2018年北师大九年级数学上册《第四章图形的相似》单元测试含答案
北师大版九年级上册数学单元测试卷(第四章 图形的相似)

2019年秋北师九上数学单元测试卷班级 姓名第四章 图形的相似 [时间:120分钟 分值:150分]一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.2018· 如果x ∶(x +y )=3∶5,那么xy=( )A.32B.38C.23D.852.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B .5C .6D .83.能说明△ABC ∽△A ′B ′C ′的条件是( ) A.AB A ′B ′=AC A ′C ′或BC B ′C ′=ACA ′C ′B.AB AC =A ′B ′A ′C ′且∠A =∠C ′C.AB A ′B ′=BCB ′C ′且∠B =∠B ′D.AB A ′B ′=BCA′C′且∠B =∠A ′ 4.[2018·滨州]在平面直角坐标系中,线段AB 两个端点的坐标分别为A (6,8),B (10,2).若以原点O 为位似中心,在第一象限内将线段AB 缩短为原来的12后得到线段CD ,则点A 的对应点C 的坐标为( )A .(5,1) .(4,3) C .(3,4).(1,5)5.[2018·贵港]如图,在△ABC 中,EF ∥BC ,AB =3AE .若S 四边形BCFE=16,则S △ABC =( )B.18D.246.如图,四边形ABCD 是平行四边形,则图中与△DEF 相似的三角形共有( )A .1个B .2个C .3个D .4个7.如图,在方格纸中,△ABC 和△EPD 的顶点均在格点上,要使△ABC ∽△EPD ,则点P 所在的格点为( )A .P 1B .P 2C .P 3D .P 48.如图,已知AB ,CD ,EF 都与BD 垂直,垂足分别是点B ,D ,F ,且AB =1,CD =3,那么EF 的长是( )A.13B.23C.34D.459.[2018·厦门一模]我国古代数学家刘徽发展了“重差术”,用于测量不可到达的物体的高度.比如,通过下列步骤可测量山的高度PQ (如图):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶端B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P 、竹竿顶端D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式PQ =d la 2-a 1+l.则上述公式中,d 表示的是( )A .QA 的长 .AC 的长C .MN 的长D .QC 的长10.[2018·包头]如图,在四边形ABCD 中,BD 平分∠ABC ,∠BAD =∠BDC =90°,E 为BC 的中点,AE 与BD 相交于点F .若BC =4,∠CBD =30°,则DF 的长为( )A.235B.233C.334D.435二、填空题(本大题共6个小题,每小题4分,共24分) 11.已知a ,b ,c ,d 是成比例线段,其中a =2 cm ,b =3 cm ,d =6 cm ,则c =____ ____ cm.12.[2018·上海]如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是__ __.,13.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,且AD =2.5 cm ,DB =0.9 cm ,则CD =__ __cm ,S △ACD ∶S △CBD =__ __.14.[2018·包头]如图,在ABCD 中,AC 是一条对角线,EF ∥BC ,且EF 与AB 相交于点E ,与AC 相交于点F ,3AE =2EB ,连接DF .若S △AEF =1,则S △ADF 的值为__ __.15.如图,等边△ABC 的边长为3,点P 为BC 上一点,且BP =1,点D 为AC 上一点.若∠APD =60°,则CD 的长为__ __.16.[2018秋·金牛区期末]如图,矩形ABCD 的对角线AC ,BD 交于点O ,点E 是BC 边上的一动点,连接OE ,将△BOC 分成了两个三角形,若BE =OB ,且OC 2=CE ·BC ,则∠BOC 的度数为__ __.三、解答题(本大题共9个小题,共96分)17.(10分)若a b =c d =e f =25.求:(1)a -c b -d; (2)2a +3c -4e 2b +3d -4f; (3)比较(1)(2)的结论能发现什么规律?18.(10分)[2018秋·宜宾县期中]已知,如图所示,AF⊥BC,CE⊥AB,垂足分别是点F,E,试证明:(1)△BAF∽△BCE;(2)△BEF∽△BC A.19.(10分)[2018·青海]如图,在平行四边形ABCD中,E为AB 边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.20.(10分)将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标.(1)沿y轴正方向平移2个单位;(2)关于y轴对称;(3)以点C为位似中心,将△ABC放大到原来的2倍.21.(10分)如图,在△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EA D.22.(10分)如图,点M为线段AB的中点,AE与BD交于点C,∠DME=∠A =∠B,且DM交AC于点F,ME交BC于点G.写出图中的所有相似三角形,并选择一对加以证明.23.(12分)[2018·金华、丽水节选]在ABC 中,∠ACB=90°,AC =12.点D 在直线CB 上,直线AB 与直线CE ,DE 的交点分别为点F ,G .如图,点D 在线段CB 上,四边形ACDE 是正方形.(1)若点G 为DE 的中点,求FG 的长. (2)若DG =GF ,求BC 的长.,24.(12分)如图,已知Rt△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 是AC 的中点,ED 与AB 的延长线交于点F ,求证:(1)△ABD ∽△CAD ; (2)AB AC =DF AF.25.(12分)[2018·淮安节选]如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__ __ ;(2)如图,在ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.参考答案一、1.A 【解析】 由xx +y =35得5x =3x +3y ,即x y =32.2.C 【解析】 ∵AD ∥BE ∥CF ,∴AB BC =DE EF ,即13=2EF,得EF =6. 3.C 【解析】C 项满足三角形两边对应成比例且夹角相等,其他选项都不满足三角形相似的条件.4.C 【解析】 根据题意点C 的坐标为(6×12,8×12),即C (3,4).5.B 【解析】 设△AEF 的面积为S ,则△ABC 的面积为16+S ,由于在△ABC 中,EF ∥BC ,AB =3AE ,所以S 16+S =(AE AB )2=(13)2=19,解得S =2,所以S △ABC =16+2=18,故选.6.B 【解析】 ∵DE ∥AB ,∴△DEF ∽△ABF .∵AD ∥BC ,∴△EDF ∽△ECB ,因此与△DEF 相似的三角形有2个.7.C 【解析】 ∵∠BAC =∠PED ,而AB AC =32,∴EP ED =32时,△ABC ∽△EP D.∵DE =4,∴EP =6,∴点P 落在P 3处.8.C 【解析】 ∵AB ∥EF ∥CD ,∴△ABE ∽△DCE ,∴EC BE =DCAB =3,同理△BEF ∽△BCD ,∴EF CD =BE BC =BE BE +EC =14,∴EF =34.9.B 【解析】 ∵AB ∥PQ ,∴PQ AB =MQ AM ,∴PQ l =a 1+AQ a 1,∴AQ =PQl ·a 1-a 1.∵CD ∥PQ ,∴PQ CD =NQ CN ,∴PQ l =a 2+AC +AQ a 2,∴AQ =PQl ×a 2-a 2-A C.∴PQ =AC·la 2-a 1+l ,∴d=A C.10.D【解析】 连接DE ,∵∠BDC =90°,∴DE =BE =12BC =2,∴∠CBD =∠EDB =30°.∵BD 平分∠ABC ,∴∠ABD =∠CBD =30°, ∴AB ∥DE ,∴△DEF ∽△BAF ,∴DE AB =DF BF, 易求得AB =3,∴DE AB =DF BF =23,∴DF =25BD =25×23=45 3.二、11.4. 12. 127.答图【解析】 如答图,作AH ⊥BC 于点H ,交GF 于点I .设正方形的边长是x ,∵△ABC 的面积是6,∴12×BC ×AH =6.又∵BC =4,∴AH=3,AI =3-x .∵正方形DEFG ,∴GF ∥BC ,∴GF BC =AI AH ,3-x 3=x4,解得x =127,∴正方形的边长是127.13. 1.5 25∶9.【解析】 ∵∠ACB =90°,∴∠A +∠B =90°. 又∵CD ⊥AB ,∴∠BCD +∠B =90°, ∴∠A =∠BC D.又∵∠ADC =∠CDB =90°,∴△ACD ∽△CBD ,∴AD CD =CD DB,∴CD 2=AD ·DB =2.5×0.9=2.25, ∴CD =1.5 cm ,∴S △ACD S △CBD =⎝ ⎛⎭⎪⎫AD CD 2=⎝ ⎛⎭⎪⎫2.51.52=259. 14.52 【解析】 ∵3AE =2EB ,∴AE EB =23.∵EF ∥BC 易证得△AEF ∽△ABC ,∴S △AEF S △ABC =425,又∵S △AEF =1,∴S △ABC =254,∵AC 是对角线,∴S △ADC =254,又∵AF FC =AE EB =23, ∴S △ADF =25S △ADC =25×254=52.15.23 【解析】 ∵△ABC 是等边三角形,∴AB =BC =AC =3,∠B =∠C =60°, ∴∠BAP +∠APB =180°-60°=120°. ∵∠APD =60°,∴∠APB +∠DPC =180°-60°=120°, ∴∠BAP =∠DP C.又∵∠B =∠C ,∴△BAP ∽△CPD ,∴AB CP =BPCD.∵AB =BC =3,BP=1,∴CP =BC -BP =2,即32=1CD ,解得CD =23. 16.108°解:∵OC 2=CE ·BC ,∴OC CE =BCOC,∵∠OCE =∠OCB , ∴△OCE ∽△BCO , ∴∠COE =∠CBO . ∵四边形ABCD 是矩形, ∴OB =OC ,∴∠OBC =∠OCB =∠COE ,设∠OBC =∠OCB =∠COE =x ,∵BE =BO ,∴∠BOE =∠BEO =∠COE +∠ECO =2x , ∵∠OBC +∠OCB +∠BOC =180°, ∴x +x +3x =180°, ∴x =36°, ∴∠BOC =3x =108°.三、17.解:(1)∵a b =c d =25,∴a =25b ,c =25d∴a -c b -d =25b -25d b -d =25(b -d )b -d =25. (2)∵a b =c d =e f =25,∴2a 2b =3c 3d =-4e -4f =25,同(1)可知, 2a +3c -4e 2b +3d -4f =25(2b +3d -4f )2b +3d -4f =25.(3)a -c b -d =2a +3c -4e 2b +3d -4f =a b. 18.证明:(1)∵AF ⊥BC ,CE ⊥AB , ∴∠AFB =∠CEB =90°. ∵∠B =∠B , ∴△BAF ∽△BCE . (2)∵△BAF ∽△BCE ,∴BF BE =BA BC,∴BFBA=BEBC,∵∠B=∠B,∴△BEF∽△BC A.19.(1)证明:∵点E是AB中点,∴AE=BE.1分∵四边形ABCD是平行四边形,∴AD∥B C.又∵点F在CB,DE的延长线上,∴AD∥BF,∴∠ADE=∠BFE,又∵∠AED=∠BEF,∴△AED≌△BEF,∴AD=BF;(2)解:∵EB∥CD,∴△EFB∽△FD C.∵△AED≌△BFE,∴ED=EF,S△AED=S△BFE,∴EFDF=12,∴S△BEFS△DCF=14,设S△BFE为x,S四边形EBCD为3x,则4x=32,x=8,S四边形EBCD=3×8=24.20.解:图略.(1)△ABC沿y轴正方向平移2个单位后所得△A1B1C1的三个顶点坐标为A1(0,0),B1(3,1),C1(2,3).(2)△ABC关于y轴对称的△A2B2C2的三个顶点坐标分别为A2(0,-2),B2(-3,-1),C2(-2,1).(3)将△ABC以点C为位似中心,放大为原来的2倍后所得△A3B3C3的三个顶点坐标分别为A3(6,7),B3(0,5),C3(2,1)或A3(-2,-5),B3(4,-3),C3(2,1).21.证明:∵AD=DB,∴∠B=∠BA D.又∵∠AED=∠B+∠2,∠BAC=∠BAD+∠1,∠1=∠2,∴∠BAC=∠AED,∴△ABC∽△EA D.22.解:图中的相似三角形有:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM.以下证明△AMF∽△BGM.∵∠AFM=∠DME+∠E,∠DME=∠A=∠B,∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG.又∵∠A=∠B,∴△AMF∽△BGM.23.答图解:(1)在正方形ACDE 中,有DG =GE =6. 在AEG 中,AG =AE 2+EG 2=122+62=6 5.∵EG ∥AC ,∴△ACF ∽△GEF . ∴FG AF =EG AC ,∴FG AF =612=12. ∴FG =13AG =2 5.(2)如答图,在正方形ACDE 中,AE =ED ,∠AEF =∠DEF =45°, 又EF =EF ,∴△AEF ≌△DEF . 设∠1=∠2=x .∵AE ∥BC ,∴∠B =∠1=x . ∵GF =GD , ∴∠3=∠2=x .在△DBF 中,∠3+∠FDB +∠B =180°, ∴x +(x +90°)+x =180°,解得x =30°, ∴∠B =30°.∴在ABC中,AB=2AC=24,BC=AB2-AC2=242-122=12 3.24.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAD+∠DAC=90°,∠DAC+∠ACD=90°,∴∠BAD=∠AC D.又∵∠ADB=∠ADC,∴△ABD∽△CA D.(2)∵△ABD∽△CAD,∴ABCA=BDAD.∵E是AC的中点,∠ADC=90°,∴ED=EC,∴∠ACD=∠ED C.∵∠EDC=∠BDF,∠ACD=∠BAD,∴∠BAD=∠BDF.又∵∠AFD=∠DFB,∴△AFD∽△DFB,∴ADDB=AFDF,∴ABAC=DFAF.25.【解析】 (1)由“准互余三角形”定义可知:若△ABC是“准互余三角形”,又∠C >90°,则有2∠A +∠B =90°或2∠B +∠A =90°, 又∵∠A =60°,∴2∠A +∠B =90°不成立,即代入2∠B +∠A =90°;可得∠B =15°. 解:(2)存在,BE =95.∵点E 在BC 边上, ∴∠AEB >90°,∴2∠BAE +∠B =90°或2∠B +∠BAE =90°, ∵点E (异于点D ),∴2∠BAE +∠B =90°不成立. 在ABC 中,可得∠BAE +∠EAC +∠B =90°,又由“准互余三角形”定义可知:2∠B +∠BAE =90°, ∴∠B =∠EAC , ∴△ABC ∽△EAC ,∴AC EC =BC AC, ∵AC =4,BC =5, ∴EC =165,∴BE =BC -EC =95.。
北师大版九年级数学上册 第四章 图形的相似 单元测试题(有答案)

北师大版九年级数学上册第四章图形的相似单元测试题一.选择题(共10小题,每小题3分,共30分)1.如果2x=3y,那么下列比例式中正确的是()A.=B.=C.=D.=2.如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()A.6B.7C.8D.93.自然界中存在很多自相似现象,如树木的生长,雪花的形成,土地干旱形成的地面裂纹.分形几何就是专门研究像雪花形状这样的自相似图形(即图形的局部与它的整体具有一定程度的相似关系)的一个数学分支.下列自相似图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.如图,在△ABC中,点P为AB上一点连接CP.若再添加一个条件使△APC与△ACB相似,则下列选项中不能作为添加条件的是()A.∠ACP=∠B B.∠APC=∠ACBC.AP:AC=AC:AB D.AP:AB=PC:BC5.如图,在△ABC中,D,E分别为AB、AC边上的中点,则△ADE与△ABC的面积之比是()A.1:4B.1:3C.1:2D.2:16.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似()A.①处B.②处C.③处D.④处7.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S 在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为()A.40m B.60m C.120m D.180m8.若△ABC∽△DEF且面积比为9:25,则△ABC与△DEF的周长之比为()A.9:25B.3:25C.3:5D.2:59.如图,△OA1B1与△OAB的形状相同,大小不同,△OA1B1是由△OAB的各顶点变化得到的,则各顶点变化情况是()A.横坐标和纵坐标都乘以2B.横坐标和纵坐标都加2C.横坐标和纵坐标都除以2D.横坐标和纵坐标都减210.在一张复印出来的纸上,一个三角形的一条边由原图中的2cm 变成了6cm ,则复印出的三角形的面积是原图中三角形面积的( )A .3倍B .6倍C .9倍D .12倍二.填空题(共8小题,每小题3分,共24分)11.已知,=,则= .12.如图,已知l 1∥l 2∥l 3,直线l 4、l 5被这组平行线所截,且直线l 4、l 5相交于点E ,已知AE =EF=1,FB =3,则= .13.如图,四边形ABCD ∽四边形EFGH ,∠A =∠D =100°,∠G =65°,则∠F = .14.如图,已知∠BAC =∠DAE ,请你再补充一个条件 ,使得△ABC ∽△ADE .15.如图,在平行四边形ABCD 中,P 是AD 边上的一个点,连接PB ,PC ,M ,N 分别是PB ,PC 的中点;已知S ▱ABCD =16,则S △PMN = .16.如图是小孔成像原理的示意图,点O 与物体AB 的距离为45厘米,与像CD 的距离是30厘米,AB ∥CD .若物体AB 的高度为27厘米,那么像CD 的高度是 厘米.17.已知两个相似三角形的相似比为4:3,则这两个三角形的对应高的比为.18.如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.三.解答题(共7小题,共66分)19.已知4:x=1:75%,求x的值.20.如图,在△ABC中,AB=10,AC=8,点D在直线AB上,过点D作DE∥BC交直线AC与点E.如果BD=4,求AE的长.21.如图,矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC,若矩形ABFE∽矩形DEFC,且相似比为1:2,求AD的长.22.(1)解方程x2﹣3x﹣18=0;(2)如图,BD、AC相交于点P,连接BC、AD,且∠1=∠2,求证:△ADP∽△BCP.23.如图,BD、AC相交于点P,连接AB、BC、CD、DA,∠1=∠2(1)求证:△ADP∽△BCP;(2)若AB=8,CD=4,DP=3,求AP的长.24.如图,矩形ABCD为台球桌面,AD=280cm,AB=140cm,球目前在E点位置,AE=35cm,如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.25.先阅读下列材料,然后解答问题.材料:从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线例如:如图①,AD把△ABC分成△ABD与△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割线.解答下列问题:(1)如图②,在△ABC中,∠B=40°,AD是△ABC的完美分割线,且△ABD是以AD为底边的等腰三角形,则∠CAD=度.(2)在△ABC中,∠B=42°,AD是△ABC的完美分割线,且△ABD是等腰三角形,求∠BAC 的度数.参考答案一.选择题1.解:∵2x=3y,∴=或=或=.故选:C.2.解:∵DE∥BC,∴=,即=,∴AE=6,∴AC=AE+EC=6+2=8.故选:C.3.解:A、既是中心对称图形,也是轴对称图形,不合题意;B、既是中心对称图形,也是轴对称图形,不合题意;C、既是中心对称图形,也是轴对称图形,不合题意;D、是轴对称图形,但不是中心对称图形,符合题意.故选:D.4.解:A、当∠ACP=∠B,∠A=∠A,可得△APC∽△ACB,故该选项不符合题意;B、当∠APC=∠ACB,∠A=∠A,可得△APC∽△ACB,故该选项不符合题意;C、当AP:AC=AC:AB,∠A=∠A,可得△APC∽△ACB,故该选项不符合题意;D、当AP:AB=PC:BC,∠A=∠A,无法证明△APC∽△ACB,故该选项符合题意;故选:D.5.解:由题意可知:DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,故选:A.6.解:帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、2、4;“车”、“炮”之间的距离为1,“炮”②之间的距离为,“车”②之间的距离为2,∵==,∴马应该落在②的位置,故选:B.7.解:∵RQ⊥PS,TS⊥PS,∴RQ∥TS,∴△PQR∽△PST,∴=,即=,∴PQ=120(m).故选:C.8.解:∵相似三角形△ABC与△DEF面积的比为9:25,∴它们的相似比为3:5,∴△ABC与△DEF的周长比为3:5.故选:C.9.解:由直角平面坐标系得出A(2,1),A1(4,2),B(1,3),B1(2,6),故对应点的横坐标和纵坐标都乘以2.故选:A.10.解:由题意可知,相似多边形的边长之比=相似比=2:6=1:3,所以面积之比=(1:3)2=1:9.所以复印出的三角形的面积是原图中三角形面积的9倍.故选:C.二.填空题11.解:∵=,∴==﹣5.故答案是:﹣5.12.解:∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l 2∥l 3,∴==,∴==,故答案为.13.解:∵四边形ABCD ∽四边形EFGH , ∴∠A =∠D =∠E =∠H =100°,∴∠F =360°﹣∠E ﹣∠H ﹣∠G =360°﹣100°﹣100°﹣65°=95°.故答案为95°.14.解:∵∠BAC =∠DAE ,∠B =∠D ,∴△ABC ∽△ADE ,故答案为:∠B =∠D 等15.解:∵四边形ABCD 为平行四边形,∴S △PBC =S ▱ABCD =×16=8,∵M ,N 分别是PB ,PC 的中点,∴MN ∥BC ,MN =BC ,∴△PMN ∽△PBC ,∴=()2=,∴S △PMN =×8=2.故答案为2.16.解:∵AB ∥CD∴△ABO ∽△CDO∴=又∵AB =27∴CD =18.故答案为:18.17.解:因为两个相似三角形的相似比为4:3,所以则这两个三角形的对应高的比为4:3.故答案为4:3.18.解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).三.解答题19.解:4:x=1:75%,x=4×75%,解得:x=2.20.解:∵DE∥BC,∴=,∵AB=10,AC=8,BD=4,∴=,∴AE=.21.解:∵矩形ABFE∽矩形DEFC,且相似比为1:2,∴==,∵四边形ABCD为矩形,∴CD=AB=4∴==,∴DE =8,AE =2,∴AD =AE +DE =2+8=10.22.解:(1)(x ﹣6)(x +3)=0, ∴x =6或x =﹣3;(2)∵∠1=∠2,∠DPA =∠CPB ,∴△ADP ∽△BCP ;23.解:(1)证明:∵∠1=∠2,∠DPA =∠CPB∴△ADP ∽△BCP(2)∵△ADP ∽△BCP ,∴=,∵∠APB =∠DPC∴△APB ∽△DPC∴==,∴AP =624.(1)证明:∵∠EFG =∠DFG , ∴∠EFB =∠DFC ,又∵∠B =∠C ,∴△BEF ∽△CDF ;(2)解:∵△BEF ∽△CDF ,∴=,设FC =xcm ,则=, 解得:x =160,答:CF 的长为160cm .25.解:(1)∵AD是△ABC的完美分割线,∴△DAC∽△ABC∴∠CAD=∠B=40°故答案为:40(2)若BD=AD,∵AD是△ABC的完美分割线,∴△DAC∽△ABC∴∠CAD=∠B=42°∵AD=BD,∴∠ABD=∠BAD=42°∴∠BAC=∠BAD+∠CAD=84°若AB=BD,∴∠BAD=69°=∠BDA∵∵AD是△ABC的完美分割线,∴△DAC∽△ABC∴∠CAD=∠B=42°∴∠BAC=∠BAD+∠CAD=42°+69°=111°若AB=AD,∴∠B=∠ADB=42°∵AD是△ABC的完美分割线,∴△DAC∽△ABC∴∠CAD=∠B=42°∵∠ADB=∠DAC+∠C=42°+∠C≠42°∴不存在AB=AD,综上所述:∠BAC的度数为84°或111°。
北师大版九年级数学上册第四章《图形的相似》单元测试题(含答案) (5)

图形的相似单元同步练习(典型题汇总)检测时间:90分钟满分:120分一、选择题(每小题3分,共21分)1.如果x:y=3:4,则下列各式中不正确的式子是()A.74x yy+= B.41yy x=-C.14x yy-= D.328xy=2.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是()A.12米 B.11米 C.10米 D.9米3.如图1所示,在△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD交CB的延长线于点E,则下列结论正确的是()A.△AED∽△ACB B.△AEB∽△ACD; C.△BAE∽△ACE D.△AEC∽△DAC(1) (2) (3)4.如图2所示,D,E分别是△ABC的边AB,AC上的点,∠1=∠B,AE=EC=4,BC=•10,AB=12,则△ADE和△ACB的周长之比为()A.12B.13C.14D.165.如图3所示,在正方形网格上有6个斜三角形,①△ABC;②△BCD;③△BDE;•④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中与三角形①相似的是()A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥6.下列命题正确的是()A.对应边成比例的多边形都相似 B.两个等腰梯形一定相似C.有一个内角相等的两个菱形相似 D.两个角对应相等的梯形都相似7.如图4所示,D,E分别是△ABC的边AB,AC上的点,DE∥BC,ADBD=2,则△ADE与四边形DBCE的面积比是()A.13B.23C.49D.45二、填空题(每小题3分,共30分)1.如图5所示,CD是Rt△ABC斜边上的高,AD=9,CD=6,则BD=_______.(4) (5) (6)2.若△ABC与△A′B′C′相似,△ABC的周长为15,△A′B′C′的周长为45,•则△ABC 与△A′B′C′的面积比为_________.3.如图6所示,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC=8,BC=16,•那么,CD=_______.4.如图7所示,E是Y ABCD的边AD的延长线上的一点,且D为AE的黄金分割点,•即AD=512AE,BE交DC于点F,已知AB=5+1,则DF的长是________.(7) (8) (9) (10)5.如图8所示,△ABC中,P是边AB上的一点,连接CP,要使△ACP∽△ABC,•还需要补充的一个条件是_________或_________.6.如图9所示,在△ABC中,BC=a,B1,B2,B3,B4是AB边的五等分点,C1,C2,C3,C4是AC•边的五等分点,则B1C1+B2C2+B3C3+B4C4=________.7.在比例尺为1:n的某市地图上,规划出一块长5cm,宽2cm的矩形工业园区,则该园区的实际面积是___________平方米.8.如图10所示,M是平行四边形ABCD的AB边的中点,CM交BD于E,•则图中阴影部分的面积与平行四边形ABCD的面积的比是_______.9.若两个相似三角形的相似比为1,则这两个三角形_________.10.如图所示,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC•被分为60等分.如果小管口DE正好对着量具上30份处(DE•∥AB)•,•那么小管口径DE•的长是_______毫米.三、竞技平台(每小题7分,共28分)1.将两块完全相同的等腰直角三角形摆放成如图所示的样子,•假设图形中的所有点线都在同一平面内,请问图中有相似(不包括全等)三角形吗?如果有请把它们一一写出来.2.如图所示,DE是△ABC的中位线,∠B=90°,AF∥BC,在射线AF•上是否存在点M,使△MEC∽△ADE?若存在,请先确定M,再说明这两个三角形相似;若不存在,请说明理由.3.如图所示,小聪为测量一高楼EF的高,在距F点20m的A处放了一个平面镜,小聪沿FA后退到了B点,正好在镜中看到楼顶E点的像,若AB=1.5m,•小聪的眼睛离地面的高度为1.6m,请你帮助小聪算一算楼房的高度.(精确到0.1m)4.如图所示,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的平分线,设CD=a,AD=b,AB=c.(1)a,b,c之间有什么关系?写出你的结论,并说明理由.(2)请你根据问题(1)提出一个问题,并说明理由.四、能力提高(每小题8.5分,共17分)1.要使两个形状相同的三角形框架中一个三角形框架的三边的长分别是4,5,6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?这个问题还有其他答案吗?2.如图所示,旗杆顶端Q,标杆顶端D,观测者的眼睛B在同一条直线上,•测得观测者的脚到旗杆底部的距离AP=75m,观测者的脚到标标底部的距离AC=2.5m,若AB=1.5m,观测者的脚到标杆底部的距离AC=2.5m,若AB=1.5m,标标CD的高为2m,•那么旗杆有多高?五、拓展创新(每小题12,共24分)1.在如图所示的直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),确定这个四边形的面积,你是怎么做的?2.如图所示,在矩形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A•开始向点B 以2厘米/秒的速度移动,点Q沿DA边从点D开始向点A以1厘米/秒的速度移动,如果P,Q同时出发,用t(秒)表示移动时间(0≤t≤6),那么(1)t为何值时,△QAP为等腰直角三角形?(2)请计算四边形QAPC的面积,并提出一个与计算结果有关的结论;(3)t为何值时,以点Q,A,P为顶点的三角形与△ABC相似?答案:一、1.C 2.A 3.C 4.B 5.B 6.C 7.D二、1.4 2.1:9 3.4 45.答案不惟一,如:∠ACP=∠B,∠APC=∠ACB,•AC=AP·AB等等6.2a 7.21000n8.139.全等 10.5三、1.△ADE∽△BAE∽△CDA,或△ADE∽△BAE,△BAE∽△CDA,△ADE∽△CDA.2.存在,过点E作AC的垂线与AF交于一点即为M,说明略.3.提示:EF:1.6=20:1.5,∴EF≈21.3(m).4.(1)b2=ac,理由:△BCD∽△ABC→b c a b =(2)点D是AC的黄金分割点,理由略.四、1.解:设另两边为x,y,则(1)4562x y==,x=2.5,y=3(2)4562x y==,x=85,y=125.(3)4562x y==,x=43,y=53.2.提示:过点B作BE⊥PQ于E,交CD于F,先求得QE=15m,于是得PQ=16.5m.五、1.略2.解:(1)对于任何时刻,AP=2t,DQ=t,AQ=6-t,当AQ=AP时,△QAP为等腰直角三角形,△QAP为等腰直角三角形.(2)在△QAC中,AQ=6-t,AQ边上的高DC=12,•∴S△QAC=12QA·DC=12(6-t)×12=36-6t.在△APC中,AP=2t,BC=6,∴S△APC=12AP·BC=12·2t·6=6t.∴S四边形QAPC=S△QAC+S△APC=(36-6t)+6t=36(cm2).在P,Q两点移动的过程中,四边形QAPC的面积始终保持不变.(3)•由题意分两种情况:①当QA APAB BC=时,△QAP∽△ABC,∴62126t t-=.∴t=1.2(秒).②当QA APBC AB=时,△PAQ•∽△ABC,∴62612t t-=,∴t=3(秒),∴当t=1.2s或t=3s时,以点Q,A,P为顶点的三角形与△ABC相似.。
北师大版数学九年级上册《第四章图形相似》单元测试(含答案)

北师大版数学九年级上册《第四章图形相似》单元测试一.选择题(共12小题)1.若,则的值为()A.1 B.C.D.2.若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF 的面积比为()A.3:2 B.2:3 C.4:9 D.9:163.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为()A.90m B.60m C.45m D.30m 4.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2 C.D.7.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A.2:5 B.3:5 C.2:3 D.5:7 8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11 9.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B 作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则的最大值为()A.B.C.D.[来源:学] 10.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10 11.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.12.如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.4二.填空题(共5小题)13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=.15.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A n B n D n C n的边长是.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.17.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是.三.解答题(共6小题)18.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.19.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△AB E∽△DEF;(2)若正方形的边长为4,求BG的长.20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.23.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF 以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K 到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t 秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?参考答案一.选择题1.C.2.C.3.B.4.A.5.B.6.A.7.A.8.C.9.B10.D.11.D.12.B.二.填空题13.]4.14.7.5.15.].16.3.17.36.三.解答题18.(1)证明:∵AB=2,BC=4,BD=1,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△C BA,∴△ABD∽△CDE,∴DE=1.5.19.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∵DF=DC,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.20.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.21.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.22.解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为:(1)(2,﹣2);(2)(1,0)23.解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当点K运动6秒时,点K到点F,点P还没到点B,∴点K不可能在BC边上,.综上,当0<t≤2或t=3或t=4时,△PKB是直角三角形.。
北师大版九年级数学上册第四章图形的相似单元测试(含解析)

1北师大版九年级数学上册第四章图形的相似单元测试(含解析)一、选择题1.已知x∶y=5∶2,则下列各式中不正确的是( ) A.=B.- =C.=D.- =答案 D A.由合比性质,得=,故A 正确;B.由分比性质,得- =,故B 正确;C.由反比性质,得y∶x=2∶5,由合比性质,得 = ,再由反比性质,得 =,故C 正确;D.由反比性质,得y∶x=2∶5,由分比性质,得- =- ,再由反比性质,得 - =-,故D 错误.故选D.2.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A,B,C.直线DF 分别交l 1,l 2,l 3于点D,E,F,AC 与DF 相交于点H,且AH=2,HB=1,BC=5,则的值为( )A.B.2C.D.答案 D 由直线l 1∥l 2∥l 3,得 =.因为AH=2,HB=1,所以AB=3.因为BC=5,所以 =.所以 =. 3.如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA,则下列结论一定正确的是( )A.AB 2=BC ·BD B.AB 2=AC ·BD2C.AB ·AD=BD ·BCD.AB ·AD=AD ·CD答案 A 因为△ABC ∽△DBA,所以 = =,所以AB 2=BC ·BD,AB ·AD=AC ·DB.4.在比例尺为1∶10 000的地图上,一块面积为2 cm 2的区域表示的实际面积是( ) A.2 000 000 cm 2B.20 000 m 2C.4 000 000 m 2D.40 000 m 2答案 B 设实际面积是x cm2,则 =,解得x=200 000 000,∵1 m 2=10 000 cm 2,∴200 000 000 cm 2=20 000 m 2.故选B.5.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC,BE 与CD 相交于点F,则下列结论一定正确的是( )A. =B. =C. =D. =答案 A ∵DE∥BC,∴△ADE ∽△ABC, ∴ = = ,故选项A 正确,故选A.6.如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E,则图中相似的三角形有( )A.0对B.1对C.2对D.3对 答案 D ∵四边形ABCD 是平行四边形,∴AB∥DC,AD ∥BC,∴△EAP ∽△EDC,△EAP ∽△CBP,∴△EDC ∽△CBP,故有3对相似三角形.故选D.7.如图,在△ABC 中,中线BE 、CD 相交于点O,连接DE,下列结论:① = ;② △ △= ;③ = ;④ △ △=.其中正确的个数是( )3A.1B.2C.3D.4答案 C 由中线BE 、CD 知,DE 为△ABC 的中位线,所以DE= BC,DE ∥BC,所以 =,①正确;由DE ∥BC 可得△DOE ∽△COB,则△ △= =,②错误;由DE ∥BC 易得 = , = ,所以 = ,③正确;④△ △= =,设△DOE 的高为h,则△BOC 的高为2h,△ABC 的高为6h,则△ △ = = , △ △ = ,所以 △ △ =,④正确.故选C.8.如图,点E,点F 分别在菱形ABCD 的边AB,AD 上,且AE=DF,BF 交DE 于点G,延长BF 交CD 的延长线于H,若=2,则的值为( )A.B.C.D.答案 B 设菱形ABCD 的边长为3a.因为四边形ABCD 是菱形,=2,AE=DF,所以AE=DF=a,AF=BE=2a,AB ∥CD,所以 = = =,所以HD= AB= a,HF=HB.因为AB ∥CD,所以 = ==,所以BG= HB.所以 == . 9.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=CD.下列结论:①∠BAE=30°,②△ABE ∽△AEF,③AE⊥EF,④△ADF ∽△ECF.其中正确的个数为( )A.1B.2C.3D.4答案 B ∵在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且4CF=CD,∴∠B=∠C=90°,AB∶EC=BE∶CF=2∶1.∴△ABE ∽△ECF,∴AB∶EC=AE∶EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB∶AE=BE∶EF,∠AEB+∠FEC=90°. ∴∠AEF=∠B=90°.∴△ABE ∽△AEF,AE ⊥EF.∴②③正确. 由已知条件推不出①④正确.故选B.10.如图,△ABC 中,AB=AC=18,BC=12,正方形DEFG 的顶点E,F 在△ABC 内,顶点D,G 分别在AB,AC 上,AD=AG,DG=6,则点F 到BC 的距离为( )A.1B.2C.12 -6D.6 -6答案 D 如图,过点A 作AM ⊥BC 于点M,交DG 于点N,延长GF 交BC 于点H.∵AB=AC,AD=AG,∴AD∶AB=AG∶AC, ∵∠BAC=∠DAG,∴△ADG ∽△ABC, ∴∠ADG=∠B,∴DG∥BC,∴AN⊥DG.∵四边形DEFG 是正方形,∴FG⊥DG,∴FH⊥BC, ∵AB=AC=18,BC=12,∴BM=BC=6, ∴AM= - =12 .∵△ADG ∽△ABC,∴ =,∴=,∴AN=6 ,∴MN=AM-AN=6,∴FH=MN-GF=6-6.即点F到BC的距离为6-6.故选D.二、填空题11.若△ABC与△DEF相似且面积之比为25∶16,则△ABC与△DEF的周长之比为.答案5∶4解析相似三角形的面积比等于相似比的平方,相似三角形的周长比等于相似比.因为△ABC与△DEF相似且面积比为25∶16,所以△ABC与△DEF的周长比为5∶4.12.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则点E的坐标为.答案(,)解析∵点A的坐标为(1,0),∴点B的坐标为(1,1).又∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,∴点E的坐标为(,).13.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.答案解析∵BF⊥AC,∴∠CFB+∠FCE=90°,又∠CFB+∠CBF=90°,∴∠FCE=∠CBF.5∵AB∥CD,∴∠FCE=∠BAE.∴∠EAB=∠CBF.∵∠BCF=∠ABC,∴△FCB∽△CBA.∴CF∶CB=CB∶AB=1∶2.∴FC∶AB=1∶4.∵FC∥AB,∴△FCE∽△BAE.∴==.14.如图,小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处恰好能看到铁塔的顶部B和底部A,设小明的手臂长l=45cm,小尺长a=15cm,点D到铁塔底部的距离AD=42m,则铁塔的高度是m.答案14解析作CH⊥AB于H,交EF于P,如图,则CH=DA=42m,由题意知,CP=45cm=0.45m,EF=15cm=0.15m.∵EF∥AB,∴△CEF∽△CBA,∴=,即=,∴AB=14m,即铁塔的高度为14m.15.如图,直线l1,l2,…,l6是一组等距离的平行线,过直线l1上的点A作两条射线,分别与直线l3,l6相交于点B,E,C,F.若BC=2,则EF的长是.答案56解析∵直线l1,l2,…,l6是一组等距离的平行线,∴=,∵BC∥EF,∴△ABC∽△AEF,∴==,又∵BC=2,∴EF=5.16.如图,E、F分别是平行四边形ABCD的边AD、BC的中点,若四边形AEFB与四边形ABCD相似,AB=4,则AD 的长度为.答案4解析设AE=x(x>0),则AD=2x,∵四边形ABCD与四边形ABFE相似,∴=,∴AB2=2x2,∴AB=x=4,∴x=2,∴AD=4.17.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.答案解析如图,∵GF∥HC,∴△AGF∽△AHC,∴==,∴GF=HC=,7∴OF=OG-GF=2-=.同理,MN=,∴ON=,∴S阴影=1-××=.18.如图,矩形DEFG的边EF在△ABC的边BC上,点D在边AB上,点G在边AC上,△ADG的面积是40,△ABC 的面积是90,AM⊥BC于M交DG于N,则AN∶AM=.答案2∶3解析∵四边形DEFG是矩形,∴DG∥BC,∴△ADG∽△ABC.∵△ADG的面积是40,△ABC的面积是90,==,∴△△∴=,∵AM⊥BC于M交DG于N,DG∥BC,∴AN⊥DG,∴==.三、解答题19.如图,在平面直角坐标系内有两点A(-2,0),B,CB所在直线的方程为y=2x+b,连接AC,求证:△AOC∽△COB.8证明∵C、B在直线y=2x+b上,∴把点B的坐标代入,求得直线方程为y=2x-1,∴C(0,-1),易证OC∶OB=OA∶OC=2∶1,又∠AOC=∠COB=90°,∴△AOC∽△COB.20.如图,△ABC的三个顶点的坐标分别为A(-2,4)、B(-3,1)、C(-1,1),以坐标原点O为位似中心,2为相似比,在第二象限内将△ABC放大,放大后得到△A'B'C'.(1)画出放大后的△A'B'C',并写出点A'、B'、C'的坐标;(点A、B、C的对应点分别为A'、B'、C')(2)求△A'B'C'的面积.答案(1)如图所示,△A'B'C'即为所求.910A'(-4,8),B'(-6,2),C'(-2,2). (2)∵S △ABC =×2×3=3,又∵△A'B'C'与△ABC 的相似比为2∶1,∴△ △=4,∴S △A'B'C'=4S △ABC =12.21.如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O. (1)求证:△COM ∽△CBA; (2)求线段OM 的长度.答案 (1)证明:由题意知A 与C 关于直线MN 对称, ∴AC⊥MN,∴∠COM=90°.在矩形ABCD 中,∠B=90°, ∴∠COM=∠B,又∵∠ACB=∠MCO,∴△COM ∽△CBA. (2)∵在Rt △CBA 中,AB=6,BC=8, ∴AC=10,∴OC=5,∵△COM ∽△CBA,∴ =, ∴OM=.22.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB边以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA边以每秒3cm的速度向A点运动,当P点到达B点时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,说明理由.答案(1)由题意得AP=4x cm,CQ=3x cm,AQ=(30-3x)cm,0≤x≤5.当PQ∥BC时,有=,即=-,解得x=,∴当x=时,PQ∥BC.(2)能.∵AB=CB,∴∠A=∠C,分两种情况讨论.①若△APQ∽△CBQ,则=,即=-,解得x=5或x=-10(舍去),此时AP=20cm.②若△APQ∽△CQB,则=,即=-.解得x=,此时AP=cm.综上,当AP=20cm或AP=cm时,△APQ与△CQB相似.23.请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;(2)如图,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF EG(用“=”或“≠”填空);11(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,AD=3,求的值.答案(1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,∴∠AEG=∠CEF,又∵EA=EC,∠GAE=∠C=90°,∴△EAG≌△ECF(ASA),∴EG=EF.(2)=.(3)过点E作EM⊥AB于点M,作EN⊥BC于点N,则∠MEN=90°,EM∥BC,EN∥AB,∴==,∴==,∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,∴∠FEN=∠GEM,又∠FNE=∠GME=90°,12∴Rt△FNE∽Rt△GME,∴==.13。
北师大九年级数学上《第四章图形的相似》单元测试含答案

第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32B .2x =3yC .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm图4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( ) A .1 B .2 C .3 D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC ∽△ACD.4-Z-54-Z-612.如图4-Z-6,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得高1 m的标杆的影长为2 m,则电线杆的高度为________m(结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C 落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE =60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD=8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11详解1.A2.D [解析] ∵l 1∥l 2∥l 3,∴A 1B 1B 1C 1=AB BC. ∵AB =6 cm ,BC =3 cm ,A 1B 1=4 cm , ∴4B 1C 1=63,∴B 1C 1=2(cm).故选D. 3.B 4.C5.C [解析] A 项,∵∠A =55°,∴∠B =90°-55°=35°.∵∠D =35°,∴∠B =∠D .又∵∠C =∠F ,∴△ABC ∽△EDF ;B 项,∵AC =9,BC =12,DF =6,EF =8,∴AC DF =BC EF =32.又∵∠C =∠F ,∴△ABC ∽△DEF ;C 项,有一组角相等、两边对应成比例,但该组角不是这两边的夹角,故不相似;D 项,易得AB =10,AC =8,BC =6,DE =15,DF =12,EF =9,∴AC DF =BC EF =23.又∵∠C =∠F ,∴△ABC ∽△DEF .故选C.6.A7.B [解析] 连接PP ′交BC 于点O ,∵四边形QPCP ′为菱形,∴PP ′⊥QC ,∴∠POQ =90°.∵∠ACB =90°,∴PO ∥AC ,∴AP AB =CO CB .∵点Q 运动的时间为t s ,∴AP =2t ,QB =t ,∴QC =6-t ,∴CO =3-t2.∵AC =CB =6,∠ACB =90°,∴AB =6 2,∴2t6 2=3-t26,解得t =2.8.20 [解析] 设其他两边的实际长度都是x m ,由题意,得x 4=255,解得x =20.即其他两边的实际长度都是20 m.9.143 [解析] 设a 5=b 7=c8=x ,则a =5x ,b =7x ,c =8x .因为3a -2b +c =3,所以15x -14x +8x =3,解得x =13,所以2a +4b -3c =10x +28x -24x =14x =143.10.20 cm 211.312.(7+3)[解析] 如图,过点D 作DE ⊥BC 交其延长线于点E ,连接AD 并延长交BC 的延长线于点F ,∵CD =4 m ,CD 与地面成30°角,∴DE =12CD =12×4=2(m),CE =CD 2-DE 2=2 3 m .∵高1 m 的标杆的影长为2 m ,∴DE EF =12,AB BF =12,∴EF =2DE =2×2=4(m),∴BF =BC +CE +EF =10+2 3+4=(14+2 3)m ,∴AB =12×(14+2 3)=(7+3)m.13.[全品导学号:52652189]12 [解析] 根据折叠的性质可得∠FEG =90°,设AF =x cm ,则EF =(6-x )cm.在Rt △AEF 中,AF 2+AE 2=EF 2,即x 2+32=(6-x )2,解得x =94,所以AF =94 cm ,EF =154 cm ,根据△AFE ∽△BEG ,可得AF BE =AE BG =EF EG ,即943=3BG =154EG,所以BG =4 cm ,EG =5 cm ,所以△EBG 的周长为3+4+5=12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD , ∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1,∴x +1=2(x -1),解得x =3, ∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.。
2018年北师大九年级数学上册《第四章图形的相似》测试题及答案
时间: 120 分钟
满分: 150 分
班级: __________ 姓名: __________ 得分: __________
一、选择题 (每小题 3 分,共 45 分 )
1.观察下列每组图形,相似图形是(
)
2.如果两个相似三角形对应边中线之比是
1∶ 4,那么它们的对应高之比是(
①
DE BC
=1;② 2
S△ S△
DOE =
COB
1;③ 2
AD AB
=
OE OB
.其中正确的个数有(
)
A. 1 个 B. 2 个 C. 3 个 D . 0 个
第 15 题图
第 16 题图
二、填空题 (每小题 5 分,共 25 分 )
16.已知图中的两个三角形相似,则 x=
.
17.如图,已知△ ABC 中, AB= 5,AC= 3,点 D 在边 AB 上,且∠ ACD =∠ B,则线
第 9 题图
第 10 题图
第 11 题图
10.如图,已知矩形 ABCD ∽矩形 ECDF ,且 AB= BE ,那么 BC 与 AB 的比值是 ( )
1+ 2 1+ 3 1+ 5 1+ 6
A. 2
B. 2
C. 2
D. 2
11.如图,点 P 在 △ ABC 的边 AC 上,要判断 △ ABP ∽△ ACB ,添加一个条件,不正
确的是(
)
A.∠ ABP=∠ C B.∠ APB=∠ ABC
C.AABP=
AB AC
AB D. BP
=AC CB
12.如图,在 ? ABCD 中, E 是 CD 上一点,连接 AE、 BD 交于 F ,若 S△ DEF ∶ S△ ABF = 1∶ 9,则 DE ∶ EC =( )
九年级数学上册单元清五检测内容第四章图形的相似新版北师大版(含参考答案)
九年级数学上册:检测内容:第四章 图形的相似得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.下面不是相似图形的是( A ),A),B) ,C),D)2.已知b a =513,则a -ba +b 的值是( D )A.23B.32C.94D.493.如图,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,点O 为位似中心,若OD =12OD ′,则A ′B ′∶AB 为( D )A .2∶3B .3∶2C .1∶2D .2∶1,第3题图) ,第4题图),第5题图) ,第6题图)4.如图,P 是△ABC 的AC 边上一点,连接BP ,以下条件中不能判定△ABP ∽△ACB 的是( B )A .AB 2=AP ·AC B .AC ·BC =AB ·BP C .∠ABP =∠C D .∠APB =∠ABC5.如图,在△ABC 中,DE ∥BC ,AD AB =35,则S △ADES 梯形DBCE的值是( B )A.35B.916C.53D.16256.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A ,再在河的这一边选两点点B 和点C ,使得AB ⊥BC ,然后再在河岸上选一点E ,使得EC ⊥BC ,设BC 与AE 交于点D ,如图所示,测得BD =120米,DC =60米,EC =50米,那么这条河的大致宽度是( C )A .75米B .25米C .100米D .120米7.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于( B )A .1B .2C .3D .4,第7题图) ,第8题图) ,第9题图) ,第10题图)8.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( C )A .∠C =2∠AB .AD 2=DC ·AB C .△BCD ∽△ABD D .BD =AD =BC9.如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HFBG的值为( B )A.23B.712C.12D.51210.(2018·梧州)如图,AG ∶GD =4∶1,BD ∶DC =2∶3,则AE ∶EC 的值是( D ) A .3∶2 B .4∶3 C .6∶5 D .8∶5 二、填空题(每小题3分,共24分)11.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是∠A =∠D .(写出一种情况即可)12.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OB =6,OD =6,则OC =9.,第12题图) ,第13题图),第14题图) ,第15题图)13.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BE ,BD ,且AE ,BD 交于点F ,已知S △DEF ∶S △ABF =4∶25,则DE ∶EC =2∶3.14.如图,在平面直角坐标系中,已知点A(-2,4),B(-4,-2),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是(-1,2) .15.(2018·上海)如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是 .16.如图是一山谷的横断面的示意图,宽AA ′为15 m ,用曲尺(两直尺相交成直角)从山谷两侧测量出OA =5 m ,OB =10 m ,O ′A ′=3 m ,O ′B ′=12 m(A ,O ,O ′,A ′在同一条水平线上),则该山谷的深h 为20 m.,第16题图) ,第17题图),第18题图)17.如图,n 个全等三角形排列在一条直线BC 上,P n 为A n C n 的中点,若BP n 交A 1C 1于Q ,则C 1Q 与A 1Q 的等量关系为A 1Q =(2n -1)C 1Q.18.在Rt △ABC 中,BC =3,AC =4,点D ,E 分别是线段AB ,AC 上的两个动点(不与点A ,B ,C 重合).沿DE 翻折△ADE ,使得点A 的对应点F 恰好落在直线BC 上,当DF 与Rt △ABC 的一条边垂直时,线段AD 的长为__________.三、解答题(共66分)19.(7分)如图,△ABC 在方格中.(1)请在方格纸上建立平面直角坐标系xOy ,使A(2,3),C(6,2),并写出点B 的坐标; (2)在(1)的条件下,以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的△A ′B ′C ′.解:(1)B (2,1) (2)画图略20.(8分)如图,矩形ABCD 为台球桌面,AD =260 cm ,AB =130 cm ,球目前在E 点位置,AE =60 cm ,如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ; (2)求CF 的长.解:(1)证明:由对称性可知∠EFG =∠DFG ,又∵GF ⊥BC ,∴∠EFB =∠DFC.又∵在矩形ABCD 中,∠B =∠C =90°,∴△BEF ∽△CDF(2)由(1)可知△BEF ∽△CDF ,∴BE CD =BF CF ,∴70130=260-CFCF,∴CF =169 cm21.(9分)如图,在△ABC 中,AB =AC ,点E 在边BC 上移动(点E 不与点B ,C 重合),满足∠DEF =∠B ,且点D ,F 分别在边AB ,AC 上.(1)求证:△BDE ∽△CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分∠DFC.证明:(1)∵AB =AC ,∴∠B =∠C.又∵∠BDE =180°-∠B -∠DEB ,∠CEF =180°-∠DEF -∠DEB ,且∠DEF =∠B ,∴∠BDE =∠CEF ,∴△BDE ∽△CEF(2)由(1)知△BDE ∽△CEF ,∴BE CF =DE EF .又∵点E 是BC 的中点,∴BE =CE ,∴CE CF =DEEF.又∵∠DEF =∠B =∠C ,∴△DEF ∽△ECF ,∴∠DFE =∠CFE ,∴FE 平分∠DFC22.(9分)如图,在△ABC 中,点D ,E 分别在BC 和AC 边上,点G 是BE 上的一点,且∠BAD =∠BGD =∠C ,连接AD ,AG ,DG.求证:(1)BD ·BC =BG ·BE ; (2)∠BGA =∠BAC.证明:(1)∵∠BGD =∠C ,∠GBD =∠CBE ,∴△BDG ∽△BEC ,∴BD BE =BG BC ,∴BD ·BC =BG ·BE(2)∵∠BAD =∠C ,∠ABD =∠CBA ,∴△ABD ∽△CBA ,∴BD AB =AB BC,∴AB 2=BD ·BC.又由(1)知BD ·BC =BG ·BE ,∴AB 2=BG ·BE ,∴BG AB =AB BE.又∵∠GBA =∠ABE ,∴△GBA ∽△ABE ,∴∠BGA =∠BAC23.(9分)如图,为测量山峰AB 的高度,在相距50 m 的D 处和F 处分别竖立高均为2 m 的标杆DC 和FE ,且AB ,CD 和EF 在同一平面内,从标杆DC 退后2 m 到G 处可以看到山峰A 和标杆顶点C 在同一直线上,从标杆FE 退后4 m 到H 处可以看到山峰A 和标杆顶点E 在同一直线上,求山峰AB 的高度及山峰与标杆CD 之间的水平距离BD 的长.解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF ,∴△CDG ∽△ABG ,△EFH ∽△ABH ,∴CD AB =DG DG +BD ,EF AB =FH FH +DF +BD .又∵CD =DG =EF =2 m ,DF =50 m ,FH = 4 m ,∴2AB =22+BD ,2AB =450+4+BD ,∴22+BD =44+50+BD ,解得BD =50 m ,∴2AB =22+50,解得AB =52 m24.(11分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的“完美分割线”.(1)在△ABC 中,∠A =48°,CD 是△ABC 的“完美分割线”,且△ACD 为等腰三角形,求∠ACB 的度数;(2)如图②,△ABC 中,AC =2,BC =2,CD 是△ABC 的“完美分割线”,且△ACD 是以CD 为底边的等腰三角形,求“完美分割线”CD 的长.解:(1)∵△BDC ∽△BCA ,∴∠BCD =∠A =48°.①当AD =CD 时,∠ACD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°;②当AD =AC 时,∠ACD =∠ADC =180°-48°2=66°,∴∠ACB =∠ACD +∠BCD =114°;③当AC =CD 时,∠ADC =∠A =48°=∠BCD ,这与∠ADC =∠BCD +∠B 相矛盾,舍去.∴∠ACB =96°或114°(2)由已知可知AC =AD =2,∵△BCD ∽△BAC ,∴BC BA =BD BC =CD AC .设BD =x ,∴(2)2=x (x+2),解得x =3-1或x =-3-1(舍去).∴CD AC =3-12,∴CD =3-12×2=6-225.(13分)在四边形ABCD 中,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF ⊥AB.(1)若四边形ABCD 为正方形,①如图①,请直接写出AE 与DF 之间的数量关系:DF =2AE ;②将△EBF 绕点B 逆时针旋转到如图②所示的位置,连接AE ,DF ,猜想AE 与DF 之间的数量关系,并说明理由;(2)如图③,若四边形ABCD 为矩形,BC =mAB ,其他条件都不变,将△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′,连接AE ′,DF ′,请在图③中画出草图,并直接写出AE ′与DF ′之间的数量关系.解:(1)①点拨:∵四边形ABCD 为正方形,∴△ABD 为等腰直角三角形,∴BD =2AB. ∵EF ⊥AB ,∴△BEF 为等腰直角三角形,∴BF =2BE ,∴BD -BF =2AB -2BE , 即DF =2AE ,故答案为DF =2AE②DF =2AE ,理由如下:由题意可知∠ABE =∠DBF ,∵BF BE =2,BD AB =2,∴BF BE =BDAB,∴△ABE ∽△DBF ,∴DF AE =BFBE =2,故DF =2AE(2)如图③,∵四边形ABCD 为矩形,∴AD =BC =mAB ,∴BD =AB 2+AD 2=1+m 2AB.∵EF⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BA =BF BD ,∴BF BE =BD BA=1+m 2.∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′,∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF′BE′=BDBA=1+m 2,∴△ABE ′∽△DBF ′,∴DF′AE′=BD BA=1+m 2,即DF ′=1+m 2AE ′单元清五1.A 2.D 3.D 4.B 5.B 6.C 7.B 8.C 9.B 10.D 11.∠A =∠D(答案不唯一) 12.9 13.2∶314.(-1,2)或(1,-2) 15.127 16.20 m17.A 1Q =(2n -1)C 1Q 18.209或 20719.解:(1)B(2,1) (2)画图略20.解:(1)证明:由对称性可知∠EFG =∠DFG ,又∵GF ⊥BC ,故∠EFB =∠DFC.又∵在矩形ABCD 中,∠B =∠C =90°,∴△BEF ∽△CDF(2)由(1)可知△BEF ∽△CDF ,∴BE CD =BF CF ,∴70130=260-CFCF,∴CF =169 cm21.证明:(1)∵AB =AC ,∴∠B =∠C.又∵∠BDE =180°-∠B -∠DEB ,∠CEF =180°-∠DEF -∠DEB ,且∠DEF =∠B ,∴∠BDE =∠CEF ,∴△BDE ∽△CEF(2)由(1)知△BDE ∽△CEF ,∴BE CF =DE EF .又∵点E 是BC 的中点,∴BE =CE ,∴CE CF =DEEF.又∵∠DEF =∠B =∠C ,∴△DEF ∽△ECF ,∴∠DFE =∠CFE ,∴FE 平分∠DFC22.证明:(1)∵∠BGD =∠C ,∠GBD =∠CBE ,∴△BDG ∽△BEC ,∴BD BE =BGBC,∴BD ·BC=BG ·BE(2)∵∠BAD =∠C ,∠ABD =∠CBA ,∴△ABD ∽△CBA ,∴BD AB =AB BC,∴AB 2=BD ·BC.又由(1)知BD ·BC =BG ·BE ,∴AB 2=BG ·BE ,∴BG AB =AB BE.又∵∠GBA =∠ABE ,∴△GBA ∽△ABE ,∴∠BGA =∠BAC23.解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF ,∴△CDG ∽△ABG ,△EFH ∽△ABH ,∴CD AB =DG DG +BD ,EF AB =FH FH +DF +BD .又∵CD =DG =EF =2 m ,DF =50 m ,FH = 4 m ,∴2AB =22+BD ,2AB =450+4+BD ,∴22+BD =44+50+BD ,解得BD =50 m ,∴2AB =22+50,解得AB =52 m 24.解:(1)∵△BDC ∽△BCA ,∴∠BCD =∠A =48°.①当AD =CD 时,∠ACD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°;②当AD =AC 时,∠ACD =∠ADC =180°-48°2=66°,∴∠ACB =∠ACD +∠BCD =114°;③当AC =CD 时,∠ADC =∠A =48°=∠BCD ,这与∠ADC =∠BCD +∠B 相矛盾,舍弃.∴∠ACB =96°或114°(2)由已知可知AC =AD =2,∵△BCD ∽△BAC ,∴BC BA =BD BC =CD AC .设BD =x ,∴(2)2=x(x+2),解得x =3-1或x =-3-1(舍去).∴CD AC =3-12,∴CD =3-12×2=6- 225.解:(1)①DF =2AE 点拨:∵四边形ABCD 为正方形,∴△ABD 为等腰直角三角形,∴BD =2AB.∵EF ⊥AB ,∴△BEF 为等腰直角三角形,∴BF =2BE ,∴BD -BF =2AB -2BE ,即DF =2AE ,故答案为DF =2AE②DF =2AE ,理由如下:由题意可知∠ABE =∠DBF ,∵BF BE =2,BD AB =2,∴BF BE =BDAB,∴△ABE ∽△DBF ,∴DF AE =BFBE=2,故DF =2AE(2)如图,∵四边形ABCD 为矩形,∴AD =BC =mAB ,∴BD =AB 2+AD 2=1+m 2AB.∵EF⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BA =BF BD ,∴BF BE =BD BA=1+m 2.∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′,∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF′BE′=BD BA =1+m 2,∴△ABE ′∽△DBF ′,∴DF′AE′=BD BA =1+m 2,即DF ′=1+m 2AE ′。
北师大九年级上《第四章图形的相似》单元评估检测试题(有答案)
2018-2019学年度第一学期北师大版九年级数学上册第四章图形的相似单元评估检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列说法中,正确的是()A.所有的等腰三角形都相似B.所有的菱形都相似C.所有的矩形都相似D.所有的等腰直角三角形都相似2.在中,,,,则等于()A. B. C. D.3.有一多边形草坪,在市政建设设计图纸上的面积为,其中一条边的长度为.经测量,这条边的实际长度为,则这块草坪的实际面积是()A. B. C. D.4.把一个矩形减去一个正方形,若所剩下的矩形与原矩形相似,原矩形长边与正方形的边长之比等于()A.:B.C.:D.:5.冬日的某个下午,小芳和爸爸正在阳光下散步,爸爸身高,他在地面上的影长为.若小芳高,则她的影长为()A. B. C. D.6.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是()A. B.C. D.7.如图,,与相交于点,那么在下列比例式中,正确的是()A. B.C. D.8.在平面直角坐标系中,已知,,以原点为位似中心,按位似比把缩小,则点的对应点的坐标为()A. B.C.或D.或9.如图,在平行四边形中,,连接交于点,若和四边形的面积分别记为,,则为()A. B. C. D.10.如图直线,直线、分别交、、于、、、、、,且、、、则的长为()1 / 6A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.垂直于地面的竹竿的影长为,其顶端到其影子顶端的距离为,如果此时测得某小树的影长为,则树高为________.12.如图,在中,,,,点在边上,且,过点作直线与边交于点,使截得的三角形与原三角形相似,则________.13.已知,且的面积是面积的倍,那么对应边的长度是长度的________倍.14.已知,则分式的值是________.15.如图,中,,且,________.16.如图,将缩小为原来的一半,操作方法如下:任意取一点,连接,取的中点,再连接,,取它们的中点,得到,则与的面积之比是________.17.如图,在中,是上一点,连接.要使,则必须有________或________或________.18.如图,中,是边上一点,交于,若,,则的值为________.19.如图,为估算某河的宽度,在河对岸边选定一个目标点,在近岸取点,,,使得,,点在上,并且点,,在同一条直线上.若测得,,,则河的宽度等于________. 20.如图所示,是一个平面镜,光线从点射出经过上的点反射后照射到点,设入射角为(入射角等于反射角),,,垂足分别为点,.若,,,则________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,网格图的每个小正方形边长均为.的顶点均在格点上.已知与是以为位似中心的位似图形,且位似比为.请在第一象限内画出;试求出的面积.2 / 622.如图,已知矩形中,是正方形,且矩形与矩形相似,求矩形的宽与长的比.23.如图,已知在中,,,求证:.24.如图,在中,,,,且.①求的长;②求证:.25.如图,在正方形中,是的钟点,与交于点.求证:;请求出与四边形的面积之比.3 / 626.正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图中的正方形网格中是格点三角形,小正方形网格的边长为(单位长度).的面积是________(平方单位);在图所示的正方形网格中作出格点和″″″,使,″″″,且、、″″中任意两条线段的长度都不相等;在所有与相似的格点三角形中,是否存在面积为(平方单位)的格点三角形?如果存在,请在图中作出,如果不存在,请说明理由.答案1.D2.A3.C4.A5.D6.A7.C8.D9.A10.C11.12.或13.14.15.16.17.18.19.20.4 / 621.解;如图所示:即为所求;的面积为:.22.解:∵矩形与矩形相似,∴,∴,即,∴,方程两边同除以得:解得:.…23.证明:∵,∴,∵,,∴四边形是平行四边形,∴,∴.24.解:①设,则∵,∴解得∴;②∵,∴即.∴.25.证明:∵四边形是正方形,∴,∴;解:∵是的中点,∴,设正方形的边长是,则的面积是,的面积是,,,,∴,∴四边形的面积,∴与四边形的面积之比是.26.解:;如图我们可以知道为,为,为长的两倍.且与是垂直的.若存在该三角形,命名为与相似.因为长为长的两倍所以长为长的两倍.,,5 / 6而是不可能由格点三角形构成,所以不存在.6 / 6。
北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)
第四章 图形的相似第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各组中的四条线段是成比例线段的是( )A .1 cm ,2 cm ,20 cm ,40 cmB .1 cm ,2 cm ,3 cm ,4 cmC .6 cm ,4 cm ,1 cm ,3 cmD .5 cm ,10 cm ,15 cm ,20 cm2.如图1,两条直线分别被三条平行直线l 1,l 2,l 3所截,若AB =3,BC =6,DE =2,则DF 的长为( )图1A .4B .5C .6D .73.若a b =35,则a +b b的值是( )A.58B.35C.85D.324.如图2,△ABC 中,AC =BC ,在边AB 上截取AD =AC ,连接CD ,若点D 恰好是线段AB 的一个黄金分割点,则∠A 的度数是( )图2A.22.5° B.30° C.36° D.45°5.如图3所示,将△ABO的三边分别扩大为原来的2倍得到△A1B1C1(顶点均在格点上),它们是以点P为位似中心的位似图形,则点P的坐标是( )A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4)图36.如图4,已知矩形ABCD,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F处,若四边形EFDC与矩形ABCD相似,则AD的长为( )图4A. 5B.5+1 C.4 D.2 37.在小孔成像问题中,光线穿过小孔,在屏幕上形成倒立的实像,如图5所示,若点O到AB的距离是18 cm,点O到CD的距离是6 cm,则像CD的长是AB长的( )图5A .3倍 B.12C.13D .不知AB 的长度,故无法判断8.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图6所示的测量方案,把一面很小的镜子水平放置在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =3.2米,观察者目高CD =1.6米,则树(AB )的高度为( )图6A .4.2米B .4.8米C .6.4米D .16.8米9.如图7,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 边的中点B ′重合,若AB =2,BC =3,则△FCB ′与△B ′DG 的面积之比为( )A.9∶4 B.3∶2 C.4∶3 D.16∶9图710.如图8,在△ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D的运动速度为1 cm/s,点E的运动速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是( )图8A.3 s或4.8 s B.3 sC.4.5 s D.4.5 s或4.8 s请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,D 是等边三角形ABC 中边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E ,F 分别在边AC 和BC 上,则CFCE=________.图912.如图10,△ABC 中,AB =6,DE ∥AC ,将△BDE 绕点B 顺时针旋转得到△BD ′E ′,点D 的对应点D ′落在边BC 上.已知BE ′=5,D ′C =4,则BC 的长为________.图1013.若a b =c d =e f =12,则3a -2c +e 3b -2d +f(3b -2d +f ≠0)=________.14.如图11所示,Rt △DEF 是由Rt △ABC 沿BC 方向平移得到的,若AB =8,BE =4,DH =3,则△HEC 的面积为________.图1115.如图12,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 的同侧,且∠ACD =∠B ,CD =2,E 是线段BC 延长线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为________.图1216.如图13,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1∶3,则点B 的对应点B ′的坐标为________.图13三、解答题(共72分)17.(6分)已知a ,b ,c 是△ABC 的三边长,且满足a +43=b +32=c +84,a +b +c =12,试求a ,b ,c 的值,并判断△ABC 的形状.18.(6分)如图14,在平面直角坐标系中,四边形OABC的顶点分别是O(0,0),A(6,0),B(3,6),C(-3,3).(1)以原点O为位似中心,在点O的异侧画出四边形OABC的位似图形四边形OA1B1C1,使它与四边形OABC的相似比是2∶3;(2)写出点A1,B1,C1的坐标;(3)求四边形OA1B1C1的面积.图1419.(8分)已知:在△ABC中,∠ABC=90°,AB=3,BC=4,Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图15①)或线段AB的延长线(如图15②)于点P.(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ;(2)当△PQB 为等腰三角形时,求AP 的长.图1520.(8分)如图16①,点D ,E 分别在AB ,AC 上,且AD AB =AEAC .(1)求证:DE ∥BC ;(2)如图②,在△ABC 中,D 为边AC 上任意一点,连接BD ,取BD 的中点E ,连接CE 并延长CE 交边AB 于点F ,求证:BF AF =CDAC;(3)在(2)的条件下,若AB =AC ,AF =CD ,求BFAF的值.图1621.(10分)如图17是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D 处竖直立一根木棒CD ,并测得此时木棒的影长DE =2.4米;然后,小希在BD 的延长线上找出一点F ,使得A ,C ,F 三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.图1722.(10分)如图18,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动,点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果点P,Q同时出发,用t(秒)表示移动的时间(0≤t≤6).(1)设△POQ的面积为y,求y关于t的函数表达式;(2)当t为何值时,△POQ与△AOB相似?图1823.(12分)如图19,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,D是BC边上的一个动点(不与点B,C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.图1924.(12分)如图20①,点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB 的黄金分割点.某数学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似给出“黄金分割线”的定义:一条直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称这条直线为该图形的黄金分割线.(1)如图②,在△ABC 中,∠A =36°,AB =AC ,∠ACB 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金分割线?并证明你的结论;(2)如图③,在边长为1的正方形ABCD 中,E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.图20详解详析1.A2.C [解析] ∵两条直线分别被三条平行直线l 1,l 2,l 3所截,∴AB BC =DE EF.∵AB =3,BC =6,DE =2,∴EF =4,∴DF =DE +EF =2+4=6.故选C.3.C4.C [解析] ∵点D 是线段AB 的一个黄金分割点,∴AD 2=BD ·AB . ∵AD =AC =BC ,∴BC 2=BD ·AB , 即BC ∶BD =AB ∶BC .而∠ABC =∠CBD ,∴△BCD ∽△BAC , ∴∠A =∠BCD .设∠A =x °,则∠B =x °,∠BCD =x °, ∴∠ADC =∠BCD +∠B =2x °. 而AC =AD ,∴∠ACD =∠ADC =2x °, ∴x +2x +2x =180,解得x =36, 即∠A =36°.故选C.5.A6.B [解析] 由折叠知AF =AB =2,设AD =x ,则FD =x -2,EF =2,∵四边形EFDC 与矩形ABCD 相似,∴EF FD =AD AB ,即2x -2=x 2,解得x 1=1+5,x 2=1-5(不合题意,舍去),即AD 的长为5+1.故选B.7.C [解析] 过点O 作OM ⊥AB 于点M ,交CD 于点N ,如图,则OM =18 cm ,ON =6 cm.∵AB ∥CD ,∴△ODC ∽△OAB ,∴CD AB =ON OM =618=13,即CD 的长是AB 长的13.故选C.8.A [解析] 如图,过点E 作EF ⊥BD 于点E ,则∠1=∠2.∵∠DEF =∠BEF =90°,∴∠DEC =∠AEB .∵CD ⊥BD ,AB ⊥BD ,∴∠CDE =∠ABE =90°,∴△CDE ∽△ABE ,∴DE BE =CDAB.∵DE =3.2米,CD =1.6米,BE =8.4米,∴3.28.4=1.6AB,解得AB =4.2米. 9.D [解析] 本题运用方程思想,设CF =x , 则BF =3-x ,易得CF 2+CB ′2=FB ′2,即x 2+12=(3-x )2,解得x =43.由已知可证得Rt △FCB ′∽Rt△B ′DG ,所以S △FCB ′S △B ′DG =⎝ ⎛⎭⎪⎫CF DB ′2=169.10.A [解析] 本题运用分类讨论的思想,分△ADE ∽△ABC 和△ADE ∽△ACB 两种情况分别求解.11.54 [解析] ∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AC =BC =AB =AD +DB =6.由折叠的性质可知∠EDF =∠C =60°,EC =ED ,FC =FD ,∴∠AED =∠BDF , ∴△AED ∽△BDF ,∴DF DE =BD +DF +BF AE +AD +DE =108=54,∴CF CE =DF DE =54. 12.2+34 [解析] 由旋转可得BE =BE ′=5,BD =BD ′. ∵D ′C =4,∴BD ′=BC -4,即BD =BC -4.∵DE ∥AC ,∴BD BA =BE BC ,即BC -46=5BC,解得BC =2+34(负值已舍),即BC 的长为2+34.13.12 [解析] 由a b =c d =e f =12,得a =12b ,c =12d ,e =12f ,所以3a -2c +e 3b -2d +f =1.5b -d +0.5f3b -2d +f =12. 14.503 [解析] 设CE =x ,由△CEH ∽△CBA ,得EH AB =CE CB ,即8-38=x x +4,∴x =203,∴S△HEC=12×203×5=503.15.43或3 [解析] ∵∠ACD +∠DCE =∠B +∠A ,∠ACD =∠B ,∴∠DCE =∠A ,∴∠A 与∠DCE 是对应角,∴△DCE 和△ABC 相似有两种情况:(1)当△BAC ∽△ECD 时,AB CE =AC CD ,∴4CE =62,∴CE =43; (2)当△BAC ∽△DCE 时,AB CD =ACCE, ∴42=6CE,∴CE =3. 综上所述,CE 的长为43或3.故答案为:43或3.易错警示△DCE 和△ABC 相似有两种情况,注意不要漏解.16.(4,3)或(-8,-3) [解析] 由直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,得点A (-2,0),点B (0,1).画△BOC 的位似图形△B ′O ′C ′如图所示.∵△BOC 与△B ′O ′C ′的相似比为1∶3,∴点B ′(x ,3)或(x ,-3).∵点B ′(x ,3)或(x ,-3)在直线y=12x +1上,∴点B ′的坐标为(4,3)或(-8,-3). 故答案为(4,3)或(-8,-3).17.解:设a +43=b +32=c +84=k (k ≠0),∴a =3k -4,b =2k -3,c =4k -8. ∵a +b +c =12,将a =3k -4,b =2k -3,c =4k -8代入上式, 得3k -4+2k -3+4k -8=12, ∴9k =27,即k =3. ∴a =5,b =3,c =4.∵b 2+c 2=9+16=25,a 2=52=25, ∴b 2+c 2=a 2,∴△ABC 是直角三角形.18.解:(1)如图所示,四边形OA 1B 1C 1即为所求.(2)由图形可得A 1(-4,0),B 1(-2,-4),C 1(2,-2).(3)四边形OA 1B 1C 1的面积为12×2×4+12×(3+4)×2+12×3×2=14.19.解:(1)证明:∵∠A +∠APQ =90°,∠A +∠C =90°, ∴∠APQ =∠C . 在△AQP 和△ABC 中, ∵∠APQ =∠C ,∠A =∠A , ∴△AQP ∽△ABC .(2)在Rt △ABC 中,AB =3,BC =4,由勾股定理,得AC =5. ①当点P 在线段AB 上时. ∵△PQB 为等腰三角形,∴PB =PQ . 由(1)可知,△AQP ∽△ABC ,∴PA AC =PQBC,即3-PB 5=PB 4,解得PB =43, ∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时. ∵△PQB 为等腰三角形, ∴PB =BQ ,∴∠BQP =∠P .∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,即B 为线段AP 的中点, ∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6.20.解:(1)证明:∵∠A =∠A ,AD AB =AEAC, ∴△ADE ∽△ABC ,∴∠ADE =∠B , ∴DE ∥BC .(2)证明:如图,过点D 作DG ∥AB 交CF 于点G ,则△CDG ∽△CAF ,∴DG AF =CD AC.∵E 是BD 的中点,∴BE =ED . ∵DG ∥AB ,∴∠FBE =∠EDG .在△BEF 和△DEG 中,∠FBE =∠EDG ,∠FEB =∠GED ,BE =ED ,∴△BEF ≌△DEG (ASA),∴BF =DG ,∴BF AF =CDAC.(3)由(2)可得BF AF =CDAC.∵AB =AC ,AF =CD ,∴BF AF =AFAF +BF,∴BF 2+BF ·AF -AF 2=0,∴(BF AF)2+BF AF -1=0,解得BF AF =-1±52,而BE AF >0,∴BF AF =5-12.21.解:由题意得∠ABD =∠CDE =90°, ∠ADB =∠CED ,∴△CDE ∽△ABD ,∴CD AB =DE BD.∵由题意得∠CDF =∠ABF =90°,∠CFD =∠AFB ,∴△CDF ∽△ABF ,∴CD AB =DF BF,∴DE BD =DF BF,即2.4BD = 2.5BD +2.5,∴BD =60, ∴1.72AB =2.460,∴AB =43. 答:小雁塔的高度AB 是43米.22.解:(1)由题意,得BQ =t 厘米,OP =t 厘米. 因为OB =6厘米, 所以OQ =(6-t )厘米.所以y =12OP ·OQ =12t ·(6-t )=-12t 2+3t (0≤t ≤6). (2)当△POQ 与△AOB 相似时,①若OQ OB =OP OA ,即6-t 6=t 12,解得t =4; ②若OQ OA =OP OB ,即6-t 12=t 6,解得t =2. 所以当t =4或t =2时,△POQ 与△AOB 相似.23.解:(1)证明:∵△ABC 是等腰三角形,且∠BAC =120°,∴∠B =∠C =30°. 又∵∠ADE =30°,∴∠B =∠ADE .又∵∠ADC =∠ADE +∠EDC =∠B +∠DAB ,∴∠EDC =∠DAB ,∴△ABD ∽△DCE .(2)如图①,过点A 作AF ⊥BC 于点F ,∵AB =AC =2,∠BAC =120°,∴∠AFB =90°.∵AB =2,∠ABF =30°,∴AF =12AB =1, ∴BF =3,∴BC =2BF =23,则CD =23-x ,CE =2-y .∵△ABD ∽△DCE ,∴AB BD =CD CE ,∴2x =23-x 2-y ,化简得y =12x 2-3x +2(0<x <23).(3)当AD =DE 时,如图②,由(1)可知:此时△ABD ∽△DCE ,则AB =CD ,即2=23-x ,x =23-2,将其代入y =12x 2-3x +2,解得y =4-23, 即AE =4-23;当AE =ED 时,如图③,∠EAD =∠EDA =30°,∠AED =120°,∴∠DEC =60°,∠EDC =90°,则DE =12CE ,即y =12(2-y ),解得y =23,即AE =23;当AD =AE 时,∠AED =∠ADE =30°,∠EAD =120°,此时点D 与点B 重合,不符合题意,故此种情况不存在.综上,当△ADE 是等腰三角形时,AE 的长为4-23或23. 24.解:(1)直线CD 是△ABC 的黄金分割线.证明:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36°, ∴∠BDC =72°=∠B ,∠A =∠ACD ,∴BC =CD ,AD =CD ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC AB ,∴BD AD =AD AB. 又∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB, ∴S △BCD S △ADC =S △ADC S △ABC, ∴直线CD 是△ABC 的黄金分割线.(2)设BE =x ,∵正方形ABCD 的边长为1,∴S △ABE =12AB ·BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1-12x . ∵直线AE 是正方形ABCD 的黄金分割线, ∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD, ∴S 四边形ADCE 2=S △ABE ·S 正方形ABCD , 即(1-12x )2=12x ·1, 整理,得x 2-6x +4=0,解得x 1=3+5,x 2=3- 5.∵E 是边BC 上一点,∴x <1,∴x=3-5,∴BE的长为3- 5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32B .2x =3yC .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( )A .1B .2C .3D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB=________时,△ABC∽△ACD.4-Z-54-Z-612.如图4-Z-6,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得高1 m的标杆的影长为2 m,则电线杆的高度为________m(结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE=60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD =8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11详解1.A2.D [解析] ∵l 1∥l 2∥l 3,∴A 1B 1B 1C 1=AB BC. ∵AB =6 cm ,BC =3 cm ,A 1B 1=4 cm , ∴4B 1C 1=63,∴B 1C 1=2(cm).故选D. 3.B 4.C5.C [解析] A 项,∵∠A =55°,∴∠B =90°-55°=35°.∵∠D =35°,∴∠B =∠D .又∵∠C =∠F ,∴△ABC ∽△EDF ;B 项,∵AC =9,BC =12,DF =6,EF =8,∴AC DF =BCEF=32.又∵∠C =∠F ,∴△ABC ∽△DEF ;C 项,有一组角相等、两边对应成比例,但该组角不是这两边的夹角,故不相似;D 项,易得AB =10,AC =8,BC =6,DE =15,DF =12,EF =9,∴AC DF =BC EF =23.又∵∠C =∠F ,∴△ABC ∽△DEF .故选C. 6.A7.B [解析] 连接PP ′交BC 于点O ,∵四边形QPCP ′为菱形,∴PP ′⊥QC ,∴∠POQ =90°.∵∠ACB =90°,∴PO ∥AC ,∴AP AB =COCB.∵点Q 运动的时间为t s ,∴AP =2t ,QB =t ,∴QC =6-t ,∴CO =3-t 2.∵AC =CB =6,∠ACB =90°,∴AB =6 2,∴2t6 2=3-t26,解得t =2.8.20 [解析] 设其他两边的实际长度都是x m ,由题意,得x 4=255,解得x =20.即其他两边的实际长度都是20 m.9.143 [解析] 设a 5=b 7=c8=x ,则a =5x ,b =7x ,c =8x .因为3a -2b +c =3,所以15x -14x +8x =3,解得x =13,所以2a +4b -3c =10x +28x -24x =14x =143.10.20 cm 211.312.(7+3)[解析] 如图,过点D 作DE ⊥BC 交其延长线于点E ,连接AD 并延长交BC 的延长线于点F ,∵CD =4 m ,CD 与地面成30°角,∴DE =12CD =12×4=2(m),CE =CD 2-DE 2=2 3 m .∵高1 m 的标杆的影长为2 m ,∴DE EF =12,AB BF =12,∴EF =2DE =2×2=4(m),∴BF =BC +CE +EF =10+2 3+4=(14+2 3)m ,∴AB =12×(14+2 3)=(7+3)m.13.[全品导学号:52652189]12 [解析] 根据折叠的性质可得∠FEG =90°,设AF =x cm ,则EF =(6-x )cm.在Rt △AEF 中,AF 2+AE 2=EF 2,即x 2+32=(6-x )2,解得x =94,所以AF =94 cm ,EF =154 cm ,根据△AFE ∽△BEG ,可得AF BE =AE BG =EFEG ,即943=3BG =154EG,所以BG =4 cm ,EG =5 cm ,所以△EBG 的周长为3+4+5=12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD ,∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1, ∴x +1=2(x -1),解得x =3, ∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.。