人教版高中数学高一必修五学案21不等式与不等关系

合集下载

人教A版高中数学必修5学案不等关系与不等式

人教A版高中数学必修5学案不等关系与不等式

3.1.1不等关系与不等式【学习目标】1.通过了解一些不等式(组)产生的实际背景,认识不等关系的普遍性;2.掌握实数的性质与大小顺序之间的关系,会用作差比较法比较两个实数的大小。

重点:用作差比较法比较两个实数的大小.难点:从实际问题中抽象出不等关系;作差比较法比较两个实数的大小时如何适当“变形”.【课前导学】 阅读课本P72~73上半页后,填空:1.(1)某公路立交桥对通过的车辆的高度h 限高4m ,其不等关系是 ;(2)两实数a 与b 的和为非负数,则列出的不等关系是 .2.两实数之差a —b 的符号与此两实数a 、b 的大小关系:0______00___a b a b a b a b a b a b ->⇔⎧⎪-⇔=⎨⎪-<⇔⎩由此可知,要比较两个实数的大小,可以考察这两个实数的___.【课内探究】例1 配制A 、B 两种药剂,需要甲、乙两种原料. 已知配一剂A 种药需甲料3g ,乙料5g ;配一剂B 种药需甲料5g ,乙料4g. 今有甲料20g ,乙料25g ,若A 、B 两种药至少各配一剂,设A 、B 两种药分别配x 、y 剂(x 、y N ∈),请写出x 、y 就满足的不等关系式.例2 比较下列各组中两个代数式的大小:(1)(3)(5)a a +-与(2)(4)a a +-;(2)37xx +与27(1)x x +<其中; (3)221x y ++与2(1)x y +-.小结:作差比较法的步骤:作差,变形,判断符号.变式:比较的大小:(1)2x x +与1-;(2)32+1x x x -与.【总结提升】【反馈检测】1.比较下列各组数的大小:(1)22(1)x +与421(0)x x x ++≠; (2)22a b +与21ab -.2.求证:(1)2232()a b b a b +≥+;(2)22222a b a b ++≥+;(3) 已知2a ≠,求证2414a a <+.。

高中数学(3.1.1不等关系与不等式(一)示范教案新人教A版必修5

高中数学(3.1.1不等关系与不等式(一)示范教案新人教A版必修5

, 所举的实例都是反映不等量关系 , 这将暗
示我们这节课的效果将非常好
( 此时,老师用投影仪给出课本上的两个实例 )
实例 6: 限时
的路标,指示司机在前方路段行驶时,应使汽车的速度
v 不超过
实例 7: 某品牌酸奶的质量检查规定 , 酸奶中脂肪的含量 f 应不少于 2.5%, 蛋白质的含量
p 应不少于 2.3%.
生 可以用不等式或不等式组来表示
师 什么是不等式呢
生 用不等号将两个解析式连结起来所成的式子叫不等式
(老师给出一组不等式 -7 < -5 ; 3+4> 1+4;2x≤6; a+2≥0;3 ≠4. 目的是让同学们回忆不等
式的一些基本形式,并说明不等号“≤,≥”的含义,是或的关系
. 回忆了不等式的概念,
二、过程与方法
1. 采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再
从抽象到具体的方法进行启发式教学;
2. 教 师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;
3. 设计较典型的现实问题,激发学生的学习兴趣和积极性
三、情感态度与价值观
1. 通过具体情境, 让学生去感受、 体验现实世界和日常生活中存在着大量的不等量关系,
师 说得非常好, 下面我们就把上述实例中的不等量关系用不等式或不等式组一一表示出来
.
那应该怎么样来表示呢
(学生轮流回答,老师将答案相应地写在实例后面)
生 上述实例中的不等量关系用不等式表示应该为
生 可以表示为
(此时,学生有疑问,老师及时点拨,可以画出图形 (老师顺便画出三角形草画)
. 让学生板演)
生 | AC|+| BC| > | AB| ( 只需结合上述三角形草图 生 | AB|+| BC| > | AC| 、| AC|+| BC| > | AB| 、 | AB|+| AC| > | BC 生 | AB|-| BC| < | AC| 、| AC|-| BC| < | AB| 、 | AB|-| AC| < | BC|. 交换被减数与减数的位置也可 以 生 如果用 v 表示速度,则 生 f ≥2.5%或 ( 此时 , 一片安静 , 同学们在积极思考 生 这样表达是错误的 , 因为两个不等量关系要同时满足, 所以应该用不等式组来表示此实际

人教A版高中数学必修五不等关系与不等式教案新(3)

人教A版高中数学必修五不等关系与不等式教案新(3)

3.1 不等关系与不等式(导学案)一、学习目标1、了解不等式与不等式组的实际背景;掌握常用不等式的基本基本性质;会将一些基本性质结合起来应用.2、通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;二、本节重点用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。

理解不等式(组)对于刻画不等关系的意义和价值。

三、本节难点用不等式(组)正确表示出不等关系。

四、知识储备“作差法”比较两个实数的大小和常用的不等式的基本性质① 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法.常用的结论有2200x x ≥-≤≥≤,,|x|0,-|x|0等. ② “作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论.③常用的不等式的基本性质 (1),(2)(3),0(4),0a b b c a ca b a c b c a b c ac bca b c ac bc>>⇒>>⇒+>+>>⇒>><⇒< 五、通过预习掌握的知识点实数的运算性质与大小顺序之间的关系对于任意两个实数a,b,如果a>b,那么a-b 是正数;如a<b,那么a-b 是负数;如果a-b 等于0.它们的逆命题也正确.即(1)0;(2)0;(3)0a b a b a b a b a b a b >⇔->=⇔-=<⇔-<1.同向不等式:两个不等号方向相同的不等式。

例如:a>b ,c>d ,是同向不等式异向不等式:两个不等号方向相反的不等式例如:a>b ,c<d ,是异向不等式2.不等式的性质:(1),(2)(3),0(4),0a b b c a ca b a c b c a b c ac bca b c ac bc>>⇒>>⇒+>+>>⇒>><⇒< 六、知识运用①.比较233x x +与的大小,其中x R ∈.②.比较当0a ∉时,2222(1)(1)(1)(1)a a a a a a +++++-+与的大小.③.设实数,,a b c 满足22643,44,,,b c a a c b a a a b c +=-+-=-+则的大小关系是_____________.④.配制,A B 两种药剂需要甲、乙两种原料,已知配一剂A 种药需甲料3毫克,乙料5毫克,配一剂B 药需甲料5毫克,乙料4毫克。

高中数学新人教A版必修5教案 3.1 不等关系与不等式(1)

高中数学新人教A版必修5教案 3.1 不等关系与不等式(1)

3.1不等关系与不等式(1)教学目标:1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质,会用不等式的性质证明简单的不等式.2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.3.情感、态度与价值观:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯.重点:理解不等式(组)对于刻画不等关系的意义和价值;掌握不等式的性质和利用不等式的性质证明简单的不等式.难点:利用不等式的性质证明简单的不等式.教学过程:一、不等关系在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短,三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.问题1:设点A与平面α的距离为d,B为平面α上的任意一点,则d≤AB.问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?分析:若杂志的定价为x元,则销售的总收入为2.580.20.1xx-⎛⎫-⨯⎪⎝⎭万元.那么不等关系“销售的总收入不低于20万元”可以表示为不等式2.580.20.1xx-⎛⎫-⨯⎪⎝⎭≥20问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm 钢管的数量不能超过500mm钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?分析:假设截得500mm的钢管x根,截得600mm的钢管y根..根据题意,应有如下的不等关系:(1)解得两种钢管的总长度不能超过4000mm;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)解得两钟钢管的数量都不能为负.由以上不等关系,可得不等式组:5006004000300x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩二、数运算性质与大小顺序之间的关系b a b a >⇔>-0;b a b a =⇔=-0; b a b a <⇔<-0.三、不等式的性质定理1:(对称性)如果a>b ,那么b<a ;如果b<a ,那么a>b ;即 a>b ⇔b<a . 证明:说明:把不等式的左边和右边交换,所得不等式与原不等式异向. 定理2:(传递性)如果a>b ,b>c ,那么a>c . 即 a>b ,b>c ⇒a>c . 证明:说明:由定理1,可知定理2还可以表示为:a c a b b c <⇒<<,. 定理3:(加法保序性)若a>b ,则a+c>b+c ,即a>b ⇒a+c>b+c . 证明:推论1:(移项法则)不等式中任何一项的符号变成相反的符号后,可以把它从一边移到另一边.推论2:(加法法则)a>b ,c>d ⇒a+c>b+d . 证明:推广:两个或几个同向不等式两边分别相加,所得不等式与原不等式同向. 定理4:(乘法保序性)若a>b ,c>0,则ac>bc ;若a>b ,c<0,则ac<bc .即 a>b ,c>0⇒ac>bc ;a>b ,c<0⇒ac<bd .证明:推论1:(乘法法则)a>b>0,c>d>0⇒ac>bc . 证明:推广:两个或几个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向. 推论2:(乘方法则)a>b>0⇒n nb a>(n ∈N,且n>1)定理5:(开方法则)若,0>>b a 则nn b a >()1,>∈n N n 且. 即.0nn b a b a >⇒>>证明:练习:课本:P74.小结:1.不等式的性质是进行不等式的证明和解不等式的依据.2.在运用不等式的性质时,一定要严格掌握它们成立的条件. 四、应用举例例1.已知,a b c d ><,求证a c b d ->-. 证明:例2.已知0,0a b c >><,求证:c c a d>. 证明: 例3.已知0>≥d c b a ,求证0>+≥+dc c b a a . 证明:cd a b d c b a ≤∴>≥,0Θ.c d a b +≤+∴11,c dc a b a +≤+<∴0 故0>+≥+dc cb a a . 例4.设3612,208<<<<b a ,求bab a b a ,2,-+的取值范围. 解:由56203612208<+<⇒⎩⎨⎧<<<<b a b a ;Θ242723612-<-<-⇒<<b b ,且128<<a ,4264-<-<-∴b a .由35921211361208<<⇒⎪⎩⎪⎨⎧<<<<b a b a .例5.设bx ax x f +=2)(,2)1(1≤-≤-f 且4)1(2≤≤f .求(2)f 的取值范围. 解:(1),(1),(2)42f a b f a b f a b -=-=+=+Q .设)1()1()2(nf mf f +-=-,即42()()()()a b m a b n a b m n a n m b +=-++=++-.4123m n m n m n =+=⎧⎧∴⇒⎨⎨=-=⎩⎩.(2)(1)3(1)f f f ∴=-+. 由2)1(1≤-≤-f 得,63(1)12f ≤≤.5(2)(1)3(1)14f f f ∴≤=-+≤.小结:1.应用不等式的性质证明不等式,一般是从已知的不等式出发,应用不等式的性质进行变形,直至变换出所要证的不等式.2.根据不等式的性质,同向不等式可以相加,同向且两边均为正数的不等式可以相乘;同向不等式不能相减和相除,异向不等式的相减或相除应转化继同向不等式后用相加或相乘来进行.3.同号两数的顺序关系与其倒数的顺序相反.4.用不等式的性质求变量的范围时,是通过同向不等式相加或相乘来完成的,如果是有等号的还应注意两端能否取得等号.五、课堂练习: 六、作业: 七、补充题:1.设a<b<0,下列命题:①b a 11>;②ab a 11>-;③b a >;④22b a >中,假命题的个数是( )(A) 3 (B) 2 (C) 1 (D)0 答:选 (C).2.若a,b 是任意实数,且a>b ,四个不等式22b a >,,1<a b ba b a ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛>-2121,0)lg(中,能成立的不等式的个数是( )(A )1 (B )2 (C )3 (D )4 答:选(A ).。

高三数学必修五《不等关系与不等式》教案(Word版)

高三数学必修五《不等关系与不等式》教案(Word版)

高三数学必修五《不等关系与不等式》教案(2021最新版)作者:______编写日期:2021年__月__日教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题&#61480;1&#61481;回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?&#61480;2&#61481;在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?&#61480;3&#61481;数轴上的任意两点与对应的两实数具有怎样的关系?&#61480;4&#61481;任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|b,a0a>b;a-b=0a=b;a-bg(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=&#61480;a+b&#61481;2-4ab2&#61480 ;a+b&#61481;=&#61480;a-b&#61481;22&#61480;a+b&#61481;.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴&#61480;a-b&#61481;22&#61480;a+b&#61481;>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m&#61480;b-a&#61481;b&#61480;b+m&#61481;>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则() A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba.教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的證明二【基礎訓練】1.若,,則下列不等始終正確的是()2.設a,b為實數,且,則的最小值是()4.求證:對任何式數x,y,z,下述三個不等式不可能同時成立。

人教版高中必修5(B版)3.1不等关系与不等式课程设计

人教版高中必修5(B版)3.1不等关系与不等式课程设计

人教版高中必修5(B版)3.1不等关系与不等式课程设计一、课程目标1.了解不等关系的定义和性质。

2.掌握解不等式的方法。

3.理解不等式在实际问题中的应用。

4.提高思维逻辑能力和数学解决问题的能力。

二、教学重点和难点教学重点1.不等关系的理解和应用。

2.解一元一次不等式和二元一次不等式。

教学难点1.不等式的基本性质的理解。

2.不等式的解法。

三、教学内容及教法1. 不等关系内容要点:1.不等关系的定义。

2.不等式和不等式的解法。

教学方法:1.讲解+演示法2.课堂练习2. 不等式(1)解一元一次不等式内容要点:1.一元一次不等式的定义。

2.解一元一次不等式的基本方法。

3.一元一次不等式的图像解法。

教学方法:1.讲解+演示法2.课堂练习(2)解二元一次不等式内容要点:1.二元一次不等式的定义。

2.解二元一次不等式的基本方法。

3.二元一次不等式的图像解法。

教学方法:1.讲解+演示法2.课堂练习四、教学评估及考核1.教学评估利用课堂练习、作业、测验等方式对学生进行每个知识点的教学效果评估,了解学生的掌握程度。

2. 考核方式期中、期末考试,然后和平时考查成绩综合评定。

其中平时考查包括课堂表现、作业完成情况、课堂练习成绩等。

五、参考教材人教版高中必修5(B版)六、教学流程时间内容教师行为学生行为10分钟不等关系讲解讲解倾听20分钟一元一次不等式讲解讲解倾听20分钟一元一次不等式练习指导练习20分钟二元一次不等式讲解讲解倾听20分钟二元一次不等式练习指导练习10分钟汇总检查复习指导温故七、教学资源教学资源不包括图片、网址、下载链接等。

教师可使用教科书、课件、白板等。

八、教学反思本次课程围绕不等关系和不等式两个知识点展开教学。

教学初期学生对不等关系有一定的模糊认识,随着教师的讲解和示范,学生对不等关系的理解逐渐清晰。

在一元一次不等式和二元一次不等式的教学中,学生的参与度比较高,教师讲解后可以参照实例较为熟练地解题。

人教版高中数学必修五 3.1:不等关系与不等式 学案(无答案)

人教版高中数学必修五 3.1:不等关系与不等式 学案(无答案)

高中一年级(下)数学必修5第三章:不等式——3.1:不等关系与不等式一:知识点讲解(一):不等关系➢现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,不等关系常用表示。

➢常用的文字语言与符号语言之间的转换:✧大于、高于、超过:>;✧小于、低于、少于:<;✧大于等于、至少、不低于:≥;✧小于等于、至多、不超过:≤。

例1:某矿山车队有4辆载重为10吨的甲型卡车和7辆载重为6吨的乙型卡车,有9名驾驶员。

此车队每天至少要运360吨矿石至冶炼厂。

已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式。

(二):实数大小比较的理论依据➢作差比较法:✧依据:❖如果,那么a>b;❖如果,那么a<b;❖如果,那么a=b。

✧应用范围:数(式)的大小不明显,作差后可化为积或商的形式。

✧步骤:①作差;②变形;③判断符号;④下结论。

✧变形技巧:①分解因式;②平方后再作差;③配方法;④分子(分母)有理化。

➢ 作商比较法:✧ 依据:❖ 0>a ,0>b 且b a b a >⇒>1; ❖ 0>a ,0>b 且b a ba <⇒<1。

✧ 应用范围:同号两数比较大小或指数式之间比较大小。

✧ 步骤:①作商;②变形;③判断商值与1的大小;④下结论。

✧ 变形技巧:按照同类的项进行分组。

➢ 函数性质比较法:✧ 依据:利用指数函数、对数函数的单调性:1>a 时单调递增;10<<a 时单调递减。

✧ 应用范围:比较两个指数形式或对数形式的实数(式)的大小✧ 步骤:①化成同底的指数或对数形式;②按函数性质比较大小。

✧ 变形技巧:❖ aN N b b a log log log =(0>b a ,,且1≠b a ,,0>N ); ❖ 用中间值“1”作比较。

➢ 结论:确定任意两个实数a 、b 的大小关系,只需确定它们的 与 的大小关系。

高中数学必修5新教学案:3.1不等关系与不等式(2)

高中数学必修5新教学案:3.1不等关系与不等式(2)

必修5 3.1不等关系与不等式(学案)(第2课时)一.不等关系与不等式的概念:在客观世界中,量与量之间的不等关系是普遍存在的。

我们用数学符号 连接两个数或代数式,以表示它们之间的不等关系。

含有这些不等号的式子,叫做 。

二.实数比较大小:(1)任意实数a ,b ,0___;a b ->⇔0_____;a b -=⇔0____a b -<⇔。

(2)若a>0,b>0,则有1____;1____;1___a a a b b b>⇔=⇔<⇔。

三.不等式性质1.性质1(对称性)如果 a>b ,那么 ;如果b a <,那么 .即a b b a >⇔<.2.性质2(传递性)如果,a b b c >>,那么 .即,a b b c a c >>⇒>.3.性质3(加法法则)如果 a>b ,那么a c + b c +.(是不等式移向法则的基础)4.性质4(乘法法则)如果 a>b 且0>ab ,0c >,那么 . 如果 a>b 且0>ab ,0c <,那么 .(a 、b 可以是数字,也可以是代数式,运用过程中一定要注意c 的符号)5.性质5(同向可加性)如果,a b c d >>,那么a c + b d +.(两个或多个同向不等式相加,所得不等式与原不等式同向)6.性质6(同向可乘性)如果0,0a b c d >>>>,那么ac bd .7.性质7(乘方法则)如果 ,那么,n n a b >(n ∈N ,2n ≥).8.性质8(开方法则)如果 ,那么>(n ∈N ,2n ≥).9.性质9(倒数法则) 如果ba ab b a 11,0<>>那么且【基础练习】1.用不等号“>”或“<”填空:(1),a b c d a c ><⇒- b d -.(2)0,0a b c d >><<⇒ac bd .(3)0a b >>⇒2.比较下列两数(或代数式)的大小:(2)()22121x y x y +++-与.3.已知0x >,12x<+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1不等式与不等关系(第1课时)
【学习目标】
1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯
【学习重点】
用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。

理解不等式(组)对于刻画不等关系的意义和价值。

【学习难点】用不等式(组)正确表示出不等关系
【知识导学】叫做不等式. 一,典例分析
例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:.
例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是 .
例3. 设点A与平面α的距离为d,B为平面α上的任意一点,则d AB。

例4. 某种杂志原以每本2.5元的价格销售,可以售出8万本。

据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?
例5. 某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。

按照生产的要求,600mm的数量不能超过500mm钢管的3倍。

怎样写出满足所有上述不等关系的不等式呢?
二.课堂检测
1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,则以后几天平均每天至少要完成的土方数x应满足的不等式为。

2.限速40km∕h 的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km∕h,写成不等式就是。

3.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t。

生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。

现库存磷酸盐10t、硝酸盐66t,在此基础上生产这两种混合肥料,列出满足生产条件的数学关系式。

4某次数学测验,共有16道题,答对一题得6分,答错一题倒扣2分,不答则不扣分,某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?列出其中的不
等关系。

5.将若干只鸡放入若干个笼,若每个笼里放4只,则有一鸡无笼可放:若每个笼里放5只,则有一笼无鸡可放。

设现有笼x个,试列出x满足的不等关系,并说明至少有多少只鸡多少个笼?至多有多少只鸡多少个笼?
6.某车间有20名工人,每人每天可加工甲种零件5件或乙种零件4件。

在这20名工人中,派x人加工乙种零件,其余的加工甲种零件,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1800元,写出x所要满足的不等关系.
7.某旅游公司年初以98万元购进一辆豪华旅游车,第一年各种费用为12万元,以后每年都增加4万元,该车每年的旅游效益为50万元,设第n年开始获利,列出关于n的不等关系.
8.某蔬菜收购点租用车辆,将100t新鲜辣椒运往某市销售,可租用的大卡车和农用车分别为10辆和20辆,若每辆卡车载重8t,运费960元,每辆农用车载重2.5t,运费360元,据此,安排两种车型,应满足那些不等关系,请列出来.。

相关文档
最新文档