2019年高中数学必修一课件:1.1.2 集合的包含关系

合集下载

高中数学高一上册第一章-1.1.2集合之间的关系-子集个数问题的研究 课件

高中数学高一上册第一章-1.1.2集合之间的关系-子集个数问题的研究 课件

拓展探究:
满足 A1,2,3 的集合 A 的个数
是多少?
改造条件,生成问题,解决问题
对课后作业的反思:
习题.满足 A1,2,3,4,5, 且若 x A ,
则 6xA, 问非空集合 A 的个数为多少?
反思条件,确定方向,判断可能性,生成问题
对课后作业的反思:
习题.满足 A1,2,3,4,5, 且若 x A ,
身体健康, 知之者不如好之者,好之者不如乐之者。——孔子
在等待的日子里,刻苦读书,谦卑做人,养得深根,日后才能够枝叶茂盛。 问候不一定要慎重其事,但一定要真诚感人。 今天应做的事没有做,明天再早也是耽误了。——裴斯泰洛齐 最好的教育是以身作则。孩子们对谎言或虚伪非常敏感,极易察觉。如果他们尊重你依赖你他们就是在很小的时候也会同你合作。——甘地夫 人 过去一切时代的精华尽在书中。——卡莱尔 只有想不到的事,没有做不到的事。
一定不要把别人都当傻子,事实上,所有你能遇到的人都比你聪明。如果你能抱着这样的心态为人处世,那么你的人脉会越来越宽,财富越来 越多,人生也就越来越好! 不要太肯定自己的看法,这样子比较少后悔。 记住:你是你生命的船长,走自己的路,何必在乎其它。 我们的人生必须励志,不励志就仿佛没有灵魂。 只要我还有梦,就会看到彩虹! 活在别人的掌声中,是禁不起考验的人。 内外相应,言行相称。——韩非 当你用烦恼心来面对事物时,你会觉得一切都是业障,世界也会变得丑陋可恨。
谢谢同学们! 欢迎老师指正!
在人生征途中有许多弯路小路险路暗路,只有意志坚定且永不停步的人,才有希望到达胜利的远方。 友谊的最大努力并不是向一个朋友展示我们的缺陷,而是使他看到自己的缺陷。
一棵小草,也许永远不能成为参天大树,但它可能做最绿最坚强的小草;一滴水,也许永远不能像长江大河一样奔腾,但它可以成为所有水中 的最纯的那一滴 志不立,天下无可成之事。

人教版高中数学必修一一集合PPT课件

人教版高中数学必修一一集合PPT课件

集合相等:只要构成这两个集合的元素 是一样的,则这个集合是相等的。
例:{两边相等的三角形}和{等腰三角形}
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
元素与集合的关系
为_______;用描述法表示为 .
(2)集合{(x, y) | x y 6, x N, y N}
用列举法表示为
.
复习回顾
1、元素和集合的定义 2、集合的特性 3、元素和集合的关系 4、集合的表示方法
实数有相等关系,大小关系, 类比 实数之间的关系,集合之间是否具备类 似的关系?
新课
常用的数集
数集 自然数集(非负整数集)
正整数集 整数集
有理数集 实数集
符号
N N* 或N+
Z Q R
判断Q与N,N*,Z的关系? 课堂练习P5 第1题
解析:判断一个元素是否在某个集合中,关键在于 弄清这个集合由哪些元素组成的.
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组 成的集{合太? 平洋,大西洋,印度洋,北冰洋} {1,-2}
③ A={x|x2-3x+2=0}, B={1,2}.
练习1:观察下列各组集合,并指明两个
集合的关系
① A=Z ,B=N;
AB
② A={长方形}, B={平行四边形方形};AB
③ A={x|x2-3x+2=0}, B={1,2}.
练习1:观察下列各组集合,并指明两个
集合的关系

人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件

人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件

回到目录
三、教师点拨
1.集合的相等
回到目录
三、教师点拨
2.真子集定义
一般地,若集合A中的元素都是集合B的元素, B中至少有一个元素不属于A。我们称集合A是 集合B的真子集。记作:
AÞ B
回到目录
三、教师点拨
2.真子集定义
回到目录
三、教师点拨
3.子集定义 如果集合A的任何一个元素都是集合B的元素, 那么,集合A就叫做集合B的一个子集.记作:
A B
说明:(1)子集包含相等与真子集两种情况, 任何一个集合都是它自身的子集; (2)空集是任何集合的子集,包括它本身;
回到目录
பைடு நூலகம்
三、教师点拨
3.子集的定义
回到目录
四、课堂小结
(1)集合相等定义 (2)真子集的定义 (3)子集的定义 (4)体会类比发现新结论与数形结合的思想
回到目录
自主探究 时间15分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨
1.集合的相等
一般地,如果集合A的每一个元素都是集合B的元素, 反过来集合B的每一个元素也都是集合A的元素,我们 就说集合A等于集合B。记作:
AB
这里的符号“=”是借用了数学中的等号,它表示两 个集合中的元素完全相同 ( 即两个集合中的元素个数 相等且相应的元素都相同).
标题
§1.1.2集合间的基本关系
§1.1.2集合间的基本关系
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景 山东人组成的集合为A,中国人组成的集 合为B, 某人说:“我是一个山东人”,
那我们马上能反应出这个人也是一个中 国人,集合A与集合B有什么关系呢?

人教版高中数学必修一1.1.2集合间的基本关系ppt课件

人教版高中数学必修一1.1.2集合间的基本关系ppt课件

【类题试解】已知集合P={x|x2+x-6=0},M={x|mx-1=0},若
M P,求满足条件的实数m取值的集合Q.
【解析】P={x|x2+x-6=0}={-3,2}.∵M P,∴M=∅或M≠∅.
(1)当M=∅,即m=0时,满足M P.
(2)当M≠∅,即m≠0时,M={x|mx-1=0}={
=-3或2,解得m= 或 .
1 1, ∴a a≤-2.…………………………11分
2

a

1,
a 0, 综上可知,a≤-2或a=0或a≥2.…………………………12分
【失分警示】
【防范措施】 1.特别关注空集 此题含有条件A⊆B,解答此类含有集合包含关系的问题时,一定要考虑集合 为空集,此类问题往往因为对空集的关注不够而出现不必要的失误. 2.分类讨论的意识 本题中由于a的取值未限定,因而要考虑不等式组解的情况,即需要分a=0, <0三种情况讨论,也就是在解题时要有分类讨论的意识.
1.空集:指的是_____不__含__任__何_的元集素合,记作__,并规定: ∅
空集是________的子集. 任何集合
2.集合间关系具有的性质
(1)任何一个集合是它本身的_____,即______. (2)对于集合A,B,C,如果A⊆B,且B⊆C子,那集么_____. A⊆A
判断:(正确的打“√”,错误的打“×”) (1)集合{0}是空集.( ) (2)集合{x|x2+1=0,x∈R}是空集.( ) (3)空集没有子集.( ) 提示:(1)错误.集合{0}含有一个元素0,是非空集合. (2)正确.由于方程x2+1=0在实数范围内无解,故此集合是空集. (3)错误.空集是任何集合的子集,也是它本身的子集. 答案:(1)× (2)√ (3)×

高中必修一数学第一章集合间的基本关系ppt课件-人教版

高中必修一数学第一章集合间的基本关系ppt课件-人教版
高中数学
[导入新知] 子集的概念
任意一个
包含
A⊆B B⊇A
高中数学
⊆ ⊆
高中数学
[化解疑难] 对子集概念的理解
(1)集合 A 是集合 B 的子集的含义是:集合 A 中的 个元素都是集合 B 中的元素,即由 x∈A 能推出 x∈B.例 ⊆{-1,0,1},则 0∈{0,1},0∈{-1,0,1}.
(2)若两集合相等,则两集合所含元素完全相同,与 列顺序无关.
高中数学
真子集 [提出问题] 给出下列集合: A={a,b,c},B={a,b,c,d,e}. 问题1:集合A与集合B有什么关系? 提示:A⊆B. 问题2:集合B中的元素与集合A有什么关系? 提示:集合B中的元素a,b,c都在A中,但元素d,e不
高中数学
[导入新知] 集合相等的概念
如果集合 A 是集合 B 的 子集 (A⊆B),且集合 B A 的 子集 (B⊆A),此时,集合 A 与集合 B 中的元素 的,因此,集合 A 与集合 B 相等,记作 A=B .
高中数学
[化解疑难] 对两集合相等的认识
(1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A= ⊆B,且 B⊆A.这就给出了证明两个集合相等的方法,即 =B,只需证 A⊆B 与 B⊆A 同时成立即可.
(2)若 A 不是 B 的子集,则 A 一定不是 B 的真子集
高中数学
空集 [提出问题] 一个月有32天的月份组成集合T. 问题1:含有32天的月份存在吗? 提示:不存在. 问题2:集合T存在吗?是什么集合? 提示:存在,是空集.
高中数学
[导入新知]
空集的概念
定义 我们把 不含任何元素 的集合,叫做空
1 理解教 材新知
1.1.2

人教A版高中数学必修一《1.1.2集合间的基本关系》课件

人教A版高中数学必修一《1.1.2集合间的基本关系》课件
1.∈,∉用在元素与集合之间,表示从属关 系;⊆,(或 )用在集合与集合之间,表示包含(真 包含)关系.
2.a与{a}的区别:一般地,a表示一个元素, 而{a}表示只有一个元素的一个集合,我们常称之为 单元素集.1∈{1},不能写成1⊆{1}.
3.关于空集∅:空集是不含任何元素的集合, 它既不是有限集又不是无限集,不能认为∅={0}, 也不能认为{∅}=∅或{空集}=∅.
高中数学课件
(金戈铁骑 整理制作)
1.1.2集合间的基本关系
冠县一中 姚增珍
2012.9.7
1.理解集合之间包含与相等的含义,能识别给 定集合的子集.
2.在具体情境中,了解空集的含义.
自学导引
1.一般地,对于两个集合A、B,如果集合A中 _任__意__一__个__元素都是集合B中的元素,我们就说这两 个集合有包含关系,称集合A为集合B的子集,记作 _A_⊆__B_(或_B__⊇_A_),读作“_A_含__于__B_”(或“_B_包__含__A__”).
误区解密 因忽略空集而出错
【例4】设A={x|2≤x≤6},B={x|2a≤x≤a+ 3},若B⊆A,则实数a的取值范围是( )
A.{a|1≤a≤3}B.{a|a>3} C.{a|a≥1}D.{a|1<a<3}
错解:∵B⊆A,∴2aa+≥32≤6 , 解得 1≤a≤3,故选 A.
错因分析:空集是任何集合的子集,忽视这一 点,会导致漏解,产生错误结论.对于形如 {x|a<x<b}一类的集合,当a≥b时,它表示空集,解 题中要引起注意.
解析:(1)为元素与集合的关系,(2)(3)(4)为集 合与集合的关系.
易知a∈{a,b,c}; ∵x2+1=0在实数范围内的解集为空集, 故∅={x∈R|x2+1=0}; ∵{x|x2=x}={0,1}, ∴{0} {x|x2=x}; ∵x2-3x+2=0的解为x1=1,x2=2. ∴{2,1}={x|x2-3x+2=0}. 答案:(1)∈ (2)= (3) (4)=

高中数学必修一课件 第一章集合与函数概念 1.1.1.2 集合的表示


课堂小结 1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适
当方法表表示,描 述法既可以表示元素个数无限的集合,也可以表示元素个数有 限的集合. 2.在用描述法表示集合时应注意: (1)弄清元素所具有的形式(即代表元素是什么),是数、还是有 序实数对(点)、还是集合或其他形式? (2)元素具有怎样的属性?当题目中用了其他字母来描述元素 所具有的属性时,要去伪存真,而不能被表面的字母形式所迷 惑.
3.(2013·扬州高一检测)已知x∈N,则方程x2+x-2=0的 解集用列举法可表示为________. 解析 由x2+x-2=0,得x=-2或x=1. 又x∈N,∴x=1. 答案 {1}
4.已知集合A={-1,0,1},集合B={y|y=|x|,x∈A},则B= ________. 解析 ∵x∈A,∴当x=-1时,y=|x|=1; 当x=0时,y=|x|=0;当x=1时,y=|x|=1. 答案 {0,1}
解 (1){x|3x+2>2x+1}={x|x>-1}. (2){(x,y)|x>0,y>0,且 x,y∈R}. (3){x|x=2k-1,k∈N*}. [规律方法] 1.点集的代表元素用有序实数对(x,y)表示;第(3) 题中,易错写为{x|x=2k-1,k∈N},忽视集合 N 与 N*的差异. 2.用描述法表示集合,一般模式是{x∈I|p(x)},其中 x 是集合 的代表元素,I 是代表元素的范围,p(x)为集合中元素所具有的 共同特征,要注意竖线不能省略.
[规律方法] 1.(1)本题在求解过程中,常因忽略讨论k是否 为0而漏解.(2)因kx2-8x+16=0是否为一元二次方程而分k =0和k≠0而展开讨论,从而做到不重不漏. 2.解答与描述法有关的问题时,明确集合中代表元素及其 共同特征是解题的切入点.

高中数学第一章集合与函数概念1.1.2集合间的包含关系课件新人教a必修1


{a}
∅,{a}
2
{a,b}
∅,{a},{b},{a,b}
4
∅,{a},{b},{c},{a,b},
{a,b,c}
8
{a,c},{b,c},{a,b,c}
猜想:含n个元素的集合的子集共有2n个,真子集有2n-1
个,非空真子集有2n-2个.
探究1 熟练写出给定集合的子集是学生必须掌握的基本功.
思考题1 已知集合M满足{1,2}⊆M⊆{1,2,3,4,
(5)空集是任何非空集合的真子集,因此∅ {0}正确; (6)空集是任何集合的子集,因此∅⊆∅正确.
探究2 要注意区分“∈与⊆”,“⊆与 ”.“∈”表示 元素与集合之间的从属关系,而“⊆”表示集合之间的包含关 系,“⊆”与“ ”均表示集合间的包含关系,但后者是前者 “≠”情形时的包含情况.
思考题2 设a= 2 + 3 ,M={x|x≤ 10 },给出下列关
2k-1,k∈N*},则M,N之间的关系为( )
A.M N
B.M N
C.M⊆N 【答案】 A
D.M=N
题型二 集合相等 例4 已知A={x|x=3k+1,k∈Z},B={x|x=3n-2,n∈ Z},则A与B的关系为__________.
【解析】 (1)任取x1∈A,则x1=3k1+1=3(k1+1)-2,k1 +1∈Z.∴x1∈B,故A⊆B.
方法二:(特征性质法) 集合 A:x=2k+2 1(k∈Z),分子为奇数. 集合 B:x=k2(k∈Z),分子为整数, ∴A B.
【答案】 A B
探究 3 几种等价表示方法(n∈Z). ①“2n-1”等价于“2n+1”. ②“2n-1”等价于“4n±1”. ③“4n+3”等价于“4n-1”等.

高中数学必修一1.1.2集合间的基本关系

1.1.2 集合间的基本关系
2 5, x , x 4 x 中的元素 1、若 x N ,则
x必
须满足什么条件?
2、已知 x N ,A 5, x, x 2 4 x
B 2, x 2 4, x 6 若A=B,试求
x 的值。
【引一引★温故知新】
集合与集合 之间呢?
• 一个元素的集合:子集共有2个、真子集有2-1个。 • 两个元素的集合:子集共有4个、真子集有4-1个。 • 三个元素的集合:子集共有8个、真子集有8-1个。 • n个元素的集合:子集共有2n个、真子集有2n -1个。
【听一听★更上一层】
k 1 k 1 例2.集合M { x | x , k Z }, N { x | x , k Z }. 2 4 4 2 则( ) . B.M N C.M N D.M与N没有相同元素
2k 1 , k Z }, 4
A.M N
C.M N
D.M与N没有相同元素
分析:M { x | x
N {x | x
k2 , k Z }. 4
当k Z时, 2k 1为奇数,k 2为整数,因为奇数都 是整数,且整数不都是奇数.
M N,故选C.
解 : 集合{a, b}的所有子集为:
,{a}, {b}, {a, b}
真子集为: ,{a}, {b}
【听一听★更上一层】 变式
写出集合a, b,c的所有子集,并指出它的真子集.
解 : 没有元素的子集:; 有1个元素的子集 : {a}, {b}, {c}; 有2个元素的子集 : {a, b}, {a, c},{b, c};
规定:空集是任何集合的子集,即 A.
空集是任何非空集合的真子集. 即: B. ( B )

高中数学高一上册第一章-1.1.2集合之间的关系课件

A B
读作 “集合A 等于B 集合” 显然 若 A B 且 B A,则 A B
想一想用图示法怎么表示A=B?
三、真子集
对于两个集合 A 和 B , 如果 A B ,且 B 中至少有一个元素不属于 A
那么集合 A 叫做集合B 的真子集.
记作
A B ( B A )
读作 “ A 真包含于B ” (“B 真包含A ”)
70,1 0,1
例3.求出所有符合条件的集合C (1) C{1,2,3}
(2) C {a , b}
(3) {1,2,3} C{1,2,3,4,5} 解: (1) C 可以是以下集合: , { 1 } , { 2 } , { 3 } , { 1 , 2 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } (2) C 可以是以下集合: ,{a},{b} (3) C 可以是以下集合: { 1 ,2 ,3 ,4 } ,{ 1 ,2 ,3 ,5 } ,{ 1 ,2 ,3 ,4 ,5 }解毕
当B=时, a = 0
当B={-2}时,a = 1
当B={3}时,a
=
2
1
3
解毕
有勇气承担命运这才是英雄好汉。——黑塞 说话不要有攻击性,不要有杀伤力,不夸已能,不扬人恶,自然能化敌为友。 树立必信的信念,不要轻易说“我不行”。志在成功,你才能成功。 不会生气的人是愚者,不生气的人乃真正的智者。 友谊要像爱情一样才温暖人心,爱情要像友谊一样才牢不可破。 每天都将自己最好的一面展示给别人。——杨丽娜 我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬起来。 我们不能选择命运,但是我们能改变命运。
答:x2,y5.
例 5 : 已 知 集 合 A = { x | x 2 x 6 0 } 与 集 合 B = {x |a x 1 0 }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个数为8.
要点二 集合间关系的判定
例2 指出下列各对集合之间的关系: 解 集合A 的代表元素是数,集合 B的代表元素是有序实数
(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};
相等 子集,就说两个集合______ 相等
_____ A=B
如果在某个特定的场合,要讨论 的对象都是集合 I 的元素和子集, 全集、 ∁ IA 就可以约定把集合 I 叫作全集 . 若 A ____ 补集 是全集 I 的子集, I 中不属于 A的元
素组成的子集叫作A的______ 补集
2.常用结论 (1)任意一个集合A都是它本身的 子集 ,即 A⊆A . (2)空集是 任意一个集合 的子集,即对任意集合A, 都有
求解.
2.解题时要注意使用补集的几个性质:∁ UU=∅,∁U∅=U,
A∪(∁UA)=U.
跟踪演练3
已知全集U={x|x≥-3},集合A={x|-3
{x|x=-3,或x>4} <x≤4},则∁U A=_______________________. 解析 借助数轴得∁UA={x|x=-3,或x>4}.
1.1 集 1.1.2
[学习目标]

集合的包含关系
1.明确子集,真子集,两集合相等的概念. 2.会用符号表示两个集合之间的关系. 3.能根据两集合之间的关系求解参数的范围. 4.知道全集,补集的概念,会求集合的补集.
栏目索引
CONTENTS PAGE
1 预习导学
2 课堂讲义 3 当堂检测
挑战自我,点点落实
试判断集合A和B的关系.

7 A={-3,2},B=x|x>- . 2
7 7 ∵-3>- ,2>- , 2 2
∴-3∈B,2∈B,∴A⊆B 又0∈B,但0∉A,∴A B.
要点三 简单的补集运算 例3 (1)设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( B ) B.{3,4,5} D.∅ A.{1,2} C.{1,2,3,4,5}
∅⊆A
.
要点一 有限集合的子集确定问题 例1 写出集合A={1,2,3}的所有子集和真子集. 解 由0个元素构成的子集:∅;
由1个元素构成的子集:{1},{2},{3};
由2个元素构成的子集:{1,2},{1,3},{2,3};
由3个元素构成的子集:{1,2,3}.
由此得集合 A 的所有子集为 ∅ , {1} , {2} , {3} , {1,2} , {1,3},{2,3},{1,2,3}. 在上述子集中,除去集合A本身,即{1,2,3},剩下的都是 A的真子集.
要点四 由集合间的关系求参数范围问题
例4
已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},
且B⊆A.
求实数m的取值范围.
解 ∵B ⊆ A , (1)当B=∅时,m+1≤2m-1,解得m≥2.
-3≤2m-1, (2)当 B≠∅时,有 m+1≤4, 2m-1<m+1,
解得-1≤m<2,综上得实数m的取值范围为{m|m≥-1}.
规律方法
1.(1) 分析集合间的关系时,首先要分析、简化
解析 ∵U={1,2,3,4,5},A={1,2},
∴∁UA={3,4,5}.
{x|x<1} (2)若全集U=R,集合A={x|x≥1},则∁U A=________. 解析 由补集的定义,结合数轴可得∁U A={x|x<1}.
规律方法
1.根据补集定义,当集合中元素离散时,可借助
图;当集合中元素连续时,可借助数轴,利用数轴分析法
规律方法 1.求解有限集合的子集问题,关键有三点:
(1)确定所求集合;
(2)合理分类,按照子集所含元素的个数依次写出; (3)注意两个特殊的集合,即空集和集合本身. 2.一般地,若集合A中有n个元素,则其子集有2n个,真子 集有2n-1个,非空真子集有2n-2个.
跟踪演练1
其个数. 解
已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及
当M中含有两个元素时,M为{2,3};
当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5}; 当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5}; 当M中含有五个元素时,M为{2,3,1,4,5}; 所以满足条件的集合 M 为 {2,3} , {2,3,1} , {2,3,4} , {2,3,5} ,
解 由列举法知M={1,3,5,7,…},N={3,5,7,9,…},
故N M.
规律方法
对于连续实数组成的集合,通常用数轴来表示,
这也属于集合表示的图示法.注意在数轴上,若端点值是集 合的元素,则用实心点表示;若端点值不是集合的元素, 则用空心点表示.
跟踪演练 2
集合A= {x|x2 +x- 6= 0},B = {x|2x+ 7> 0},
重点难点,个个击破
当堂训练,体验成功
[知识链接]
1.已知任意两个实数a,b,如果满足a≥b,b≥a,则它们的
大小关系是 a=b . 2.若实数x满足x>1,如何在数轴上表示呢? x≥1时呢? 答案 3.方程ax2-(a+1)x+1=0的根一定有两个吗? 答案 不一定.
[预习导引]
1.集合之间的关系 关系 概念
如果集合 B 的每个元素都是集 子集
符号表示 图形表示
合A的元素,就说B包含于A,
或者说A包含B.若B包含于A, 子集 称B是A的一个______B
集 的子集,就说B是A的______ 真子集
B A ______
集合 如果B是A的子集,A也是B的
对,故A与B之间无包含关系. (2)A={x|x是等边三角形},B={x|x是等腰三角形}; 解 等边三角形是三边相等的三角形,等腰三角形是两边相
等的三角形,故A
B.
(3)A={x|-1<x<4},B={x|x-5<0};
解 集合B={x|x<5},用数轴表示集合A,B如图所示,由图
可知A B.
(4)M={x|x=2n-1,n∈N+},N={x|x=2n+1,n∈N+}.
相关文档
最新文档