微波仿真论坛_PIFA天线讲解

合集下载

PIFA天线问题总结

PIFA天线问题总结

PIFA天线是从倒F 天线发展出来的,通常有一个馈电脚和一个接地脚,也有的人在设计PIFA 天线时会再加另外一个单独的接地脚在馈电脚附近,为了拓宽带宽。

PIFA 天线通常要求天线下面的PCB 上有地,辐射体与地之间形成电场,当天线距离PCB 有一定高度时,会形成辐射场,辐射电磁波。

单极天线通常由四分之一波长的辐射体形成。

没有地脚,只有馈电脚。

对PCB 上的地要求不如PIFA严格,比如FMA天线,要求天线必须距离PCB有一定距离,否则天线效率很难很好的发挥出来。

对于做在PCB板子上的天线来讲,PIFA天线时需要正下方有地参考平面的,而且对地面积要有要求。

一般来说双频的需要面积在600mm2左右,垂直高度7-8mm。

而单极天线来说PCB板子的天线下面部分是地要挖空的。

双频一般是8*30,高度在5mm左右。

以上只是参考!天线形式一般由手机公司根据结构决定。

从天线原理上讲:1.翻盖机、滑盖机、旋盖机:PIFA天线适用。

如采用monopole天线要放在手机尾部。

2.直板机:PIFA、monopole天线都适用。

3.超薄翻盖机、滑盖机、旋盖机:monopole天线适用,但要放在手机尾部。

PIFA天线基本不适用(视整机厚度和天线高度)。

4.超薄直板机:monopole天线适用,PIFA天线基本不适用(视整机厚度和天线高度)。

原则上PIFA也可以只有单溃点, 加地馈点是为了拓展带宽这个认识是有问题的!PIFA的接地主要目的是两个:1.增加天线在低频(8~9百兆的)特性阻抗。

如果没有接地,天线的阻抗就太低,大约一般就20~30欧姆,根本无法匹配。

但是阻抗的频率特性比较平缓。

这也就是为什么只有一个馈点的天线低频谐振浅,但是曲线变化平缓的道理。

加了接地后,相位图上就会发生从很低的阻抗在很少的频率范围内猛然上升至千、万量级,这中间自然有一个范围围绕50欧姆的。

所以有接地的天线谐振可以调得很深,但频率带宽就比较窄了。

2.微带天线通过在馈电点后方加接地壁,使得1/2波长的天线变成了1/4,天线就小型化了,但是代价就是理论上少了3dBi增益(少了一个等效狭缝天线的增益)。

资深人士关于PIFA天线的理解与讨论

资深人士关于PIFA天线的理解与讨论

1。

PIFA天线是微带天线演变而来。

很多的英文资料介绍Patch Antenna,建议看看基本原理。

最简单的patch天线是一个金属片平行放置于地平面上,用同轴线或者微带线馈电即可。

其辐射主要靠边缘场。

假设该天线平行于大地放置,其形状为矩形,长边左右摆放,长边的长度为1/4波长。

如果左边缘的场是从patch到地,那么右边缘刚好反向从地到将左右两个边缘的电场分解成水平和垂直分量,你会发现垂直分量抵消,水平分量加强。

这样将会产生平行于地平面的线极化远场。

就手机而言,pifa天线的主极化一般是平行于手机主地平面。

此时,可以得到两个基本结论,1)这种天线的谐振波长为贴片长边的4倍(实际中请考虑介质的波长缩短效应,正比于1/sqrt(epsilon);2)这种天线的辐射主要靠边缘。

而边缘的场越往外倾斜,辐射越好(开放场)。

这就是为什么PIFA天线的高度如此重要的原因。

2。

加一个接地片(很多加在馈电附近)后,从微观角度来看贴片上的电流将改变流向,部分电流从右侧会流回来再回到地。

这样天线的谐振频率就会降低,一般波长会在4倍于贴片长边和短边之和左右(同样要考虑波长缩短效应)。

从另一个角度来说,馈电柱与短路柱是一段双线传输线。

它将变换天线的阻抗。

是一种变压器效应,它将部分容抗变换成感抗,从而使整个天线形成谐振。

这段线越长(极限是长到1/4波长)其变化效果越明显(越敏感,实际中就是天线的高度增加)。

传输变换原理大家应该清楚。

当改变馈电柱和短路柱的横向尺寸或者他们之间的距离时,实际上你是在改变该段传输线的特征阻抗。

也就相应地改变变换公式中平方的那部分。

这就是为什么我们常说馈电电和短路的改变将比较大的改变天线的阻抗。

同时也是为什么说PIFA天线一般可以不要匹配电路可以优化的(事实上,加匹配有时候会反而降低天线的传输性指标)。

3。

这个问题的解释是要配上图可能会更清楚。

的确有些问题是要有坚实的理论基础以及现实经验才会有比较深的理解的。

第五讲 手机PIFA天线分析

第五讲  手机PIFA天线分析

第五講手機PIFA天線分析一、引言多年來,大多數手機天線都一直在沿用一種傳統的PIFA天線設計方案。

目前市面上可以看到的手機內置天線,有60-80%都是採用這種天線設計。

所以,這一講主要介紹這種天線的輻射原理和輻射特性。

二、PIFA天線的基本結構PIFA天線的英文全名是“Planar Inverted F-shaped Antenna”,即“平面倒F型天線”。

由於整個天線的形狀像個倒寫的英文字母F,故得名。

其基本結構是採用一個平面輻射單元作為輻射體,並以一個大的地面作為反射面,輻射體上有兩個互相靠近的Pin腳,分別用於接地和作為饋點。

三、PIFA天線的由來PIFA天線最初來源於IFA天線,即倒F型線天線。

但是線性IFA天線是一種小尺寸天線,當輻射單元僅採用頂部的一個金屬導線時輻射效果並不理想(輻射電阻小),所以根據前面我們曾介紹過的,為增大輻射電阻和提高輻射效率而採用頂部載入的技術,將頂部的輻射線用輻射平面替代,從而形成平面輻射單元。

另一方面,當接地線和饋電線僅僅為一條細線時,其等效的射頻分佈電感較大,而引線上的分佈電容較小,這就意味著天線具有較高的Q值和較窄的頻帶。

根據電小天線Q值和帶寬的關係,增大帶寬的途徑就是降低Q值,因此將接地線和饋電線用具有一定寬度的金屬片取代可以增大分佈電容和減小分佈電感,從而增大天線帶寬。

這樣就形成了PIFA天線。

四、 PIFA 天線的傳輸線近似PIFA 天線的傳輸線近似模型如下圖所示。

在忽略接地片和饋線的分佈效應,PIFA天線等效于兩段長度分別為和的傳輸線相並聯。

其中表示饋線與接地片之間的電長度,表示饋線與開路端的電長度。

考慮饋線和接地片的分佈參數效應,PIFA 天線的傳輸線近似模型如下圖(b )所示,其中Rs 表示接地片的寄生電阻,Ls 表示接地片的分佈電感。

L R 和C C 表示開路端的寄生電阻和電容。

五、 PIFA 天線的接地單極子近似從某種程度上,PIFA 天線又類似于接地單極子天線,這是因為它也是一種放置在地面上方包含接地片的一種諧振式天線。

!PIFA天线的推论及计算方法

!PIFA天线的推论及计算方法
我没有找到有关 PIFA 天线的理论来源的文章和文献,在有些文献中谈 到的也是有关 PIFA 天线的一些大致。有朋友认为 PIFA 天线的理论来源于 微带天线,但提供不了相关的数学推论和理论。
本人以为,PIFA 天线并非完全来自于微带天线的理论,它的原始创意 很可能是从波导天线的基本概念得出的。在波导天线系中,一个简单的波
具体设计。 由上文得出,天线从开路端到接地端的距离为 L=λg / 4;源距接地点(短
路面)的长度为 L1=0.17λg; 从源到开路面的距离 L2≈0.20λg;λg 为微
带电路的导波长,λg=λ/εe1/2。
a
b
c
即, a+b=λg / 4 2b+c=0.17λg a+b-c=0.20λg
由此可解出:a、b、c 的尺寸。 而对于计算介电常数在 2 和 6 之间的基片上 t≠0 的微带线的特性阻抗,文 献[5]顾其诤等著《微波集成电路设计》中的 P13 有一个经验公式:εe=0.475 εr+0.67,详见文献[5]。
1. 对于 PIFA 天线的设计,这种文章却很少,国内相关的书也极少。有 的讲,从源到开路端的长度是 1/4λg 的导波长。
2. 但短路线的设计尺寸却没有讲。 3. 对于天线的方向图,更是没有一点讲有关天线设计与图之间和对应关
系。 4. 还有就是它的基本理论出处
针对以上四个问题,本人认为国内对 PIFA 天线的认识是有限的,而我 们要认识 PIFA 天线,一般可以从工程设计上入手。但更为重要的是了解国 外设计师研发 PIFA 天线的思路,即他们是因何提出 PIFA 天线的?他们的 原始创意是从何而来?对此本人提出自己的一点看法。 1. PIFA 天线的创意及其理论基础

傻瓜东东4浅谈PIFA ------- PIFA天线的带宽

傻瓜东东4浅谈PIFA ------- PIFA天线的带宽

PIFA天线的带宽PIFA天线的带宽,我们一般认识的PIFA天线相对于Monopole天线的工作频带较窄,在实际测量也反映了这一点。

我们从以下几个方面计论1.带线尺寸在《PIFA天线的推论及计算方法》一文中说到PIFA 天线是由波导的馈源演变而来。

而波导馈源有其足够的频率带宽,这主要是由于微波在波导内的传输,其可以通过多次工作模式传输,只是在经过足够长距离的传输后,其高次工作模式被衰弱到很小而以,所以波导线本身是一个宽频率带宽的传输线,由波导腔构成的谐振腔则也有足够的频率带宽,只是因波导腔长度的不同,会引起谐振腔的驻波、效率的略微变化而以。

对于PIFA天线,它的传输线是平面带线或者是微带线。

以微带线为例,无论在理论分析上,还是实际测量证明,微带线在严格意义上是一个窄带传输线。

我们一般认为微带线是一个线,它在作传输时是作为传输功能,用作在振荡时是作为谐振线(类似于波导谐振腔)。

在用作传输时,它的长短影响其在传输系统的参数,而微带线的宽只是影响微带线的特性阻抗;但对于PIFA天线中的微带谐振线来讲(从馈源到接地短路端Lo,见下图),其从S端到G端的线长度Lo直接影响PIFA天线的谐和振频率;在《PIFA天线的推论及计算方法》一文中说到,从下图中可以看到,当带线的宽度W为0时,PIFA天线将工作在一个点频上,而在带线的宽度W不为0时,则从S端到G端的线长就有很多个值,这就会使PIFA天线工作在一个频率宽度上。

所以,当微带线在作为谐振线使用时,其宽度W已不仅仅影响微带线的特性阻抗,还影响到谐振带宽;并且微带线的宽度W越宽,则PIFA 天线的工作频率带宽也就越宽。

2.带线走向、图形我们在《关于PIFA天线调试》一文中提到,天线设计师在特定设计PIFA天线时,由于手机结构、外形等条件的局限,PIFA天线的形状是各式各样的。

而PIFA天线的形状对天线的工作带宽是有影响的。

我们在设计微带天线时,为使天线有效高的工作效率和频带,以尽可能让电流分布均匀而分散作为设计原则。

PIFA天线的仿真设计

PIFA天线的仿真设计

本科毕业论文(设计)题目:平面倒F缝隙天线的仿真分析学院:自动化工程学院专业:通信工程姓名:杜哲指导教师:宗卫华2010年5月30日Simulation Analysis of PIFA Slot Antenna摘要手机天线设计的主要指标是小型化、多频化和内置化。

平面倒F天线(PIFA)由金属地板、辐射贴片、短路贴片和馈电系统组成,其结构紧凑、成本低、制作容易,得到了广泛的应用。

但小型PIFA天线的带宽较窄,不易实现同时覆盖GSM800和GSM900,可以在地面开槽形成缝隙天线,通过缝隙引入新的谐振来展宽工作带宽。

论文在前人研究的基础上,利用HFSS12.0仿真了普通的PIFA天线和地面开槽的PIFA缝隙天线,并将二者进行了比较,证明了在地面开槽能够实现增加PIFA带宽的作用。

关键词平面倒F天线缝隙天线谐振频率回波损耗AbstractThe main indexes of mobile antenna design is miniaturization,multi-frequency and built-in. Planner inverted-F slot antenna consists of metal ground with slots,radiating patch,short circuit patch and feeding line.PIFA slot antenna,which has the features of compact size,low cost,easy to fabricate and has been applied widely.The compact PIFA has a narrow band at lower frequency,can not cover both of GSM800and GSM900.The bandwidth can be widened by introducing slots on the ground plane,because the slots can excite additional resonances.Based on existed studies,PIFA slot antenna and PIFA antennae has been simulated through electromagnetic simulation software HFSS12.0,the results show PIFA slot antenna has wider bandwith than traditional PIFA.Keyword Planar inverted F antenna(PIFA)Slot antenna Resonant frequency Return loss目录前言 (1)第一章绪论 (2)1.1研究背景及意义 (2)1.2本文内容及安排 (2)第2章PIFA和PIFA缝隙天线的理论分析 (4)2.1常见的PIFA天线举例 (5)2.2PIFA天线原理 (8)第三章平面倒F天线的仿真 (9)3.1建立新的工程模型 (9)3.2设置设置材料、源和边界条件 (13)3.3求解设置 (15)3.5后处理计算 (16)第四章缝隙天线的仿真分析 (21)4.1建立工程模型 (21)4.2设置设置材料、源和边界条件 (27)4.3求解设置 (28)4.4后处理计算 (28)结束语 (34)谢辞 (35)参考文献 (36)前言手机天线是手机的重要组成部分,按照安置方式分,目前手机天线主要有内置及外置天线两种。

PIFA天线问题总结

PIFA天线问题总结

PIFA天线是从倒F天线发展出来的,通常有一个馈电脚和一个接地脚,也有的人在设计PIFA天线时会再加另外一个单独的接地脚在馈电脚附近,为了拓宽带宽。

PIFA天线通常要求天线下面的PCB上有地,辐射体与地之间形成电场,当天线距离PCB有一定高度时,会形成辐射场,辐射电磁波。

单极天线通常由四分之一波长的辐射体形成。

没有地脚,只有馈电脚。

对PCB上的地要求不如PIFA严格,比如FMA天线,要求天线必须距离PCB 有一定距离,否则天线效率很难很好的发挥出来。

对于做在PCB板子上的天线来讲,PIFA天线时需要正下方有地参考平面的,而且对地面积要有要求。

一般来说双频的需要面积在600mm2左右,垂直高度7-8mm。

而单极天线来说PCB板子的天线下面部分是地要挖空的。

双频一般是8*30,高度在5mm左右。

以上只是参考!天线形式一般由手机公司根据结构决定。

从天线原理上讲:1.翻盖机、滑盖机、旋盖机:PIFA天线适用。

如采用monopole天线要放在手机尾部。

2.直板机:PIFA、monopole天线都适用。

3.超薄翻盖机、滑盖机、旋盖机:monopole天线适用,但要放在手机尾部。

PIFA天线基本不适用(视整机厚度和天线高度)。

4.超薄直板机:monopole天线适用,PIFA天线基本不适用(视整机厚度和天线高度)。

原则上PIFA也可以只有单溃点,加地馈点是为了拓展带宽这个认识是有问题的!PIFA的接地主要目的是两个:1.增加天线在低频(8~9百兆的)特性阻抗。

如果没有接地,天线的阻抗就太低,大约一般就20~30欧姆,根本无法匹配。

但是阻抗的频率特性比较平缓。

这也就是为什么只有一个馈点的天线低频谐振浅,但是曲线变化平缓的道理。

加了接地后,相位图上就会发生从很低的阻抗在很少的频率范围内猛然上升至千、万量级,这中间自然有一个范围围绕50欧姆的。

所以有接地的天线谐振可以调得很深,但频率带宽就比较窄了。

2.微带天线通过在馈电点后方加接地壁,使得1/2波长的天线变成了1/4,天线就小型化了,但是代价就是理论上少了3dBi增益(少了一个等效狭缝天线的增益)。

手机PIFA天线原理

手机PIFA天线原理

手机天线常用三种:1:螺旋天线,以前常用,突出一个头的外置,现在很少见。

2:PIFA天线,最常用的主流天线,NOKIA等常用3:单极性天线,主要在MOTO V3、V6上使用本文主要讲解第二种类型,PIFA天线。

PIFA天线,大家首先碰到的第一个问题就是,馈点2与地馈点怎么是短路的,注意看下图,2,3脚是短路的。

在很多人脑子中,螺旋天线和单极性天线比较好理解,就是1/4波长原理,其中一个馈点就是螺旋或者单杆,另外一极就是地了,他们的场结构非常简单,如下图,就是,可以简单等效为一个LC谐振回路,其中C特别小,一个一个的谐振回路耦合上去,最后电磁场释放到外部。

那么PIFA天线对应的模型应该是如何的,如何解释馈点与地的短路,这个对射频,尤其是天线设计者来说,是很重要的,理解了这个,他们就可以摆脱机械的操作。

说实在,现在的天线设计者,绝大部分对天线一无所知,除了几个指标,比如驻波系数比,功率等级,方向性等。

其他的就是实验,按模板不停的修改天线,直到出来效果即可,原理他们完全不懂。

PIFA天线等效图如上,由L2与C1构成一个偏向电容性的谐振,之后与L1电感谐振,这样大家就可以理解为什么馈点跟地看上去短路了一样。

说穿了,就是通过L1,L2,C1把传输线过来的能量升压到C1上,之后利用C1这个场空间把电磁场能量释放出去,所以对C1来说,必需要求上面的铜皮跟地之间有一定的高度,一般不小于7mm,最少不低于5mm。

为了提高天线频带,往往再引入C2,也就是第一个图上面的第一脚,也就是引入一个地,这样让电场有更广泛的辐射。

学员中小郭提出,为什么手机板短的信号一般不如手机板长的信号号,比如说有些手机板,之后5CM长,信号就不如11CM长的手机板天线更容易调试,这个其实可以用PIFA天线的场结构非常好的解释,因为手机板长的天线,C2范围特别宽,对应的电场波长也比较长,更容易辐射GSM 900MHz的信号出去。

此外小郭又提出,问什么PIFA天线稳定性好于单极性天线,但灵敏度低于单极性天线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Applications Note5th August 2003Haroon KhanRevision 0.2 Cordless Voice Module Antenna : Application NoteGeneral DescriptionThis Application Note describes some of the antennas and basics on design that can be used with the Cord-less Voice Module. PIFA antennas are explained along with information on their design and matching to the CVM output. Diversity antennas are strongly recommended for the CVM module as they offer far better recep-tion quality and the principle of diversity is described.Revision HistoryRevision 0.1 12th February, 2003Revision 0.2 5th August, 2003Table of Contents Acronyms (2)Module Description (3)Types of Antennas (3)Stub Helix (4)Surface Mount Dielectric Chip (4)Printed Inverted F (PIFA) (6)Principle of Surface Mount, Printed or Patch Antennas (6)Reference Design: Example (7)Diversity Recommendation for CVM (8)Summary (10)AcronymsCompatibilityEMC Electro-MagneticDCT Digital Cordless TelephonyDECT Digital Enhanced Cordless TelephonyPCB Printed Circuit BoardGSM Global System for Mobile communicationsVSWR Voltage Standing Wave RatioPIFA Printed Inverted F AntennaBER Bit Error RateCVM Cordless Voice ModuleRSSI Receiver Signal Strength IndicatorFrequencyRF RadioElectro-MagneticTEM Transverseλg Wavelength of micro-strip guided waveModule DescriptionThe CVM module consists of an SC14428 baseband processor, LMX4168 1.9GHz or LMX4268 2.4GHz RF transceiver, crystal oscillator, power amplifier and diode switch as shown above. The dimensions of the mod-ule are 26.6mm × 45.6mm and the transceiver plus power amplifier sections would be shielded from to meet EMC requirements. The module as a whole is designed to be mounted on a motherboard that will also con-tain the antenna. Different types of antennas can be used based on size and performance and a few will be discussed in this report. This report will discuss the basics of such antennas that are vital to any designer wishing to implement into their application.Types of Antennas1.9 and2.4GHz antennas that can be used for DECT and DCT respectively are available in several different designs, all suitable for mobile application such as printed line, inverted F, dielectric chip surface mount and stub helix. Manufacturers that produce such antennas include Allgon, GigaAnt, Yokowo, Mitsubishi, Rang-estar and several others that will also make custom designs if the volumes are large enough.Stub HelixThis type of antenna is most commonly used for GSM mobile phones, but tuned to 1.9 and 2.4GHz, it has ex-cellent RF performance in terms of bandwidth and efficiency of radiation and has only one connection point to the main PCB. It does not require a ground connection or a ground plane and because of its large bandwidth it will not easily be de-tuned by user handling. But like all the antennas mentioned in this report, it does need tuning to the individual mechanics of the application in which it is being used. Different shapes and materials used for the chassis will distort the radiation pattern and pull the center frequency of the antenna. This is one disadvantage of helix antennas, because they are more difficult to tune than a printed antenna where the resonant length can be easily changed.The negative point of course with this type of antenna is that its not low profile, it projects from the side of the PCB. For this reason they are often not used for mobile applications.Surface Mount Dielectric ChipA low profile, smaller, lighter and cheaper antenna is the dielectric chip antenna, this consists of a high dk di-electric slab with the active element printed on top. The reason for using a dielectric slab rather than printing the element on the PCB directly is that it is smaller due to the concentrated electric field within the dielectric material. This type of antenna is low profile and can be machine mounted during assembly, but it does not yield as good performance as the stub helix. Being small means narrow bandwidth, worse efficiency and eas-ily de-tuned through handling.Even though the antenna element is quite small (approx. 12×2mm) the size of the whole antenna is much lar-ger because of the ground plane required for the antenna to function correctly. In addition to this, a certain copper free clearance needs to be maintained around the radiating element both in a horizontal plane as shown in the diagram and some clearance in the vertical plane. The results of making the ground plane or copper free area too small will be reduced bandwidth and as a rule of thumb, the antenna should have a bandwidth which covers the entire DECT or DCT band with VSWR<2.5.Typical Requirement Specifications;• Bandwidth – As mentioned this should cover the entire band with VSWR<2.5, however, small band-width antenna will be prone to de-tuning effects hence the bandwidth should ideally be larger thanthis (see graph below). If the required bandwidth cannot be achieved then either the antenna ground area and/or the radiating element is too small. A matching network maybe also be required in addi-tion, this should be placed as close as possible to the antenna input.• Radiation Efficiency – Anything greater than 70% would be considered good. Small mobile anten-nas will certainly have worse efficiency than larger λg/2 or full λg antennas.• Radiation Pattern – Should be omni directional for mobile applications. But the pattern of small an-tennas (L<<λg) is difficult to control and may have an erratic shape, but this is not a serious issue.2.4GHz antennaRadiating element (chip).VSWR into antenna port.Printed Inverted F (PIFA)A PIFA antenna is shown above. The main radiating element is λg/4 in this case, or it could be half or full λ for better RF performance. The back of the element is grounded with through via’s placed close to the grounding point to give a good RF ground, this is to provide a node where the electric field is close to zero. The radiating element being quarter wavelength will produce an anti-node on its other end where the electric field is strong-est, hence this end of the element will become the active radiating region of the antenna. An area of ground plane and copper clearance is again required to give the antenna its required bandwidth. The antenna ele-ment is approximately 25mm long since it is printed on FR4, this is considerably larger than the dielectric chip, but of course this kind of antenna will be cheaper to manufacture than the dielectric chip at the expense of size. The position of the feed point along the element will control its input impedance to a certain extent and can be used as a tool for matching along with the antenna dimensions and a discrete matching network. Principle of Surface Mount, Printed or Patch AntennasAll such antennas work on a similar principle, radiating element, clearance around the element (top and bot-tom) plus a ground plane on one side. It is necessary to create a fringing E-field with a large arc to give rise to radiation emission, else the field will be contained and non-radiating.Consider a micro-strip line as shown above and the electric field lines that run from it through the dielectric substrate to ground. Although micro-strips do radiate a little, they are not good antennas by themselves. In order to turn them into good radiators it is necessary to move the ground plane from under the strip-line, hence forcing the electric field to arc over a greater distance, and it is this arcing field that produces the radia-tion. If the ground plane is moved too far, then the electric field would cease altogether, therefore there is a critical distance.Reference Design: ExampleThe physical dimensions of the antenna are predominantly governed by three factors, the frequency of reso-nance, the dielectric constant of the substrate on which the antenna element is printed and the thickness of the substrate. High frequency obviously means smaller dimensions, also high dielectric constant and thick substrate means the field lines are more densely packed, which means smaller physical size.In this example for the CVM module (at 2.45GHz center frequency) the relative dielectric constant is 4.3 and the thickness of the substrate is 1mm.In this case the maximum dimension of the antenna is 17mm, λg/4. The antenna could also be 34 or 68mm long, λg/2 and full λg respectively, depending on space available. The advantage of making it larger is greater bandwidth and immunity to de-tuning.Diversity Recommendation for CVMIn mobile applications, the DECT/DCT handset is constantly in a state of motion, this results in fading and Doppler. Fading is when radiation reflected from multiple surfaces is combined at the receiving antenna either constructively or destructively interfere giving a rapidly varying signal level at the receiver input. Doppler is when the frequency of the carrier is shifted slightly during fast movement away from or towards the receiver, because the TEM wave is compressed or stretched. The effect of both and particularly fading is reception dif-ficulty and increased BER, in extreme conditions or when the signal level is weak, the link maybe dropped al-together.One method to compensate this is through the use of diversity, which consists of two antennas placed at least 15 to 20mm apart and/or perpendicular to each other The two antennas are connected to the receiver by means of a pin diode switch and are monitored for signal level at the start of each burst, the antenna with the highest level is then selected for data reception.We see from this example that when the RSSI level of antenna 2 drops lower than antenna 1, the switch is made to the higher RSSI. Hence the diversity arrangement prevents the signal from dropping too low during a fade since it is very unlikely that both antennas will go though a null at the same time, since they are sepa-rated slightly and are arrange perpendicularly.Although the diversity arrangement is recommended for the CVM module, it comes at the expense of having two antennas and greater use of PCB real estate.The RSSI in this case is measured during pre-amble and logic signals from the baseband is applied to the pin-diode switch which causes it to switch to either antenna depending on the highest RSSI measured. The data burst can then be received with the best signal quality.Ant_sel and Ant2_sel are the logic signals that bias the diode pair D2 to conducting or non-conducting states, hence select the appropriate antenna.SummaryThree types of antennas have been considered for use with the CVM module;Type of Antenna Performance Profile Cost PhysicalSizeStub Helix Good bandwidthand efficiency, doesnot require match-ing network. High: Projects fromthe side of the PCBHigh 2.4GHz antenna isapproximately15mm long, butprojects, does notneed ground planeto functionSurface mount ce-ramic chip Reasonable per-formance on λg/4.Small bandwidthand reduced effi-ciency, can becomede-tuned duringhandlingLow: Can be ma-chine mounted dur-ing assembly, nomore than 0.5mmthickMedium Element for 2.4GHzis approximately12mm long, butneeds ground areaand clearancearound active re-gionPrinted Inverted F Reasonable per-formance on λg/4.Small bandwidthand reduced effi-ciency, can becomede-tuned duringhandling Lowest: Printed onPCBLow Element for 2.4GHzis approximately25mm long, butneeds ground areaand clearancearound active re-gionIn mobile applications, diversity is recommended to give good signal level at all times and avoid fading nulls that can corrupt or drop the link altogether. Any of the above antennas mentioned can be used for diversity as long as they are placed at least 15 to 20mm apart and/or perpendicular to each other.Points for Consideration• Surface mount chips or PIFA antennas require ground plane and clearance around the radiating ele-ment.• Larger antennas, ie/ full λ for half λ will have better efficiency and bandwidth than smaller antennas.• Small antennas are prone to de-tuning due to their narrow bandwidths. Certain volume clearance should be maintained around the active element.• Even plastic chassis can cause de-tuning and loss of radiated power if it comes too close to the active element.• The resonant length of the antenna will be affected by the shape and size of the chassis and also the material that it is composed of. The antenna therefore needs to be designed with the application for which it is being used.• Handset antennas will almost certainly be de-tuned when handling, amount of de-tuning is dependent on the distance of the hand and head to the active part of the antenna.• Chassis around the antenna should not be metalised in any way.• 3 or 5 element matching network can be used to increase the bandwidth into the antenna or match to the strip-line.。

相关文档
最新文档