旋转中的最值问题新编

合集下载

一道与旋转有关的动点最值问题的探究

一道与旋转有关的动点最值问题的探究

试题研究2023年10月下半月㊀㊀㊀一道与旋转有关的动点最值问题的探究◉湖北省武汉市吴家山第二中学㊀李幽兰㊀㊀初中平面几何中,由图形运动而产生的最值问题历来是学生解题的难点,究其原因是图形一直在变化,学生无法捕捉到运动变化背后 不变 的元素,难以分析出取最值时变化元素的位置,也就无法根据具体图形分析求解[1].其中,与旋转有关的动点求最值问题,热度一直高居不下,近几年常 驻 各地中考选填题和几何综合题的压轴位置,令莘莘学子头疼畏惧.下面笔者分享一道题目的解法和变式的深入探究,希望给读者一点启发.图1题目㊀(武汉蔡甸2021 第10题)如图1,在平面直角坐标系中,Q 是直线y =-12x +2上的一个动点,将Q 绕点P (1,0)顺时针旋转90ʎ,得到点Q ᶄ,连接O Q ᶄ,则O Q ᶄ的最小值为(㊀㊀).A.455㊀㊀㊀B .5㊀㊀㊀C .523㊀㊀㊀D.655图2解法1:(坐标法)分别过点Q和Q ᶄ作x 轴的垂线,垂足分别为点M 和N ,如图2.于是øQ M P =øP N Q ᶄ=90ʎ,则øP Q ᶄN +øN P Q ᶄ=90ʎ.因为øQ P Q ᶄ=øQ P M +øN P Q ᶄ=90ʎ,则øP Q ᶄN =øQ P M .又P Q =Q ᶄP ,所以әP M Q ɸәQ ᶄN P (A A S ).故P M =Q ᶄN ,Q M =P N .设Q (a ,-12a +2).因为P (1,0),所以P M =Q ᶄN =a -1,Q M =P N =-12a +2.于是O N =O P +P N =3-12a .所以Q ᶄ(3-12a ,1-a ).所以O Q ᶄ=O N 2+Q ᶄN 2=(3-12a)2+(1-a )2=54(a -2)2+5ȡ5.故选答案:B .点评:解法1抓住平面直角坐标系中的有利条件,构造了 一线三垂直 模型证三角形全等.首先设未知数表示出动点Q 的坐标,用坐标来表示线段长度进行转化,然后由勾股定理表示两点之间的距离,用含x 的式子将O Q ᶄ表示出来,最后运用二次函数的知识求出最值.这种方法虽然很巧妙㊁简便,但是有一定的局限性,只能用于有坐标系且旋转角度特殊的题目.图3解法2:(轨迹法)如图3,将әA O B 绕点P 顺时针旋转90ʎ得到әA ᶄO ᶄB ᶄ,则Q ᶄ为直线A ᶄB ᶄ上一动点,根据垂线段最短,O Q ᶄ的最小值为点O 到直线A ᶄB ᶄ的垂线段的长度d .由直线A B 的解析式为y =-12x +2,得A (0,2),B (4,0),所以O A =2,O B =4.由题意,得O ᶄ(1,1),A ᶄ(3,1),B ᶄ(1,-3).设直线A ᶄB ᶄ的解析式为y =k x +b ,则有3k +b =1,k +b =-3,{解得k =2,b =-5.{于是直线A ᶄB ᶄ的解析式为y =2x -5,则E (52,0),F (0,-5),故O E =52,O F =5.所以E F =O E 2+O F 2=(52)2+52=552.由S әO E F =12O E O F =12E F d ,得O Q ᶄ的最小值为O E O F E F =52ˑ5552=5.点评:解法2由旋转的本质出发,直线A B 绕点P顺时针旋转90ʎ所得直线A ᶄB ᶄ即为动点Q ᶄ的轨迹,但直接求直线A ᶄB ᶄ的解析式不方便,因此旋转整个әA O B ,先求出点A ᶄ和B ᶄ的坐标,再求直线A ᶄB ᶄ的解析式,最后用面积法求出点O 到直线A ᶄB ᶄ的距离.85Copyright ©博看网. All Rights Reserved.2023年10月下半月㊀试题研究㊀㊀㊀㊀当然,在求出了直线A ᶄB ᶄ的解析式后,也可以由此设Q ᶄ的坐标,用解法1中的坐标法,运用勾股定理和二次函数来求最值.解法2适用于大部分的动点旋转求最值问题,即先确定动点轨迹.图4解法3:(逆向轨迹法)O Q ᶄ的最小值其实是定点O 到直线y =-12x +2绕点P 顺时针旋转90ʎ所得到直线的距离,问题可转化为O ᶄ(1,-1)(由点O 绕点P 逆时针旋转90ʎ得到)到直线y =-12x +2的距离d .如图4,过点O ᶄ(1,-1)作O ᶄA 垂直于x 轴交直线y =-12x +2于点A ,O ᶄB 垂直于y 轴交直线y =-12x +2于点B .于是A (1,32),B (6,-1),所以O ᶄA =52,O ᶄB =5.故A B =O ᶄA 2+O ᶄB 2=(52)2+52=552.由S әA O ᶄB =12O ᶄA O ᶄB =12A B d ,得O ᶄQ 的最小值为O ᶄA O ᶄBA B=5,即为O Q ᶄ的最小值.点评:解法3在求O ᶄQ 的最小值时同样可以用解法1的坐标法来求,在本质上它与解法2是一样的,都是将所求最值转化成定点到定直线的距离,但是解法3对解法2进行了简化,免去了求直线y =-12x +2旋转后的直线解析式,直接旋转定点O ,思路新颖巧妙.变式1㊀在R t әA O B 中,O A =2,A B =4,P 是O B 上一点,O P =1,Q 是边A B 上的一个动点,将Q 绕点P 逆时针旋转30ʎ得到点Q ᶄ,连接O Q ᶄ,则O Q ᶄ的最小值为.图5解析:点Q 在A B 上运动,即点Q 的轨迹为A B ,那么将A B 绕点P 旋转就能得到点Q ᶄ的轨迹.于是,将әA O B 绕点P 逆时针旋转30ʎ得到әA ᶄO ᶄB ᶄ,如图5,则点O 到A ᶄB ᶄ的距离即为O Q ᶄ的最小值.由旋转,得øB P B ᶄ=30ʎ.在R t әA O B 中,O A =2,A B =4,所以øB =øB ᶄ=øB P B ᶄ=30ʎ,于是A ᶄB ᶄʊO B ,则øA E B ᶄ=øA O B =90ʎ.所以点O 到A ᶄB ᶄ的距离为O E 的长度.如图5,过点B ᶄ作B ᶄF ʅO B 于点F ,则øB ᶄF P =90ʎ,于是四边形O E B ᶄF 是矩形.由O B =A B 2-O A 2=42-22=23,O P =1,得B P =B ᶄP =23-1.øB ᶄF P =90ʎ,øB P B ᶄ=30ʎ,所以B ᶄF =12B ᶄP =23-12.故O Q ᶄ的最小值为O E =23-12.变式1没有坐标系背景,显然解法1不适用,而运用解法3,将点O 绕点P 顺时针旋转30ʎ以后再求O ᶄ到A B 的距离较为麻烦,经对比发现,此题解法2是最简便的.类似地,还可以变化图形形状和旋转角度,解法一样.图6变式2㊀如图6,在等腰三角形A B C 中,øB A C =120ʎ,A B =A C ,D 是AB 上一点,A D =2,B D =4,E 是边BC 上的动点,若点E 绕点D 逆时针旋转30ʎ的对应点是F ,连C F ,则C F 的最小值是.基于以上分析,我们可以总结:解决这类绕定点旋转的最值问题有三种方法,分别为坐标法㊁轨迹法㊁逆向轨迹法,根据不同的题目来选择合适的方法,最常用的是轨迹法.若是动点所在的直线绕定点旋转,则先确定动点旋转后的轨迹,再根据垂线段最短求点到直线的距离,最后解直角三角形得到所求最值.动态问题解题的关键是在 动 中寻找 定 的量,再由这些定量探寻出动点形成的轨迹,从而根据轨迹分析出最值位置,即 由动寻定,由定定轨,由轨求最 [2].题目只是知识方法的一个素材,解题的过程能让学生理解知识的原理,提炼方法的本质,注重解法的策略,总结问题的归类,从而达到利用有限的题目实现无限的再创造.由解一道题变成会解一类题,乃至通解一种体系的题,这也是解题教学的方向[1].参考文献:[1]郭源源.旋转位似 似 成双定点定形 轨 一致[J ].教学月刊 中学版(教学参考),2020(10):11G15.[2]郭源源. 定量 构建动点轨迹 隐圆 巧解最值问题[J ].中学数学杂志,2018(10):42G44.Z95Copyright ©博看网. All Rights Reserved.。

.旋转中的最值问题 ()

.旋转中的最值问题 ()

旋转中的最值问题
1.已知,线段AB=6,线段AC=4,将线段AC 绕A 旋转,则线段BC 的最大值为 10 最小值为 2 。

2. 如图,在△ABC 中,∠C=90°,AC=4,BC=2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 到原点的最大距离是。

+2
找AC 中点D,O 、B 、D 三点共线时,OB 最长 3.如图,已知△ABC 中,∠ACB=90°,AC=BC=,动点P CP 绕C 顺时针旋转90°得到线段CD ,连DA 、DB 、PB 。

求BD 的最大值最小值。

最大:根号10+
最小:根号10
4.如图,已知△ABC 中,∠ACB=90°,BC=6,AC=12,点D ,
将线段AD 绕点A 旋转,D 点对应点为'D ,连接'BD ,点F CF ,线段CF 的最大值为多少?
5.如图,PA=2,PB=4,以AB 为一边作正方形ABCD ,使P 、AB 的
两侧,当∠APB 变化时,求PD 的最大值。

6.如图,在Rt △POQ 中,OP=OQ=4,M 是PQ M 处,以M 别交于点A 、B 。

(1)求证:MA=MB ; (2)连接AB ,探究:在旋转三角尺的过程中,求△AOB。

旋转中求线段最值问题汇编

旋转中求线段最值问题汇编

旋转中求线段最值问题汇编题型一:将军饮马1、如图1,在平面直角坐标系xOy中,直线l2:y=﹣与x轴交于点B,与直线l1交于点C,C点到x轴的距离CD为2,直线l1交x轴于点A,且∠BAC=60°.(1)求直线l1的函数表达式;(2)如图2,y轴上的两个动点E、F(E点在F点上方)满足线段EF的长为,连接CE、AF,当线段CE+EF+AF有最小值时,求出此时点F的坐标,以及CE+EF+AF的最小值;(3)如图3,将△ACB绕点B逆时针方向旋转60°,得到△BGH,使点A与点H重合,点C与点G 重合,将△BGH沿直线BC平移,记平移中的△BGH为△B'G'H',在平移过程中,设直线B'H'与x轴交于点M,是否存在这样的点M,使得△B'M'G'为等腰三角形?若存在,请直接写出此时点M的坐标;若不存在,说明理由.题型二:费马点应用1、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M 点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.题型四:旋转中利用圆来构造最值问题1、在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.‘2、阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α(0°≤α≤360°),连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?。

几何旋转及最值长度压轴题(部分含答案)

几何旋转及最值长度压轴题(部分含答案)

3.如图,E,F是正方形ABCD的边AD上的两个动点,满足AE=DF。

连接CF交BD于点5-. G,连接BE交AG于点H。

若正方形的边长为2,则线段DH长度的最小值是14.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值为2.5.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30度后得到正方形EFCG,EF交AD于点H,那么DH的长是3 .6.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是1.5 .7.如图,∆ABC中,∠ACB=90度,把∆ABC绕点C顺时针旋转到∆A1B1C的位置,A1B1交直线CA于点D。

若AC=6,BC=8,当线段CD的长为时,∆A1CD是等腰三角形。

8.如图,正方形ABCD的面积为12,∆ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.9.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上的一动点,则PE+PB 的最小值为.4,∠ABC=45度,BD平分∠ABC,M、N分别是BD、BC上10.在锐角三角形ABC中,BC=2的动点,则CM+MN的最小值是.11.如图,矩形ABCD中AB=4,BC=8,E为CD的中点,点P、Q为BC上的两个动点,且PQ=3,当CQ= 4 时,四边形APQE的周长最小。

12.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P为BC上的动点,当CP= 8/3 时,∆APE的周长最小。

13.如图,在Rt∆ABC中,∠ACB=90度,∠ABC=60度,BC=2,E是AB边的中点,F是AC边1+。

的中点,D是BC上的一动点,则∆EFD的周长最小值是1314.在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE’D’F’,记旋转角为α,若直线AE ’与直线BF ’相交于点P ,则点P 的纵坐标的最大值 2/)13(+ 。

旋转中的最值问题

旋转中的最值问题

旋转中的最值问题 Revised at 2 pm on December 25, 2020.
A
旋转中的最值问题
1.已知,线段AB=6,线段AC=4,将线段AC 绕A 旋转,则线段BC 的最大值为 10 最小值为 2 。

2. 如图,在△ABC 中,∠C=90°,AC=4,BC=2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,求点离是。

找AC 中点D,O 、B 、D 三点共线时,OB 最长 3.如图,已知△ABC 中,∠ACB=90°,P 满足CP 绕C 顺时针旋转90°得到线段CD ,连DA 、DB 、PB 。

求BD 的最大值最小值。

最大:根号
最小:根号10 4.如图,已知△ABC 中,∠ACB=90°,BC=6,AC=12,点D 在,将线段AD 绕点A 旋转,D 点对应点为'D ,连接'BD ,点F 为,线段CF 的最大值为多少?
5.如图,PA=2,PB=4,以AB 为一边作正方形ABCD ,使P 、AB 的两侧,当∠APB 变化时,求PD 的最大值。

6.如图,在Rt △POQ 中,OP=OQ=4,M 是PQ M
处,以M 为旋转中心,旋转三角尺,三角尺的两直角边与△点A 、B 。

(1)求证:MA=MB ; (2)连接AB ,探究:在旋转三角尺的过程中,求△AOB。

初中数学旋转最值解题技巧

初中数学旋转最值解题技巧

初中数学旋转最值解题技巧
一、旋转最值解题技巧概述在初中数学中,旋转最值是一个比较常
见的问题。

它涉及到了几何图形的变换和求解极值等知识点。

对于这
类问题,我们需要掌握一些解题技巧。

二、旋转最值解题技巧详细介
绍1. 理清思路:首先要理清思路,明确所求的是什么,并且确定使用
哪种方法来求解。

2. 画图分析:通过画图可以更加直观地看出几何图
形的特征和性质,从而有助于我们找到规律和推导结论。

3. 利用对称
性质:利用几何图形的对称性质进行计算可以简化运算过程并提高效率。

4. 使用三角函数公式:在某些情况下,可以使用三角函数公式来
计算旋转后坐标点的位置以及距离等相关参数。

5. 求导法求极值:如
果需要求取某个量在旋转后取得最大或者最小值时,可以采用求导法
来进行计算。

具体步骤为将原方程表示成关于一个变量(如x)的函数,在该区间内寻找其单调递增或递减区间,并判断端点处是否存在极值
即可。

6. 规范化处理数据:有时候为了便于计算和比较大小等操作,
需要将数据规范化处理成相同单位或者相同数量级之后再进行运算。

7. 注意精度误差:由于浮点数精度限制等因素可能会引起误差累积,在
实际应用中要注意避免这种情况发生,并尽可能保证结果正确性与稳
定性。

三、总结以上就是初中数学旋转最值解题技巧的详细介绍。


过掌握这些技能,在实际应用中能够更加熟练地处理各种复杂问题,
并获得更好的成果。

旋转中的最值问题(最新)

旋转中的最值问题(最新)

旋转中的最值问题班级姓名座号【例1】如图,在Rt△ABC中,∠BAC=90°,∠B=30°,D为BC边上一个动点(不包含点B和点C),连接AD,把AD绕点A逆时针旋转90°,点D的对应点为点E,连接CE,若AC=4,在点D移动的过程中,则CE的最小值为.【变式训练】1、如图,在△ABC中,∠ACB=90°,∠B=30°,AB=7,点D是BC边上一动点,以AD为一边等边△ADE,则线段CE长度的最小值是.2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=34,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,求DG的最大值和最小值.【例2】思考:(1)如图①,若点D为等边三角形△ABC的边AC上一点,以BD为边作等边△BDE(在BD下方),连接CE.若CD=1,CE=3,则AC=.(2)如图②,点D为等边△ABC的AC边上一动点,以BD为边作等边△BDE(在BD 下方),点M是BC的中点,连接ME.若BC=5,则ME长的最小值是.问题解决:(3)如图③,等边△ABC中,BC=5,点D是BC边上的高AM所在直线上的点,以BD 为边作等边△BDE(在BD下方),连接ME,则ME的长是否存在最小值?不存在请说明理由;若存在,说明理由并求出这个最小值.【变式训练】1、如图1,△ABC,△EDC是两个等腰直角三角形,其中∠ABC=∠EDC=90°,AB=5,DE=3,连接AE,取AE中点F,连接BF,DF.(1)如图1,当B,C,D三个点共线时,请直接写出BF与DF的数量关系与位置关系;(2)如图2,将△EDC绕点C逆时针旋转,取AC与EC的中点G,H,当点G,H,F 三点不共线时,连接GF,HF,BG,DH,求证:△BGF≌△FHD;(3)在(2)的条件下,连接BD,在△EDC绕点C旋转的过程中,求△BFD面积的最小值,并说明理由.2、如图,△ABC为等边三角形,AB=12,将边AB绕点A顺时针旋转θ,得到线段AD,连接CD,CD与AB交于点G,∠BAD的平分线交CD于点E,F为CD上一点,且DF=2CF.(1)当∠EAB=30°时,求∠AEC的度数;(2)M为边AC上一点,当CM=4时,求线段BM的长;(3)在(2)的条件下,边AB绕点A旋转过程中,求线段BF长度的最小值.。

三角形旋转最值问题

三角形旋转最值问题

三角形旋转最值问题三角形旋转最值问题也称为绕心路速或三角形旋转最优化问题,是一种考虑物体旋转以达到最优化的问题。

三角形旋转最值问题可以被用于工业流程的设计,如机械加工、电路板制造等。

在这些工业流程中,物体旋转是达到最佳成果的关键,因此三角形旋转最值问题也就变得非常重要。

三角形旋转最值问题的主要目的是求得三角形旋转的最优路径,以便可以最大程度地减少旋转的距离,达到最佳的旋转效果。

为了解决三角形旋转最值问题,可以使用搜索算法、局部搜索和统计方法等,这些算法均可以被用于求解三角形旋转最值问题。

首先,搜索算法可以用于解决三角形旋转最值问题。

搜索算法是一种用于优化某种特定目标函数的算法,它首先通过在特定空间中搜索一系列可行的解来求解三角形旋转最值问题,搜索算法可以用于求解三角形的最优路径。

此外,搜索算法还可以用于求解三角形的最优旋转角度。

其次,局部搜索也可以用于三角形旋转最值问题。

局部搜索是一种用于优化目标函数的算法,它可以从当前值出发,通过对目标函数的一些微小改变来求解三角形旋转最值问题。

局部搜索可以用来求解三角形最终转弯路径,也可以用于求解三角形最优旋转角度。

另外,统计方法也可以用于三角形旋转最值问题,统计方法的主要目的在于估计物体旋转的最优路径。

统计方法可以根据实际情况来模拟物体旋转的过程,根据模拟的结果来估计出最优的旋转路径。

综上所述,三角形旋转最值问题可以通过搜索算法、局部搜索和统计方法来求解。

三角形旋转最值问题的求解可以视为一个物体从一个地点移动到另一个地点的过程,它可以用来求解三角形最终转弯路径,也可以求解三角形最优旋转角度。

三角形旋转最值问题一直是工业流程设计中重要的问题,可以帮助企业在有限的时间内,达到最佳的旋转效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转中的最值问题
1.已知,线段AB=6,线段AC=4,将线段AC 绕A 旋转,则线段
BC 的最大值为 10 最小值为
2 。

2. 如图,在△ABC 中,∠C=90°,AC=4,BC=2,点A 、
C 分别在x 轴、y 轴上,当点A 在x 轴上运
动时,点C 随之在y 轴上运动,在运动过程中,求点B 到原点的最大距离是。

+2
找AC 中点D,O 、B 、D 三点共线时,OB 最长 3.如图,已知△ABC 中,∠ACB=90°,AC=BC=,动点P 满足90°得到线段CD ,连DA 、DB 、PB 。

求BD 的最大值最小值。

最大:根号 最小:根号10 4.如图,已知△ABC 中,∠ACB=90°,BC=6,AC=12,点D 在AC 绕点A 旋转,D 点对应点为'D ,连接'BD ,点F 为'BD 中点,连接CF ,线段5.如图,PA=2,PB=4,以AB 为一边作正方形ABCD ,使P 、D APB 变
化时,求PD 的最大值。

6.如图,在Rt △POQ 中,OP=OQ=4,M 是PQ 为旋转中心,旋转三角尺,三角尺的两直角边与△POQ 的两直角边分别交于点A 、(1)求证:MA=MB ;
(2)连接AB ,探究:在旋转三角尺的过程中,求△AOB 的周长最小值。

相关文档
最新文档