跟随教师的思路;习题并不一定有唯一的“标准答案”,而可能具有多样性,每一种答案都可能是“参考答案”。
学生接触这类习题,有助于培养学习的主动性,同时认识到实际问题是复杂的,解决问题可能有多钟途径。
但是,这种题目在基础课中不宜多,只要有代表性即可。
以下各章的名称与《结构化学》多媒体版相同,但习题内容并不完全相同。
第一章量子力学基础1.1选择题(1) 若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者(A) 动量相同(B)动能相同(C)质量相同(2) 为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本身, 动量算符应是(以一维运动为例)-h<(C) c.;(A) mv(3) 若/ W | d T =K,禾U用下列哪个常数乘”可以使之归一化:(A) K (B) K2(C) 1/T 匸(4) 丁二烯等共轭分子中n电子的离域化可降低体系的能量,这与简单的一维势阱模型是一致的,因为一维势阱中粒子的能量(A) 反比于势阱长度平方(B) 正比于势阱长度(C) 正比于量子数(5) 对于厄米算符,下面哪种说法是对的(A) 厄米算符中必然不包含虚数(B) 厄米算符的本征值必定是实数(C) 厄米算符的本征函数中必然不包含虚数(6) 对于算符?的非本征态Y(A) 不可能测量其本征值g.(B) 不可能测量其平均值<g>.(C) 本征值与平均值均可测量,且二者相等(7) 将几个非简并的本征函数进行线形组合,结果(A) 再不是原算符的本征函数(B)仍是原算符的本征函数,且本征值不变(C) 仍是原算符的本征函数,但本征值改变1.2辨析下列概念,注意它们是否有相互联系,尤其要注意它们之间的区别:(1) 算符的线性与厄米性(2) 本征态与非本征态(3) 本征函数与本征值(4) 本征值与平均值(5) 几率密度与几率(6) 波函数的正交性与归一性(7) 简并态与非简并态1.3 原子光谱和分子光谱的谱线总是存在一定的线宽,而且不可能通过仪器技术的改进来使之无限地变窄. 这种现象是什么原因造成的?1.4 几率波的波长与动量成反比. 如何理解这一点?1.5 细菌的大小为微米量级, 而病毒的大小为纳米量级. 试通过计算粗略估计: 为了观察到病毒, 电子显微镜至少需要多高的加速电压.1.6 将一维无限深势阱中粒子的波函数任取几个, 验证它们都是相互正交的.1.7 厄米算符的非简并本征函数相互正交. 简并本征函数虽不一定正交, 但可用数学处理使之正交•例如,若“ 1与“ 2不正交,可以造出与“ 1正交的新函数p‘2= 2 2+C® 1试推导c的表达式(这种方法称为Schmidt正交化方法).1.8对于一维无限深势阱中粒子的基态,计算坐标平均值和动量平均值,并解释它们的物理意义•1.9 一维无限深势阱中粒子波函数的节点数目随量子数增加而增加. 试解释: 为什么节点越多,能量越高. 再想一想: 阱中只有一个粒子,它是如何不穿越节点而出现在每个节点两侧的?1.10 下列哪些函数是d2/dx2的本征函数:(1) e x (2) e“ (3) 5sinx (4) sinx+cosx (5)x3求出本征函数的本征值.1.11 对于三维无限深正方形势阱中粒子,若三个量子数平方和等于9,简并度是多少?1.12利用结构化学原理,分析并回答下列问题:纳米粒子属于介观粒子,有些性质与宏观和微观粒子都有所不同 •不过,借用无限深势阱中粒子模型,对纳米材料中的“量子尺寸效应”还是可以作一些定性解释•例如:为什么半导体中的窄能隙(<3eV )在纳米颗粒中会变宽,甚至连纳米 Ag也会成为绝缘体?第二章原子结构2.1选择题对s 、p 、d 、f 原子轨道进行反演操作,可以看出它们的对称性分别是原子的轨道角动量绝对值为(A) l ( l+1)2 p 2组态的原子光谱项为Hund 规则适用于下列哪种情况 (A) 求出激发组态下的能量最低谱项(B) 求出基组态下的基谱项(A) u, g, u, g (B) g, u, g, u (C) g, g, g, gH 原子的电离能为13.6 eV, He +的电离能为(A) 13.6 eV(B) 54.4 eV (C) 27.2 eV(C) I(A) b 3P 、1S(B) 3D 、9、3S (C) 3D 、3P 、1D(C) 在基组态下为谱项的能量排序(6) 配位化合物中d)d跃迁一般都很弱,因为这种跃迁属于:(A) g:—/ >g (B) g:--: u (C) u:_/ >u(7) Cl原子基态的光谱项为2P,其能量最低的光谱支项为2 2 2(A) 2P3/2 (B) 2P I/2(C) 2P02.2辨析下列概念,注意它们的相互联系和区别:(1) 复波函数与实波函数(2) 轨道与电子云(3) 轨道的位相与电荷的正负(4) 径向密度函数与径向分布函数(5) 原子轨道的角度分布图与界面图(6) 空间波函数、自旋波函数与自旋-轨道(7) 自旋-轨道与Slater行列式(8) 组态与状态2.3请找出下列叙述中可能包含着的错误,并加以改正:原子轨道(AO)是原子中的单电子波函数,它描述了电子运动的确切轨迹•原子轨道的正、负号分别代表正、负电荷•原子轨道的绝对值平方就是化学中广为使用的“电子云”概念,即几率密度•若将原子轨道乘以任意常数C,电子在每一点出现的可能性就增大到原来的C2倍.c:os 1)2.4⑴计算节面对应的0;⑵计算极大值对应的0;(3)在yz平面上画出波函数角度分布图的剖面,绕z轴旋转一周即成波函数角度分布图•对照下列所示的轨道界面图,从物理意义和图形特征来说明二者的相似与相异•2.5氢原子基态的波函数为试计算1/r的平均值,进而计算势能平均值<V>,验证下列关系<V> = 2E = -2<T>此即量子力学维里定理,适用于库仑作用下达到平衡的粒子体系(氢原子基态只有一个1s电子,其能量等于体系的能量)的定态,对单电子原子和多电子原子具有相同的形式.2.6 R. Mulliken 用原子中电子的电离能与电子亲合能的平均值来定义元素电负性. 试从原子中电子最高占有轨道(HOMO )和最低空轨道(LUMO )的角度想一想,这种定义有什么道理?2.7 原子中电子的电离能与电子亲合能之差值的一半,可以作为元素化学硬度的一种量度(硬度较大的原子,其极化率较低). 根据这种定义,化学硬度较大的原子,其HOMO 与LUMO 之间的能隙应当较大还是较小?2.8将2p+i与2P-i线性组合得到的2P x与2P y,是否还有确定的能量和轨道角动量z分量?为什么?2.9 原子的轨道角动量为什么永远不会与外磁场方向z 重合,而是形成一定大小的夹角?计算 f 轨道与z 轴的所有可能的夹角. 为什么每种夹角对应于一个锥面,而不是一个确定的方向?2.10 快速求出P 原子的基谱项.2.11 Ni2+的电子组态为d8,试用M L表方法写出它的所有谱项,并确定基谱项.原子光谱表明,除基谱项外,其余谱项的能级顺序是i D<3P<i G<i S,你是否能用Hund 规则预料到这个结果?2.12 d n组态产生的谱项,其宇称与电子数n无关,而p n组态产生的谱项,其宇称与电子数n 有关.为什么?2.13 试写出闭壳层原子Be的Slater行列式.2.14 Pauli原理适用于玻色子和费米子,为什么说Pauli不相容原理只适用于费米子第三章双原子分子结构与化学键理论3.1选择题(1) 用线性变分法求出的分子基态能量比起基态真实能量,只可能(A) 更高或相等(B)更低(C)相等(A)核外电子数依次减少(B)键级依次增大(C)净成键电子数依次减少(3)下列哪一条属于所谓的“成键三原则”之一:(A) 原子半径相似(B) 对称性匹配(C) 电负性相似(4)下列哪种说法是正确的(A) 原子轨道只能以同号重叠组成分子轨道(B) 原子轨道以异号重叠组成非键分子轨道(C) 原子轨道可以按同号重叠或异号重叠,分别组成成键或反键轨道⑸氧的02* , 02 , O2- , O22-对应于下列哪种键级顺序(A) 2.5, 2.0, 1.5, 1.0(B) 1.0, 1.5,2.0, 2.5(C) 2.5, 1.5, 1.0 2.0(6)下列哪些分子或分子离子具有顺磁性(A) 02、NO (B) N2、F2(C) O22+、N0 +⑺B2和C2中的共价键分别是(A) n 1+ n 1, n + n ( B) n + n , n 1+ n 1(C) + n , a3.2 MO与VB理论在解释共价键的饱和性和方向性上都取得了很大的成功,但两种理论各有特色.试指出它们各自的要点(若将两种理论各自作一些改进,其结果会彼此接近).3.3考察共价键的形成时,为什么先考虑原子轨道形成分子轨道,再填充电子形成分子轨道上的电子云,而不直接用原子轨道上的电子云叠加来形成分子轨道上的电子云?3.4 成键轨道的对称性总是g,反键轨道的对称性总是『这种说法对不对?为什么?3.5 一般地说,n键要比a键弱一些.但在任何情况下都是如此吗?请举实例来说明.3.6 N2作为配位体形成配合物时,通常以2 a g电子对去进行端基配位(即N三N T),而不以1 n u电子对去进行侧基配位。
主要原因是什么?3.7 磁化水”的特殊功能是一个议论甚广的话题。
然而,如果样品是相当纯净的水,特别是不含任何磁性杂质,经过“磁化”的水会有什么特殊功能吗?3.8 02是一种氧自由基(有时加一个点表示它的自由基特征),能使细胞质和细胞核中的核酸链断裂,引起肿瘤、炎症、衰老等病变.活性氧与人体健康的关系是一个新兴的研究领域.人体内过多的02-是通过什么来清除的?试查阅文献了解其研究动态,并回答问题.3.9固氮酶的化学模拟是一个具有重大的理论意义和实用价值的课题.请通过全球信息网(WWW) 了解其最新研究动态.3.10计算一组等性sp2杂化轨道相互之间的夹角,与乙烯中的键角进行比较3.11 (1)观察a、n和3分子轨道,它们各有多少个包含着键轴的节面?(2) 分子轨道中还有一种 $轨道,具有3个包含键轴的节面.什么样的原子轨道才可能形成$分子轨道?3.12在异核双原子分子中,对成键轨道和反键轨道的较大贡献分别来自什么样的原子(A) C 1、C 2、C 3 (B) D 2、C 4v 、T d(C) l h 、C 3v 、O h什么?3.13地球的年龄约为46亿年,但大气中的02却主要是有了生物的光合作用后才积累起来的 试查阅文献,了解氧和臭氧在地球上的积累过程,以及生态系统中的氧循环3.14氢能是一种清洁能源,是未来的理想能源.试查找有关的共价键能数据,计算氢燃烧生 成1mol水可以放出多少能量.目前这种能源使用的还很少 ,有哪些主要原因?如果用电解水来大规模地制取氢气,有没有实际意义?3.15双原子分子和一些小分子的结构比较简单,但它们在自然界中的作用却不是无关紧要的.试论述:在环境与生态问题上,哪些双原子分子和小分子具有重要影响 ?它们是如何发挥作用的?这些作用对人类有益还是有害?我们如何强化或抑制这些作用 ?3.16自由状态的C0键长为112.9pm.在配合物Ni(CO) 4中,CO 键长增加为115pm 且振动 频率下降.Ni-C 键长为182pm,比一般估计的键(192 pm)要短.综合这些现象,可以 说明什么问题?第四章 分子对称性与群论初步4.1选择题(1) 丙二烯属于D 2d 点群,表明它有⑵c 60、NH 3、立方烷的分子点群分别是(3) 下列哪种说法是正确的(C*代表不对称碳原子)(A)含C*的分子并非都有旋光性,不含 C *的分子并非都无旋光性(A)两个小n 键(B )一个 1L(C)两个(B) 含 C* 的分子必定都有旋光性,不含 C*的分子必定都无旋光性(A) 2 (B) 3(C) 6[Co ( NH 3) 4(H 2O ) 2]3+能够有几种异构体: (10) 一个分子的分子点群是指:(C)含C*的分子并非都有旋光性,不含 C*的分子必定都无旋光性(4) 化学中的R-S [拉丁字母rectus (右)与 sin ister(左)]命名法的用途之一是(5) (6) (7) (8) (A) 区分顺反异构体(B) 直接表示分子的旋光方向(C) 区分对映异构体含有不对称 C 原子但能与其镜象重合的化合物是(A) 内消旋化合物 (B) 外消旋化合物 (C) 不对称分子列哪组点群的分子可能具有偶极矩:(A) O h、D n、C nh(B) C i 、T d 、 S 4 (C) C n 、 C nv、C s非极性分子的判据之一是(A) 所有对称元素交于唯一一点(B) 至少有两个对称元素只交于唯一一点 (C) 两个对称元素相交列哪种分子可能具有旋光性:(A) 丙二烯(B) 六螺环烃 (C) C 60(9)(A) 全部对称操作的集合(B) 全部对称元素的集合(C) 全部实对称操作的集合(11) 群中的某些元素若可以通过相似变换联系起来,它们就共同组成4.2 PCI 5气体是分子化合物,其固体是PCl 4+、 PCI 6的离子化合物。