高中数学第一章三角函数1.4三角函数的图象与性质1.4.1正弦函数余弦函数的图象成长训练新人教A版必修4

合集下载

§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象

§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象

§1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象学习目标 1.了解利用单位圆中的正弦线画正弦曲线的方法(难点).2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能利用“五点法”作出简单的正弦、余弦曲线(重点).3.理解正弦曲线与余弦曲线之间的联系(难点).知识点正弦函数、余弦函数的图象函数y=sin x y=cos x 图象图象画法“五点法”“五点法”关键五点(0,0),(π2,1),(π,0),(3π2,-1),(2π,0)(0,1),(π2,0),(π,-1),(3π2,0),(2π,1)【预习评价】(正确的打“√”,错误的打“×”)(1)正弦函数y=sin x的图象向左右和上下无限伸展.( )(2)函数y=sin x与y=sin(-x)的图象完全相同.( )(3)函数y=cos x的图象关于(0,0)对称.( )提示(1)×,正弦函数y=sin x的图象向左右无限伸展,但上下限定在直线y=1和y=-1之间.(2)×,二者图象不同,而是关于x轴对称.(3)×,函数y=cos x的图象关于y轴对称.题型一“五点法”作图的应用【例1】利用“五点法”作出函数y=1-sin x(0≤x≤2π)的简图.解(1)取值列表:X0π2π3π22πsin x010-101-sin x10121(2)描点连线,如图所示:规律方法用“五点法”画函数y=A sin x+b(A≠0)或y=A cos x+b(A≠0)在[0,2π]上简图的步骤(1)列表:x0π2π3π22πsin x(或cos x)0(或1)1(或0)0(或-1)-1(或0)0(或1)yb(或A+b)A+b(或b)b(或-A+b)-A+b(或b)b(或A+b)(2)描点:在平面直角坐标系中描出下列五个点:(0,y1),⎝⎛⎭⎪⎫π2,y2,(π,y3),⎝⎛⎭⎪⎫3π2,y4,(2π,y5),这里的y i(i=1,2,3,4,5)值是通过函数解析式计算得到的.(3)连线:用光滑的曲线将描出的五个点连接起来,不要用线段进行连接.【训练1】利用“五点法”作出函数y=-1-cos x(0≤x≤2π)的简图.解(1)取值列表如下:x0π2π3π22πcos x10-101-1-cos x-2-10-1-2(2)描点连线,如图所示.题型二利用正弦、余弦函数图象解不等式【例2】利用正弦曲线,求满足12<sin x≤32的x的集合.解首先作出y=sin x在[0,2π]上的图象.如图所示,作直线y=12,根据特殊角的正弦值,可知该直线与y=sin x,x∈[0,2π]的交点横坐标为π6和5π6;作直线y =32,该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π3和2π3. 观察图象可知,在[0,2π]上,当π6<x ≤π3,或2π3≤x <5π6时,不等式12<sin x ≤32成立.所以12<sin x ≤32的解集为⎩⎪⎨⎪⎧x |π6+2k π<x ≤π3+2k π,⎭⎪⎬⎪⎫或2π3+2k π≤x <5π6+2k π,k ∈Z .规律方法 用三角函数图象解三角不等式的方法 (1)作出相应正弦函数或余弦函数在[0,2π]上的图象; (2)写出适合不等式在区间[0,2π]上的解集; (3)根据公式一写出不等式的解集.【训练2】 求函数f (x )=lg cos x +25-x 2的定义域.解 由题意,得x 满足不等式组⎩⎨⎧cos x >0,25-x 2≥0,即⎩⎨⎧cos x >0,-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得:x ∈⎣⎢⎡⎭⎪⎫-5,-32π∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤32π,5.互动探究题型三 正弦、余弦曲线与其他曲线的交点问题【探究1】 当x ∈[0,4π]时,解不等式sin x ≥0.解 由函数y =sin x ,x ∈[0,4π]的图象可知,不等式sin x ≥0的解集为[0,π]∪[2π,3π].【探究2】 作出函数f (x )=sin x +2|sin x |,x ∈[0,4π]的图象.解 易知f (x )=⎩⎨⎧3sin x ,x ∈[0,π]∪[2π,3π],-sin x ,x ∈π,2π∪3π,4π,则f (x )的图象如图所示:【探究3】 求方程sin x +2|sin x |-|log 2x |=0解的个数.解 在同一坐标系内作出f (x )=sin x +2|sin x |和g (x )=|log 2x |的图象如图所示,易知f (x )与g (x )的图象有四个交点,故所给方程有四个根.规律方法 判断方程解的个数的关注点(1)确定方程解的个数问题,常借助函数图象用数形结合的方法求解.(2)当在同一坐标系中作两个函数的图象时,要注意其相对位置,常借助于函数值的大小来确定.【训练3】 方程x 2-cos x =0的实数解的个数是________. 解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.答案 2课堂达标1.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析 函数y =-sin x 与y =sin x 的图象关于x 轴对称,故选D . 答案 D2.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( )A .重合B .形状相同,位置不同C .关于y 轴对称D .形状不同,位置不同解析 根据正弦曲线的作法可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象只是位置不同,形状相同.答案 B3.不等式cos x <0,x ∈[0,2π]的解集为________.解析 由函数y =cos x 的图象可知,不等式cos x <0[0,2π]的解集为(π2,3π2).答案 (π2,3π2)4.函数y =cos x ,x ∈[0,2π]的图象与直线y =-12的交点有________个.解析 作y =cos x ,x ∈[0,2π]的图象及直线y =-12(图略),知两函数图象有两个交点.答案 两5.利用“五点法”作出下列函数的图象:(1)y =2-sin x (0≤x ≤2π);(2)y =-2cos x +3(0≤x ≤2π). 解 利用“五点法”作图 (1)列表:sin x010-102-sin x21232描点并用光滑的曲线连接起来,如图所示.(2)列表:X0π2π3π22π-2cos x-2020-2-2cos x+313531描点、连线得出函数y=-2cos x+3(0≤x≤2π)的图象:课堂小结1.对“五点法”画正弦函数图象的理解(1)与前面学习函数图象的画法类似,在用描点法探究函数图象特征的前提下,若要求精度不高,只要描出函数图象的“关键点”,就可以根据函数图象的变化趋势画出函数图象的草图.(2)正弦型函数图象的关键点是函数图象中最高点、最低点以及与x轴的交点.2.作函数y =a sin x +b 的图象的步骤基础过关1.用“五点法”作函数y =2sin x -1的图象时,首先应描出的五点的横坐标可以是( )A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π3解析 由“五点法”可知选A . 答案 A2.方程sin x =x10的根的个数是( )A .7B .8C .9D .10解析 在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根. 答案 A3.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )解析 由题意得y =⎩⎪⎨⎪⎧2cos x ,0≤x ≤π2或32π≤x ≤2π,0,π2<x <32π.显然只有D 合适. 答案 D4.若sin x =2m +1且x ∈R ,则m 的取值范围是________. 解析 ∵sin x ∈[-1,1],∴-1≤2m +1≤1,故-1≤m ≤0. 答案 [-1,0]5.不等式sin x <-12,x ∈[0,2π]的解集为________.解析 如图所示,不等式sin x <-12的解集为⎝ ⎛⎭⎪⎫7π6,11π6.答案 ⎝ ⎛⎭⎪⎫7π6,11π66.用“五点法”作出下列函数的简图.(1)y =2sin x ,x ∈[0,2π];(2)y =sin(x +π3),x ∈[-π3,5π3].解 (1)列表:x 0 π2 π 32π 2π2sin x0 20 -2描点、连线、绘图,如图所示.(2)①列表:x +π30 π2 π 32π 2πx-π3 π623π 76π 53π sin ⎝⎛⎭⎪⎫x +π30 1 0 -1 0②描点连线如图.7.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解 函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为{x |π3≤x ≤5π6或7π6≤x ≤5π3}. 能力提升8.如图所示,函数y =cos x |tan x |(0≤x <3π2且x ≠π2)的图象是( )解析 当0≤x <π2时,y =cos x ·|t an x |=sin x ;当π2<x ≤π时,y =cos x ·|tan x |=-sin x ; 当π<x <3π2时,y =cos x ·|tan x |=sin x ,故其图象为C .答案 C9.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π解析 作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形为如图所示的阴影部分.利用图象的对称性可知该阴影部分的面积等于矩形OABC 的面积,又∵OA =2,OC =2π,∴S 阴影部分=S 矩形OABC =2×2π=4π. 答案 D10.函数f (x )=⎩⎨⎧sin x ,x ≥0,x +2,x <0,则不等式f (x )>12的解集是________________.解析 在同一平面直角坐标系中画出函数f (x )和y =12图象,由图象易得:-32<x <0或π6+2k π<x <56π+2k π,k ∈N . 答案 ⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫-32<x <0或π6+2k π<x <56π+2k π,k ∈N11.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.解析 由⎩⎨⎧y =cos x +4,y =4,得cos x =0,当x ∈[0,2π]时,x =π2或3π2.∴交点为⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫32π,4.答案 ⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫32π,412.用“五点法”作出函数y =1-13cos x 的简图.解 (1)列表x 0 π2 π 3π2 2πcos x 1 0-1 01 1-13cos x231 43123(2)描点,连线可得函数在[0,2π]上的图象,将函数图象向左,向右平移(每次2π个单位长度),就可以得到函数y =1-13cos x 的图象,如图所示.13.(选做题)若方程sin x =1-a 2在x ∈[π3,π]上有两个实数根,求a 的取值范围.解 在同一直角坐标系中作出y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π的图象,y =1-a 2的图象,由图象可知,当32≤1-a 2<1,即-1<a ≤1-3时,y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π的图象与y =1-a 2的图象有两个交点,即方程sin x =1-a 2在x ∈⎣⎢⎡⎦⎥⎤π3,π上有两个实根.。

高中数学第一章三角函数1.4三角函数的图象与性质1.4.2正弦函数、余弦函数的性质(第1课时)习题课

高中数学第一章三角函数1.4三角函数的图象与性质1.4.2正弦函数、余弦函数的性质(第1课时)习题课
【证明】 f(x+2)=f((x+1)+1)=-f(x+1)=f(x),∴f(x)是周期 函数且 2 是它的一个周期.
(2)若函数
f(x)是以π2
为周期的偶函数,且
π f( 3
)=1,求
f(-167π
)
的值. 【思路分析】 将-176π利用周期性转化为π3 ,进而求值.
π 【解析】 ∵f(x)的周期为 2 ,且为偶函数,
【解析】 (1)∵x∈R,f(x)=sin(34x+3π2 )=-cos34x,∴f(- x)=-cos3(-4 x)=-cos34x=f(x).
∴函数 f(x)=sin(34x+3π2 )为偶函数. (2)f(x)=(1-c1o+s2sxi)nx+sinx=sin12+x+sinsixnx=sinx,但函数应满 足 1+sinx≠0,
思考题 3 判断下列函数的奇偶性:
(1)f(x)=sinx-x tanx; (2)f(x)=lg(1-sinx)-lg(1+sinx); (3)f(x)=1c-oss2inxx; (4)f(x)= 1-cosx+ cosx-1. 【答案】 (1)偶函数 (2)奇函数 (3)非奇非偶函数 (4)既是 奇函数又是偶函数
(1)①要判断奇偶性的函数是三角函数型的复合函数. ②sin(34x+3π 2 )=-cos34x.
(2)①所判断的函数是以公式形式给出的; ②f(x)的定义域可求,即 sinx+1≠0. 解答本题中的(1)可先利用诱导公式化简 f(x),再利用 f(-x) 与 f(x)的关系加以判断. 解答本题中的(2)可先分析 f(x)的定义域,然后再利用定义加 以分析.
∴函数的定义域为{x|x∈R,且 x≠2kπ+32π,k∈Z}. ∵函数的定义域不关于原点对称, ∴该函数既不是奇函数也不是偶函数. 探究 3 (2)中易忽视 f(x)的定义域而进行非等价变形,得 f(x) =sinx(1+1+sinsxinx)=sinx,从而导致结果错误. 判断函数的奇偶性,首先要看定义域是否关于原点对称,再 看 f(-x)与 f(x)的关系.

1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.知识点归纳:1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .-sin xB .sin xC .-cos xD .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 6.方程sin x =lg x 的解的个数是( )A .1B .2C .3D .4 题 号 1 2 3 4 5 6 答 案 7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k 的取值范围.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2描点作图,如图所示.12.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。

高中数学 第一章 三角函数 1_4 三角函数的图象与性质 1_4.1 正弦函数余弦函数图像领学案(无答案)

高中数学 第一章 三角函数 1_4 三角函数的图象与性质 1_4.1 正弦函数余弦函数图像领学案(无答案)
问题2、在下图中连出正弦函数y=sinx,x∈[0,2π]的图象
问题3、依据函数 ( )的图象,如何作出 ( )的图象?在下图中画出 (
【探究点二】问题4、由诱导公sin( )=
问题5、如何利用函数 与函数 的关系去作出 ( )的图象?在下图中画出y=cosx( )的图象
问题6:在正弦函数、余弦函数x∈[0,2π]的图象上,起关键作用的是哪五个点?
【学1】阅读教材31页,认真理解以下画正弦函数y=sinx x[0,2]图像的步骤:
第一步:在直角坐标系的x轴上任取一点 ,以 为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).
1.4.1正弦函数、余弦函数的图象
学习
目标
掌握用单位圆中的正弦线画出正弦函数的图象,继而学会用诱导公式平移正弦曲线获得余弦函数图象。通过Βιβλιοθήκη 析掌握五点法画正(余)弦函数图象。
学习
疑问
学习
建议
【相关知识点回顾】作函数图像最基本的方法.
【知识转接】画出各象限终边角的正弦线.
【预学能掌握的内容】在正弦函数、余弦函数x∈[0,2π]的图象上,起关键作用的是哪五个点?
第二步:在单位圆中画出对应于角 , , ,…,2π的正弦线(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”:描以下12个点
、 、 、 ……).
第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.(等价于“连线”)
正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:_____________________________;

1.4.1_正弦函数、余弦函数的图象

1.4.1_正弦函数、余弦函数的图象

正弦函数:y sin x

xR


正弦曲线
y
1


-1






x
余弦函数:y cos x


(2 ,1)
( , 1)

2 , 0)
3 ( , 0) 2
与x轴的交点: (
第一章 三角函数
题型探究
五点作图法

例1
用“五点法”作出下列函数的简图. y=sinx+1,x∈[0,2π].
x
sinx 1+sinx
y 2 1

0
0 1
π 2 1 2
π
0 1
3π 2 -1 0

0 1
y=1+sinx,x[0, 2]
第一章 三角函数
函数图象的应用
例4 (本题满分 10 分)根据正弦函数的图象, 1 求满足 sinx≥ 的 x 的范围. 2
1 【解】 在同一坐标系内画出 y=sinx 和 y= 2 的图象,如图所示: 3分
第一章 三角函数
由图看到在 x∈[0,2π]内, 1 π 5π 满足 sinx≥ 的 x 为 ≤x≤ . 2 6 6 7分
描点作图法的步骤: (1)列表(2)描点(3)连线
沙漏试验
探究一:函数y sin x, x 0, 2 图象的作法
作法: (1) 等分; (2) 作正弦线; y
第一章 三角函数
(3) 平移; (4) 连线.
1P 1

/ p1
o1
6
M1
-1A

高中数学 第一章 三角函数 1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课件 新人教A版必修4

高中数学 第一章 三角函数 1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课件 新人教A版必修4
心思在如何在课件中贯彻案例的设计意图上、如何增强课件的实效性上,既是技术上的进步,也是理论上的深化,通过几个相关案例的制作,课件的概 念就会入心入脑了。 折叠多媒体课件 多媒体教学课件是指根据教师的教案,把需要讲述的教学内容通过计算机多媒体(视频、音频、动画)图片、文字来表述并构成的课堂要件。它可以生动、 形象地描述各种教学问题,增加课堂教学气氛,提高学生的学习兴趣,拓宽学生的知识视野,10年来被广泛应用于中小学教学中的手段,是现代教学发 展的必然趋势。
A.0 个
B.1 个
C.2 个
D.无数个
解析:设 f(x)=-x,g(x)=sin x,在同一直角坐标系中画出 f(x)和 g(x)的图象,
如图所示.
由图知 f(x)和 g(x)的图象仅有一个交点,则方程 x+sin x=0 仅有一个根. 答案:B
3.已知 cos x≥12且 x∈[0,2π],求 x 的取值范围. 解析:函数 y=cos x,x∈[0,2π]的图象如图所示,
1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象
考纲定位
重难突破
1.了解利用单位圆中的正弦线画正弦曲线的 重点:1.利用“五点法”画
方法.
正、余弦函数的图象.
2.掌握、余函数图象之间
步骤和方法,能用“五点法”作出简单的正、
的区别与联系.
余弦曲线.
[双基自测] 1.正弦曲线在(0,2π]内最高点坐标为________,最低点坐标为________. 解析:由正弦曲线知,正弦曲线在(0,2π]内最高点为π2,1,最低点为32π,-1. 答案:π2,1 32π,-1
2.用五点作图法作 y=1-cos x,x∈(0,2π]的图象时,其中第二个关键点的坐标 为________. 解析:由五点作图法的规则知第二个关键点坐标为π2,1. 答案:π2,1

高中数学第一章三角函数1.4三角函数的图象与性质1.4.2.1正弦函数余弦函数的周期性与奇偶性课件新

第二十二页,共24页。
2.函数
y=sin2
0211π-2
010x是(
)
A.奇函数
B.偶函数
C.非奇非偶函数
D.既是奇函数又是偶函数
解析:y=sin2
0211π-2
010x=sinπ2-2
010x+1
005π
=-sinπ2-2
010x=-cos2
010x,
所以为偶函数.
答案:B
第二十三页,共24页。
结论 函数 f(x)叫做周期函数,非零常数 T 叫做这个函数的周期
(2)最小正周期.
条件 周期函数 f(x)的所有周期中存在一个最小的正数
结论
这个最小正数叫做 f(x)的最小正周期
第三页,共24页。
2.正弦函数、余弦函数的周期性和奇偶性
函数
y=sinx
y=cosx
周期 2kπ(k∈Z 且 k≠0) 2kπ(k∈Z 且 k≠0)
最小正周期


奇偶性
奇函数
偶函数
第四页,共24页。
[化解疑难] 正确理解函数的周期性
(1)关于函数周期性的理解,应注意以下三点: ①存在一个不等于零的常数 T; ②对于定义域内的每一个值,都有 x+T 属于这个定义域; ③满足 f(x+T)=f(x). (2)并不是每一个函数都是周期函数,若函数具有周期性,则其 周期也不一定唯一. (3)如果 T 是函数 f(x)的一个周期,则 nT(n∈Z 且 n≠0)也是 f(x) 的周期.
第十一页,共24页。
(2)法一:因为 f(x)=|sinx|, 所以 f(x+π)=|sin(x+π)|=|sinx|=f(x),所以 f(x)的周期为 π. 法二:因为函数 y=|sinx|的图象如图所示. 由图象可知 T=π.

高中数学 第一章 三角函数 1.4 三角函数的图象与性质

1.4.2 正弦函数、余弦函数的性质(周期性)课堂导学三点剖析1.周期的概念及求函数的周期【例1】求下列函数的周期:(1)y=sin2x;(2)y=3cos x 21;(3)y=2sin(2x-3π). 思路分析:本题主要考查y=Asin(ωx+φ).y=Acos(ωx+φ)的周期的求法.利用周期函数定义及诱导公式求函数的周期.解:(1)由于f (x+π)=sin2(x+π)=sin(2x+2π)=sin2x=f(x),所以由周期函数的定义知,原函数的周期为π.(2)由于f(x+4π)=3cos [12(x+4π)]=3cos(x 21+2π)=3cos x 21=f(x),所以,由周期函数的定义知,原函数的周期为4π.(3)由于f(x+π)=2sin [2(x+π)-3π]=2sin [2x+2π-3π]=2sin(2x-3π)=f(x),由周期函数的定义知,原函数的周期为π.温馨提示由上例可以看到函数的周期仅与x 的系数有关.一般地,y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0)的周期T=2πω,若y=f(x)的周期为T ,则y=f(ωx)的周期为||ωT.2.周期函数概念的理解【例2】判断下列函数是否是周期函数?如果是,求出它的一个周期.(1)y=lgx;(2)y=sinx.思路分析:判断一个函数是否是周期函数,须根据定义,看是否存在一个常数T ,使得f(x+T)=f(x).解:(1)取定义域内一个值x 0=1.由于f(x 0+T)=lg(x 0+T)=lg(1+T)≠lg1(T≠0的常数),于是f(x)=lgx 不是周期函数.(2)∵对定义域内任一x ,有sin(x+2k π)=sinx,(k∈Z ,k≠0),∴y=sinx 是周期函数,周期为2k π(k∈Z ,k≠0).温馨提示判断一个函数是周期函数,关键是能找到常数T (T≠0),使得对定义域内的任一x ,有f(x+T)=f(x).判断一个函数不是周期函数,只要在定义域内找一个特殊值x 0,验证f (x 0+T )≠f(x 0).就可以说明f(x)不是周期函数.3.周期函数的定义【例3】①存在T=2π使sin(4π+2π)=sin 4π成立,所以2π是y=sinx 的一个周期. ②f(2x+T)=f(x)对定义域内的任意x 都成立,所以2T 是f(x)的周期.(T≠0) ③周期函数不一定有最小正周期.④周期函数的周期不止一个.以上命题是真命题的是.答案:②③④温馨提示理解周期函数的概念要注意以下三点:(1)存在一个常数T≠0;(2)对其定义域内的每一个x 值,x+T 属于定义域;(3)当x 取定义域内每个值时,f(x+T)=f(x)恒成立.各个击破类题演练1求下列函数的最小正周期. (1)y=3sin(2x+6π); (2)y=2cos(π2x-3π). 解:(1)T=22π=π. (2)T=ππ22=π2. 变式提升1求y=|sinx|的周期.解:将y=sinx 的图象中y≥0的部分保持不变,将y <0部分的图象翻折到x 轴的上方,即得y=|sinx|的图象,(如下图所示).由y=|sinx|的图象知其周期为π.温馨提示由数形结合法可知y=|Asin(ωx+φ)|(A 、ω、φ是常数,ω>0)的周期为y=Asin(ωx+φ)(A 、ω、φ为常数,ω>0)的周期的一半.类题演练2下列四个函数为周期函数的是( )A.y=3B.y=3x 0C.y=sin|x| x∈RD.y=sin1x x∈R 且x≠0答案:A变式提升2已知定义在实数集上的函数f(x)始终满足f(x+2)=-f(x).判断y=f(x)是否是周期函数.若是周期函数,求出它的一个周期.解:∵f(x+4)=f [2+(x+2)]=-f(x+2)=-[-f(x)]=f(x).∴f(x)是周期函数,且周期是4.类题演练3函数y=f(x),x∈[-2,2]图象如下图所示,f(x)是周期函数吗?解析:在周期函数y=f(x)中,T是周期,若x是定义域内的一个值,则x+kT(k∈Z且k≠0)也一定属于定义域,因此周期函数的定义域一定是无限集,而且定义域一定无上界或者无下界.答案:不是变式提升3函数y=a sinx的图象是怎样的呢?是否是周期函数?若是,它的最小正周期又是什么呢?解析:∵y=a sin(x+2kπ)=a sinx,即存在常数T=2kπ(k∈Z),使得f(x+T)=f(x),∴y=a sinx是周期函数,且最小正周期为2π.因此,它的图象应是每隔2π个单位长度是相同的.。

(优秀经典)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象课件新人教A版必修4

③用___光__滑__的__曲__线___顺次连接这五个点,得正弦曲线在[0,2π]上的简图. y=sinx,x∈[0,2π]的图象向__左____、__右____平行移动(每次 2π 个单位长度), 就可以得到正弦函数 y=sinx,x∈R 的图象.
3.正弦曲线、余弦曲线 (1)定义:正弦函数y=sinx,x∈R和余弦函数y=cosx,x∈R的图象分别叫 做_正__弦_____曲线和余__弦______曲线. (2)图象:如图所示.
[解析] (1)列表
x
0
π 2
π
3 2π

sinx
0
1
0
-1
0
sinx-1
-1
0
-1
-2
-1
描点,连线,如图
(2)列表:
x
0
π 2
π
3 2π

cosx
1
0
-1
0
1
2+cosx
3
2
1
2
3
描点连线,如图
『规律总结』 用“五点法”画函数 y=Asinx+b(A≠0)或 y=Acosx+b(A≠0)
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y= cosx关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
(2)首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分 对称到x轴的上方.如图(2)所示.
『规律总结』 函数的图象变换除了平移变换外,还有对称变换.如本 例.一般地,函数f(x)的图象与f(-x)的图象关于y轴对称;-f(x)的图象与f(x)的 图象关于x轴对称;-f(-x)的图象与f(x)的图象关于原点对称;f(|x|)的图象关于 y轴对称.

高中数学 第一章 三角函数 1.4 三角函数的图象与性质

1.4.3 正弦函数、余弦函数的性质(单调性和奇偶性)课堂导学三点剖析1.正余弦函数的单调性、奇偶性与最值 【例1】求下列函数的单调区间: (1)y=sin(x-3π); (2)y=cos2x. 思路分析:本题主要考查复合函数的单调区间的求法.可依据y=sinx(x∈R )和y=cosx(x∈R )的单调区间及复合函数单调性原则求单调区间.解:(1)令u=x-3π,函数y=sinu 的递增、递减区间分别为[2k π-2π,2k π+2π],k∈Z,[2k π+2π,2k π+π23],k∈Z .∴y=sin(x -3π)的递增、递减区间分别由下面的不等式确定.2k π-2π≤x -3π≤2k π+2π,k∈Z ,2k π+2π≤x -3π≤2k π+23π,k∈Z ,得2k π-6π≤x≤2k π+π65,k∈Z ,2k π+65π≤x≤2k π+116π,k∈Z .∴函数y=sin(x-3π)的递增区间、递减区间分别是[2k π-6π,2k π+π65],k∈Z ,[2k π+65π,2k π+116π],k∈Z .(2)函数y=cos2x 的单调递增区间、单调递减区间分别由下面的不等式确定2k π-π≤2x≤2k π(k∈Z ),2k π≤2x≤2k π+π,k∈Z . ∴k π-2π≤x≤k π,k∈Z ,k π≤x≤k π+2π,k∈Z. ∴函数y=cos2x 的单调递增区间、单调递减区间分别为[k π-2π,k π],k∈Z,[k π,k π+2π],k∈Z . 【例2】求函数y=3-2sin(x+6π)的最大、最小值及相应的x 值.思路分析:使函数y=3-2sin(x+6π)取得最大、最小值的x 就是使得函数y=sin(x+6π)取得最小、最大值的x.解:当sin(x+6π)=1 即x+6π=2k π+2π,x=2k π+3π时,y 取最小值,y 的最小值为3-2=1.当sin(x+6π)=-1即x+6π=2k π-2π,x=2k π-23π时,y 取最大值,y 的最大值为3+2=5.温馨提示求形如y=Asin(ωx+φ)+B 或y=Acos(ωx+φ)+B 的单调区间或最值时,我们用整体换元思想.A 、ω>0时,则ωx+φ直接套正余弦函数的增减区间和取最大、最小值的x 的集合,解得x 的范围即可. 2.判断函数的奇偶性【例3】判断下列函数的奇偶性. (1)f(x)=|sinx|+cosx; (2)f(x)=xx xx cos sin 1cos sin 1++-+;(3)y=1sin -x ;(4)y=1cos cos 1-+-x x .思路分析:本题主要考查奇偶性的判定.判断奇偶性的方法.①判断定义域是否关于原点对称;②判断f(-x)与f(x)的关系. 解:(1)函数的定义域为R , f(-x)=|sin(-x)|+cos(-x) =|-sinx|+cosx=|sinx|+cosx=f(x). ∴函数为偶函数.(2)由1+sinx+cosx≠0得 x≠π+2k π,且x≠π23+2k π,k∈Z . ∴函数的定义域不关于原点对称. ∴函数f(x)=xx xx cos sin 1cos sin 1++-+为非奇非偶函数.(3)∵sinx -1≥0, ∴sinx=1,x=2k π+2π(k∈Z ). 函数定义域不是关于原点对称的区间,故为非奇非偶函数. (4)∵1-cosx≥0且cosx≥1,∴cosx=1,x =2k π(k∈Z ).此时,y=0,故该函数既是奇函数,又是偶函数. 温馨提示判断函数的奇偶性,要特别注意函数的定义域.如果定义域不关于原点对称,则为非奇非偶函数,若定义域关于原点对称.再通过化简判断f(-x)与f(x)的关系,如f(x)=f(-x)且f(x)≠-f(x),则该函数为只偶非奇函数;如:f(-x)=-f(x)且f(-x)≠f(x),则该函数为只奇非偶函数;如f(-x)=f(x)且f(-x)=-f(x),则该函数为既奇又偶函数; 如f(-x)≠f(x),且f(-x)≠-f(x),则该函数为非奇非偶函数.3.y=Asin(ωx+φ)或y=Acos(ωx+φ)型函数中,A 、ω的正负对求单调区间及最值的影响 【例4】求函数的单调区间:y=2sin(4π-x). 思路分析:令4π-x=u,则u=4π-x 在x∈R 上是减函数,由复合函数同增异减原则,要求原函数的递增区间,4π-x 必须套sinu 的减区间.解:y=2sin(4π-x)化为y=-2sin(x-4π).∵y=sinu(u∈R )的递增、递减区间分别为[2k π-2π,2k π+2π],k∈Z . [2k π+2π,2k π+23π],k∈Z .∴函数y=-2sin(x-4π)的递增、递减区间分别由下面的不等式确定.2k π+2π≤x -4π≤2k π+23π,k∈Z .2k π-2π≤x -4π≤2k π+2π,k∈Z.得2k π+43π≤x≤2k π+47π,k∈Z .2k π-4π≤x≤2k π+43π,k∈Z .∴函数y=sin(4π-x)的单调递增区间、单调递减区间分别为[2k π+43π,2k π+47π],k∈Z .[2k π-4π,2k π+43π],k∈Z .各个击破类题演练1 求函数y=3sin(2x+4π)的单调递增区间. 解:令2x+4π=u ,则 y=3sinu 的单调增区间为[2k π-2π,2k π+2π],k∈Z , 即2k π-2π≤2x+4π≤2k π+2π,∴k π-π83≤x≤k π+8π. ∴y=3sin(2x+4π)的单调递增区间是[k π-83π,k π+8π],k∈Z .变式提升1比较下列各组数的大小. (1)sin16°与sin154°; (2)cos3,cos43π,sin4,cos 65π. 解:(1)因为sin154°=sin(180°-26°)=sin26°.函数y=sinx 在[0,2π]为增函数,而26°>16°.所以sin26°>sin16°,即sin154°>sin16°. (2)因为sin4=cos(2π-4)=cos(4-2π),函数y=cosx 在[0,π]为减函数,而 43π<4-2π<65π<3<π. 所以cos 43π>cos(4-2π)>cos 65π>cos3.即cos 43π>sin4>cos 65π>cos3.类题演练2函数f(x)=3sin(π5x+3π)的最大值为____________,相应的x 取值集合为____________. 解析:最大值为3,此时π5x+3π=2k π+2π,k∈Z ,∴x=10k+65,k∈Z .答案:3 {x|x=10k+65,k∈Z }变式提升2求下列函数的最大值与最小值及相应的x. (1)y=acosx+b;(2)y=cos 2x+sinx-2.解:(1)①若a >0,当cosx=1,即x=2k π时,y 取最大值,y 的最大值为a+b ; 当cosx=-1,即x=2k π+π时,y 取最小值,y 的最小值为b-a.②若a <0,当cosx=1即x=2k π时,y 取最小值,y 的最小值为a+b ; 当cosx=-1即x=2k π+π时,y 取最大值,y 的最大值为b-a. 总上知y 的最大值为|a|+b ,最小值为-|a|+b. (2)y=1-sin 2x+sinx-2=-sin 2x+sinx-1=-(sinx-21)2-43, 当sinx=12,即x=2k π+6π或x=2k π+π65(k∈Z )时,y 取得最大值,y 的最大值为-43;当sinx=-1即x=2k π-2π时,y 取得最小值,y 的最小值为-3. 类题演练3判断下列函数的奇偶性: (1)f(x)=xsin(π+x);(2)f(x)=cos(2π-x)-x 3sinx;(3)f(x)=xxx sin 1cos sin 12+-+.解:(1)函数的定义域R 关于原点对称. f(x)=xsin(π+x)=-xsinx,f(-x)=-(-x)sin(-x)=-xsinx=f(x). ∴f(x)是偶函数.(2)函数f(x)的定义域R 关于原点对称,又f(x)=cosx-x 3sinx∴f(-x)=cos(-x)-(-x)3sin(-x)=cosx-x 3sinx=f(x). ∴f(x)为偶函数.(3)函数应满足1+sinx≠0, ∴函数的定义域为{x∈R |x≠2k π+23π,k∈Z }, ∴函数的定义域关于原点不对称, ∴函数既不是奇函数也不是偶函数. 变式提升3(1)已知f(x)=ax+bsin 3x+1(a 、b 为常数),且f(5)=7,求f(-5). (2)如果函数y 1=a-bcosx(b >0)的最大值是32,最小值是21-,那么函数y 2=-4asin3bx 的最大值是( )A.-2B.2C.32 D.-32 解:(1)因为f(-x)-1=a(-x)+bsin 3(-x)=-(ax+bsin 3x)=-[f(x)-1],所以f(-5)=-6.(2)由题意a+b=⎪⎪⎩⎪⎪⎨⎧-=-=+,21,23b a b a ∴⎪⎩⎪⎨⎧==,1,21b a∴y 2=-2sin3x.∴y 2的最大值为2. 答案:(1)-6 (2)B 类题演练4 函数y=2sin(6π-2x)(x∈[0,π])为增函数的区间是( )A.[0,3π] B.[12π,127π]C.[3π,65π] D.[65π,π]解:2sin(6π-2x)=-2sin(2x-6π),当2k π+2π≤2x -6π≤2k π+π23,即k π+3π≤x≤k π+65π(k∈Z ),当k=0时得在[0,π]上的单调增区间为[3π,65π].答案:C变式提升4求函数y=cos(6π-x 21)的单调递增区间. 解:∵y=cos(6π-2x)=cos(2x-6π),令2x-6π=u ,则y=cosu 的单调递增区间为 [2k π-π,2k π],k∈Z ,即2k π-π≤2x -6π≤2k π,k∈Z , ∴k π-π125≤x≤k π+12π,k∈Z ,∴函数y=cos(6π-x 21)的单调递增区间为[k π-π125,k π+12π],k∈Z .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.1 正弦函数、余弦函数的图象
主动成长
夯基达标
1.函数y=1-sinx,x∈[0,2π]的大致图象是( )
图1-4-8
解析:y=sinx y=-sinx y=1-sinx.
答案:B
2.函数y=-cosx的图象与余弦函数的图象( )
A.只关于x轴对称
B.只关于原点对称
C.关于原点、x轴对称
D.关于原点、坐标轴对称
解析:关于x轴对称.
答案:A
3.对于函数f(x)=下列四个命题中,错误的个数为( )
①该函数的值域为[-1,1]②当且仅当x=2kπ+(k∈Z)时,该函数取得最大值1 ③该函数是以π为最小正周期的周期函数④当且仅当2kπ+π<x<2kπ+(k∈Z)时,f(x)
<0
A.1
B.2
C.3
D.4
解析:画出f(x)的图象如图.黑体为函数图象.
①值域为[-,1];②当x=2kπ+或x=2kπ时,取得最大值;③最小正周期为2π;④正确.
答案:C
4.使sinx<cosx成立的一个区间是( )
A.[-,]
B.[-,]
C.[-,]
D.[0,π]
解析:在同一坐标系中画出y=sinx与y=cosx的图象便得.
答案:A
5.方程2|x|=cosx的实根有( )
A.无数个
B.3个
C.2个
D.1个
解析:在同一坐标系中画出y=2|x|与y=cosx的图象,如图,交点为(0,1).
答案:D
6.根据正弦函数的图象解不等式sin2x≥(x∈[0,π]).
解:作出正弦函数的图象.
由图象易知x∈[].
7.作出函数y=|sinx|的图象,你能由函数y=sinx的图象,通过变换方法得到函数y=|sinx|的图象吗?
解:y=|sinx|=
比较函数y=|sinx|的图象与函数y=sinx的图象可知,当2kπ≤x≤2kπ+π,k∈Z时,两个函数图象重合;当2kπ+π<x<2kπ+2π,k∈Z时,两个函数图象关于x轴对称.
所以,保留函数y=sinx在x轴上方及与x轴的交点的图象,将其在x轴下方的图象沿x轴翻折到x轴上方,就可以得到函数y=|sinx|的图象.
8.用五点法作出函数y=2sin(2x+)的图象.
解:(1)列表:列表时2x+取值 0,,π,,2π,再求出相应的x值和y值.。

相关文档
最新文档