2018-数一考研真题及答案
2018-2019年考研数学一真题及答案

2018考研数学一真题及答案一、选择题 1—8小题.每小题4分,共32分.1.若函数1cos 0(),0xx f x b x ⎧->⎪=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab = 【详解】0001112lim ()lim lim 2x x x xx f x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A ) 2.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <- 【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )3.函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为(A )12 (B )6 (C )4 (D )2 【详解】22,,2f f fxy x z x y z∂∂∂===∂∂∂,所以函数在点(1,2,0)处的梯度为()4,1,0gradf =,所以22(,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为()014,1,0(1,2,2)23f gradf n n∂=⋅=⋅=∂应该选(D )4.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,如图中,实线表示甲的速度曲线1()v v t =(单位:米/秒),虚线表示乙的速度曲线2()v v t =(单位:米/秒),三块阴影部分的面积分别为10,20,3,计时开始后乙追上甲的时刻为0t ,则( ) (A )010t = (B )01520t <<(C )025t = (D )025t >【详解】由定积分的物理意义:当曲线表示变速直线运动的速度函数时,21()()T T S t v t dt =⎰表示时刻[]12,T T 内所走的路程.本题中的阴影面积123,,S S S -分别表示在时间段[][][]0,10,10,25,25,30内甲、乙两人所走路程之差,显然应该在25t =时乙追上甲,应该选(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )TE αα-不可逆 (B )TE αα+不可逆 (C )2TE αα+不可逆 (D )2TE αα-不可逆 【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2T T T T E E E E αααααααα-+-+的特征值分别为0,1,1,1;2,1,1,,1;1,1,1,,1-;3,1,1,,1.显然只有T E αα-存在零特征值,所以不可逆,应该选(A ). 6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B 是两个随机事件,若0()1P A <<,0()1P B <<,则(/)(/)P A B P A B >的充分必要条件是(A )(/)(/)P B A P B A > (B )(/)(/)P B A P B A < (C )(/)(/)P B A P B A > (D )(/)(/)P B A P B A <【详解】由乘法公式:()()(/),()()((/)P AB P B P A B P AB P B P A B ==可得下面结论:()()()()(/)(/)()()()()1()()P AB P AB P A P AB P A B P A B P AB P A P B P B P B P B ->⇔>=⇔>- 类似,由()()(/),()()(/)P AB P A P B A P AB P A P B A ==可得()()()()(/)(/)()()()()1()()P AB P AB P B P AB P B A P B A P AB P A P B P A P A P A ->⇔>=⇔>- 所以可知选择(A ). 8.设12,,,(2)n X X X n ≥为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i Xμ=-∑服从2χ分布 (B )()212n X X -服从2χ分布 (C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.已知函数21()1f x x=+,则(3)(0)f = .解:由函数的马克劳林级数公式:()0(0)()!n nn f f x x n ∞==∑,知()(0)!n n f n a =,其中n a 为展开式中nx 的系数. 由于[]24221()1(1),1,11n n f x x x x x x==-+-+-+∈-+,所以(3)(0)0f =.10.微分方程230y y y '''++=的通解为 .【详解】这是一个二阶常系数线性齐次微分方程,特征方程2230r r ++=有一对共共轭的根1r =-,所以通解为12()x y e C C -=+ 11.若曲线积分221L xdx aydy x y -+-⎰在区域{}22(,)|1D x y x y =+<内与路径无关,则a = .【详解】设 2222(,),(,)11x ay P x y Q x y x y x y -==+-+-,显然 (,),(,)P x y Q x y 在区域内具有连续的偏导数,由于与路径无关,所以有1Q Pa x y∂∂≡⇒=-∂∂ 12.幂级数111(1)n n n nx ∞--=-∑在区间(1,1)-内的和函数为【详解】111121111(1)(1)()(1)1(1)n n n nn n n n n x nxx x x x ∞∞∞----===''⎛⎫⎛⎫'-=-=-== ⎪ ⎪++⎝⎭⎝⎭∑∑∑ 所以21(),(1,1)(1)s x x x =∈-+13.设矩阵101112011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的分布函数4()0.5()0.52x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX = .【详解】随机变量X 的概率密度为4()()0.5()0.25()2x f x F x x ϕϕ-'==+,所以 4()()0.5()0.25()240.25()0.252(24)()22()2x E X xf x dx x x dx x dx x x dx t t dt t dt ϕϕϕϕϕ+∞+∞+∞-∞-∞-∞+∞+∞-∞-∞+∞-∞-==+-==⨯+==⎰⎰⎰⎰⎰⎰三、解答题15.(本题满分10分)设函数(,)f u v 具有二阶连续偏导数,(,cos )xy f e x =,求0|x dy dx=,202|x d y dx =.【详解】12(,cos )(,cos )(sin )x x x dy f e x e f e x x dx ''=+-,01|(1,1)x dyf dx='=; 2111122222122(,cos )((,cos )sin (,cos ))cos (,cos )sin (,cos )sin (,cos )x x x x x x x x x x d ye f e x e f e x e xf e x xf e x dx xe f e x xf e x ''''''=+--''''-+2011122|(1,1)(1,1)(1,1)x d yf f f dx=''''=+-.16.(本题满分10分) 求21limln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰17.(本题满分10分)已知函数()y x 是由方程333320x y x y +-+-=. 【详解】在方程两边同时对x 求导,得2233330x y y y ''+-+= (1)在(1)两边同时对x 求导,得2222()0x y y y y y '''''+++=也就是222(())1x y y y y'+''=-+令0y '=,得1x =±.当11x =时,11y =;当21x =-时,20y = 当11x =时,0y '=,10y ''=-<,函数()y y x =取极大值11y =; 当21x =-时,0y '=,10y ''=>函数()y y x =取极小值20y =. 18.(本题满分10分)设函数()f x 在区间[]0,1上具有二阶导数,且(1)0f >,0()lim 0x f x x-→<,证明: (1)方程()0f x =在区间()0,1至少存在一个实根;(2)方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.证明:(1)根据的局部保号性的结论,由条件0()lim 0x f x x-→<可知,存在01δ<<,及1(0,)x δ∈,使得1()0f x <,由于()f x 在[]1,1x 上连续,且1()(1)0f x f ⋅<,由零点定理,存在1(,1)(0,1)x ξ∈⊂,使得()0f ξ=,也就是方程()0f x =在区间()0,1至少存在一个实根;(2)由条件0()lim 0x f x x-→<可知(0)0f =,由(1)可知()0f ξ=,由洛尔定理,存在(0,)ηξ∈,使得()0f η'=;设()()()F x f x f x '=,由条件可知()F x 在区间[]0,1上可导,且(0)0,()0,()0F F F ξη===,分别在区间[][]0,,,ηηξ上对函数()F x 使用尔定理,则存在12(0,)(0,1),(,)(0,1),ξηξηξ∈⊂∈⊂使得1212,()()0F F ξξξξ''≠==,也就是方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.19.(本题满分10分)设薄片型S 是圆锥面z =被柱面22z x =所割下的有限部分,其上任一点的密度为μ=C .(1)求C 在xOy 布上的投影曲线的方程; (2)求S 的质量.M【详解】(1)交线C的方程为22z z x⎧=⎪⎨=⎪⎩z ,得到222x y x +=.所以C 在xOy 布上的投影曲线的方程为222.0x y xz ⎧+=⎨=⎩(2)利用第一类曲面积分,得222222(,,)1864SSx y xx y xM x y z dS μ+≤+≤=====⎰⎰⎰⎰⎰⎰⎰⎰20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥. 假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他.(1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=,利用12,,,n Z Z Z 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量122ni i Z nσ===∑.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >=时似然函数为221121()(,)ni i nnz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=2019考研数学一真题及答案一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0→x 时,若x x tan -与k x 是同阶无穷小,则=k A.1. B.2. C.3.D.4.2.设函数⎩⎨⎧>≤=,0,ln ,0,)(x x x x x x x f 则0=x 是)(x f 的A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是A..1∑∞=n n nu B.nn nu 1)1(1∑∞=-. C.∑∞=+⎪⎪⎭⎫ ⎝⎛-111n n n u u . D.()∑∞=+-1221n n n u u.4.设函数2),(yxy x Q =,如果对上半平面(0>y )内的任意有向光滑封闭曲线C 都有⎰=+Cdy y x Q dx y x P 0),(),(,那么函数),(y x P 可取为A.32yx y -.B.321yx y -. C.y x 11-. D.yx 1-. 5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+.C.232221y y y --.D.232221y y y ---.6.如图所示,有3张平面两两相交,交线相互平行,它们的方程)3,2,1(321==++i d z a y a x a i i i i组成的线性方程组的系数矩阵和增广矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A rD..1)(,1)(==A r A r7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是 A.).()()(B P A P B A P += B.).()()(B P A P AB P = C.).()(A B P B A P = D.).()(B A P AB P =8.设随机变量X 与Y 相互独立,且都服从正态分布),(2σμN ,则{}1<-Y X PA.与μ无关,而与2σ有关.B.与μ有关,而与2σ无关.C.与2,σμ都有关. D.与2,σμ都无关.二、填空题:9~14小题,每小题4分,共24分. 9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx ∂∂⋅+∂∂⋅11= . 10. 微分方程02'22=--y y y 满足条件1)0(=y 的特解=y .11. 幂级数nn n x n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S . 12. 设∑为曲面)0(44222≥=++z z y x 的上侧,则dxdy z x z⎰⎰--2244= .13. 设),,(321αααA =为3阶矩阵.若 21αα,线性无关,且2132ααα+-=,则线性方程组0=x A 的通解为 .14. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )( . 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)设函数)(x y 是微分方程2'2x e xy y -=+满足条件0)0(=y 的特解.(1)求)(x y ;(2)求曲线)(x y y =的凹凸区间及拐点.16.(本题满分10分)设b a ,为实数,函数222by ax z ++=在点(3,4)处的方向导数中,沿方向j i l 43--=的方向导数最大,最大值为10.(1)求b a ,;(2)求曲面222by ax z ++=(0≥z )的面积.17.求曲线)0(sin ≥=-x x e y x与x 轴之间图形的面积.18.设dx x x a n n ⎰-=121,n =(0,1,2…)(1)证明数列{}n a 单调减少,且221-+-=n n a n n a (n =2,3…) (2)求1lim-∞→n nn a a .19.设Ω是锥面())10()1(2222≤≤-=-+z z y x 与平面0=z 围成的锥体,求Ω的形心坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的一个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的一个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A 与⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012相似(1)求y x ,.(2)求可可逆矩阵P ,使得.1B AP P =-22.设随机变量X 与Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为{}{}),10(,11,1<<-===-=p p Y P p Y P 令XY Z =(1)求z 的概率密度.(2)p 为何值时,X 与Z 不相关. (3)X 与Z 是否相互独立?23.(本题满分11分) 设总体X 的概率密度为⎪⎩⎪⎨⎧<≥--=,0,2)(),(222μμσσA σx x u x e x f 其中μ是已知参数,0>σ是未知参数,A 是常数,n X …X X ,,21来自总体X 的简单随机样本.(1)求A ;(2)求2σ的最大似然估计量参考答案1.C2.B3.D4.D5.C6.A7.C8.A9.yx x y cos cos + 10.23-xe 11.x cos 12.332 13. ,T)1,2,1(-k k 为任意常数. 14.3215. 解:(1))()()(2222c x ec dx e ee x y x xdxx xdx+=+⎰⎰=---⎰,又0)0(=y ,故0=c ,因此.)(221x xe x y -=(2)22221221221)1(x x x ex ex ey ----=-=',222221221321221)3()3()1(2x x x x ex x e x x xex xey -----=-=---='',令0=''y 得3,0±=x所以,曲线)(x y y =的凹区间为)0,3(-和),3(+∞,凸区间为)3,(--∞和)3,0(,拐点为)0,0(,)3,3(23---e,)3,3(23-e .16. 解:(1))2,2(by ax z =grad ,)8,6()4,3(b a z =grad ,由题设可得,4836-=-ba ,即b a =,又()()108622=+=b a z grad ,所以,.1-==b a(2)dxdy y z x z S y x ⎰⎰≤+∂∂+∂∂+=22222)()(1=dxdy y x y x ⎰⎰≤+-+-+22222)2()2(1 =dxdy y x y x ⎰⎰≤+++22222441 =ρρρθπd d ⎰⎰+202241=20232)41(1212ρπ+⋅=.313π 17.18.19.由对称性,2,0==y x ,⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--===ΩΩ102102101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ=.4131121)1()1(1212==--⎰⎰dz z dz z z20.(1)123=b c βααα++即11112311231b c a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 解得322a b c =⎧⎪=⎨⎪=-⎩.(2)()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的一个基.()()12323=P αααααβ,,,,则()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,.21.(1)A 与B 相似,则()()tr A tr B =,A B =,即41482x y x y -=+⎧⎨-=-⎩,解得32x y =⎧⎨=-⎩(2)A 的特征值与对应的特征向量分别为1=2λ,11=20α⎛⎫ ⎪- ⎪ ⎪⎝⎭;2=1λ-,22=10α-⎛⎫ ⎪ ⎪ ⎪⎝⎭;3=2λ-,31=24α-⎛⎫⎪ ⎪ ⎪⎝⎭. 所以存在()1123=P ααα,,,使得111212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦.B 的特征值与对应的特征向量分别为1=2λ,11=00ξ⎛⎫ ⎪ ⎪ ⎪⎝⎭;2=1λ-,21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭;3=2λ-,30=01ξ⎛⎫ ⎪ ⎪⎪⎝⎭.所以存在()2123=P ξξξ,,,使得122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦. 所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当0z ≤时,()zF z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0zzpez f z p e z -⎧<⎪=⎨->⎪⎩. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,又()()1,12D X E Y p ==-,从而当12p =时,(),0Cov X Z =,即,X Z 不相关.(III )由上知当12p ≠时,,X Z 相关,从而不独立;当12p =时,121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭而12112P X e -⎧⎫≤=-⎨⎬⎩⎭,121111112222222P Z P X P X e -⎛⎫⎧⎫⎧⎫⎧⎫≤=≤+≥-=-⎨⎬⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎩⎭⎝⎭,显然1111,2222P X Z P X P Z ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,即,X Z 不独立. 从而,X Z 不独立. 23. 解:(I )由()2221x Aedx μσμσ--+∞=⎰t =2012t e dt +∞-==⎰,从而A =(II )构造似然函数()()22112212,,1,2,,,,,,0,ni i n x i n A e x i nL x x x μσμσσ=--⎧∑⎛⎫⎪≥= ⎪=⎨⎝⎭⎪⎩其他,当,1,2,,i x i nμ≥=时,取对数得()22211ln ln ln 22nii n L n A x σμσ==---∑,求导并令其为零,可得()22241ln 1022ni i d L n x d μσσσ==-+-=∑,解得2σ的最大似然估计量为()211n i i x n μ=-∑.。
考研真题【2018考研数学(一)真题+答案解析】2018年考研数学一真题及答案解析

2018年全国硕士研究生入学统一考试数学(一)试卷及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)下列函数中,在0x =处不可导的是()(A)()sin f x x x =(B)()f x x =(C)()cos f x x =(D)()f x =【答案】(D)【解析】根据导数的定义:(A)sin limlim0,x x x x x x x x→→== 可导;(B)0,x x →→==可导;(C)1cos 12limlim0,x x xx xx→→--==可导;(D)000122lim lim,x x x xx x→→→-==极限不存在,故选D。
(2)过点()()1,0,0,0,1,0,且与曲面22z x y =+相切的平面为()(A)01z x y z =+-=与(B)022z x y z =+-=与2(C)1x y x y z =+-=与(D)22x y x y z =+-=与2【答案】(B)【解析】()()221,0,0,0,1,0=0z z x y =+过的已知曲面的切平面只有两个,显然与曲面相切,排除C 、D22z x y =+曲面的法向量为(2x,2y,-1),111(1,1,1),,22x y z x y +-=-==对于A选项,的法向量为可得221.z x y x y z z A B =++-=代入和中不相等,排除,故选(3)()()23121!nn n n ∞=+-=+∑()(A)sin1cos1+(B)2sin1cos1+(C)2sin12cos1+(D)2sin13cos1+【答案】(B)【解析】00023212(1)(1)(1)(21)!(21)!(21)!nn nn n n n n n n n ∞∞∞===++-=-+-+++∑∑∑0012=(1)(1)cos 2sin1(2)!(21)!nn n n l n n ∞∞==-+-=++∑∑故选B.(4)设()(2222222211,,1,1x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰则()(A)M N K >>(B)M K N >>(C)K M N >>(D)K N M>>【答案】(C)【解析】22222222222(1)122=(1).111x x x x M dx dx dx x x x πππππππ---+++==+=+++⎰⎰⎰22222111(0)11xx xxx e x N dx dx Meeπππππ--+++<≠⇒<⇒=<=<⎰⎰2222=11K dx dx M πππππ--+>==⎰⎰(,K M N >>故应选C 。
考研数学一(参数估计与假设检验)历年真题试卷汇编1(题后含答案及解析)

考研数学一(参数估计与假设检验)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2018年] 设总体X服从正态分布X~N(μ,σ2)其中σ2已知.X1,X2,…,Xn是来自总体X的简单随机样本,对总体均值μ进行检验,假设H0:μ=μ0,H1:μ≠μ0.则( ).A.若显著性水平α=0.05时拒绝H0,则在检验水平α=0.01时也拒绝H0B.若显著性水平α=0.05时接受H0,则在检验水平α=0.01时拒绝H0 C.若显著性水平α=0.05时拒绝H0,则在检验水平α=0.01时接受H0 D.若显著性水平α=0.05时接受H0,则在检验水平α=0.01时也接受H0正确答案:D解析:如图所示,Zα/2表示标准正态分布的上分位数,即图中阴影部分的面积为.区间(一Zα/2,Zα/2)是在显著性水平α下的接受域.若显著性水平α=0.05时接受H0,即表示检验统计量的观察值落在接受域(一Z0.025,Z0.025)内.区间(一Z0.005,Z0.005)包含(一Z0.025,Z0.025),因此其观察值也落在区间(一Z0.005,Z0.005)内,即落在接受域内,所以选项D正确,B错误.α=0.05时拒绝H0,即Z的观察值落在拒绝域(一∞,一Z0.025]∪[Z0.025,+∞)内;但区间(一∞,一Z0.005]∪[Z0.005,+∞)包含于(一∞,一Z0.025]∪[Z0.025,+∞),因此无法判断观察值是否落在区间(一∞,一Z0.005]∪[Z0.005,+∞)内,选项A、C无法确定.故选D.知识模块:参数估计与假设检验填空题2.[2009年] 设X1,X2,…,Xm为来自-N分布总体B(n,p)的简单随机样本,和S2分别为样本均值和样本方差,若+kS2为np2的无偏估计量,则k=______.正确答案:一1解析:由题设有E(+kS2)=np2,而E(X2+kS2)=E()+kE(S2)=E(X)+kD(X)=np+knp(1一p),故np+kn(1-p)=np2,即k(1一p)=p-1,亦即k=一1.知识模块:参数估计与假设检验3.[2014年] 设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体的简单样本,若是θ2的无偏估计,则c=______.正确答案:解析:由无偏估计的定义得到,因而故知识模块:参数估计与假设检验4.[2016年] 设x1,x2,…,xn为来自总体N(μ,σ2)的简单随机样本,样本均值.=9.5,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.正确答案:(8.2,10.8)解析:因,则故其中α=0.05,故μ的置信度为0.95的双侧置信区间为因μ的置信区间的置信上限为10.8,且,则所以μ的双侧置信区间为(9.5—1.3,9.5+1.3)=(8.2,10.8).知识模块:参数估计与假设检验5.[2003年] 已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40(cm),则μ的置信度为0.95的置信区间是______.(注:标准正态分布函数值ф(1.96)=0.975,ф(1.645)=0.95)正确答案:(39.51,40.49)解析:因1一α=0.95,即α=0.05,故uα/2=u0.025,1—0.025=0.975=ф(1.96),则uσ/2=1.96.于是由,得到将=40,σ=1,n=16代入上式,即得μ的置信度为0.95的置信区间(40一(1/4)×1.96,40+(1/4)×1.96)=(39.51,40.49).知识模块:参数估计与假设检验解答题解答应写出文字说明、证明过程或演算步骤。
2018年考研数学(一)真题与答案解析(完整版)

2018年考研数学一试题与答案解析(完整版)1.下列函数中不可导的是()。
A.()sin()f x x x =B.()f x x =C.()cos f x x=D.()f x =【答案】D 【解析】【解析】A 可导:()()()()-0000sin sin sin sin 0lim lim 0,0lim lim 0x x x x x x x x x x x xf f x x x x--+++→→→→⋅⋅''=====B 可导:()()-000sin 0lim lim 0,0lim lim 0x x x x x x f f x x--+++→→→→-⋅⋅''=====C 可导:()()22-000011cos -1cos -1220lim lim 0,0lim lim 0x x x x x x x x f f x x--+++→→→→--''=====D 不可导:()()()()()-000-11-11220lim lim 0lim lim -2200x x x x x x f f x x f f --+++→→→→+--''====''≠2.过点(1,0,0)与(0,1,0)且与22z x y =+相切的平面方程为A.0z =与1x y z +-= B.0z =与222x y z +-=一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.C.y x =与1x y z +-=D.y x =与222x y z +-=【答案】B【解析】因为平面过点(1,0,0)与(0,1,0),故C 、D 排除,22(2,2,1),(1,0,0)2(1)20(0,1,0)z x y x y x X yY Z x y=+--+-==曲面的法向量为因为平面过,则平面方程为,又因为平面过,故由此,取特殊值;令x=1,则法向量为(2,2,1)-,故B 选项正确。
[实用参考]2018考研数学一真题及解析答案
![[实用参考]2018考研数学一真题及解析答案](https://img.taocdn.com/s3/m/bda0131558fb770bf68a551a.png)
2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则()()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是()()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y xy x=+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =()()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则() (A )0x =是()f x 的第一类间断点(B )0x =是()f x 的第二类间断点(C )()f x 在0x =处连续但不可导(D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是() (A )TA 与TB 相似(B )1A -与1B -相似(C )TA A +与TB B +相似(D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为()(A )单叶双曲面(B )双叶双曲面(C )椭球面(C )柱面 (7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则()(A )p 随着μ的增加而增加(B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少(D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为()二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛; ()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值 (18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
考研数学一(矩阵的特征值和特征向量)历年真题试卷汇编1(题后含

考研数学一(矩阵的特征值和特征向量)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A 的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( ).A.P-1αB.PTαC.PαD.(P-1)Tα正确答案:B解析:由题设有Aα=λα,且AT=A.令B=(P-1AP)T,则B=(P-1AP)T=PTAT(P-1)T=PTA(PT)-1,A=(PT)-1BPT.故Aα=(PT)-1BPTα,即(PT)-1B(PTα)=λα.两边乘以PT得到B(PTα)=λPTα.如能证明PTα≠0,则PTα为B的属于λ的特征向量.事实上,如PTα=0,则由P为可逆矩阵知,PT也为可逆矩阵,于是有(PT)-1PTα=(PT)-10=0,即a=0.这与a≠0矛盾.仅B 入选.知识模块:矩阵的特征值和特征向量2.[2016年] 设A,B是可逆矩阵,且A与B相似,则下列结论错误的是( ).A.AT与BT相似B.A-1与B-1相似C.A+AT与B+BT相似D.A+A-1与B+B-1相似正确答案:C解析:因A~B,故存在可逆矩阵P使得B=P-1AP.①在式①两边取转置,得到BT=(P-1AP)T=PTAT(P-1)T=[(PT)-1]-1AT[(PT)-1]故AT与BT相似,选项A正确.在式①两边求逆运算得到B-1=(P-1AP)-1=P-1A-1(P-1)-1=P-1A-1P,②故A与A-1相似,选项B正确.由式①+式②得到B+B-1=P-1AP+P-1A-1P=P-1(A+A-1)P,故A+A-1~B+B-1,选项D正确,仅C 入选.知识模块:矩阵的特征值和特征向量3.[2017年] 已知矩阵,则( ).A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C相似正确答案:B解析:显然A,B,C的特征值都为λ1=λ2=2,λ3=1.由2E—A=得秩(2E —A)=1,则A可以相似对角化,故A与C相似.由2E—B=得秩(2E—B)=2,则B不可相似对角化,故B与C不相似.综上,仅B入选.知识模块:矩阵的特征值和特征向量4.[2018年] 下列矩阵中,与矩阵相似的为( ).A.B.C.D.正确答案:A解析:记矩阵,则|λE—M|==(λ一1)3=0,所以矩阵M的特征值为λ1=λ2=λ3=1,且秩(λE—M)=秩(E—M)=2.设选项A,B,C,D的矩阵分别记为A,B,C,D,容易计算出其特征值均为1,且秩(λE—A)=秩(E—A)=2,秩(E —B)=秩(E—C)=秩(E—D)=1,若两矩阵相似,其对应的特征值矩阵也相似,故秩相等.所以可以判断选项A正确.知识模块:矩阵的特征值和特征向量5.[2013年] 矩阵与相似的充分必要条件为( ).A.a=0,b=2B.a=0,b为任意常数C.a=2,b=0D.a=2,b为任意常数正确答案:B解析:令,则=λ[λ2一(b+2)λ+2b—2a2],=λ(λ—2)(λ—b).因λ=2为B的特征值,故λ=2也必为A的特征值,则|2E一A|=2[22一(b+2)·2+2b—2a2]=2(一2a2)=0,所以a=0.因λ=b为B的特征值,故λ=b也必为A的特征值,则|bE—B|=b[b2一(b+2)b+2b]=b·0=0,即b可为任意常数.仅B入选.知识模块:矩阵的特征值和特征向量6.[2010年] 设A为四阶实对称矩阵,且A2+A=O,若A的秩为3,则A 相似于( ).A.B.C.D.正确答案:D解析:设λ为A的特征值,则由A2+A=O得到λ2+λ=(λ+1)λ=0,于是A 的特征值为一1或0.又因A为实对称矩阵,故A必与对角矩阵A相似.因A 的秩为3,知,A的非零特征值个数为3,故对角矩阵A的秩也为3.于是A=diag(一1,一1,一1,0).仅D入选.知识模块:矩阵的特征值和特征向量填空题7.设n阶矩阵A的元素全为1,则A的n个特征值是______.正确答案:n解析:因秩(A)=1,知A有n一1个零特征值λ1=λ2=…=λn-1=0,另一特征值为λn=a11+a22+…+ann=1+1+…+1=n.知识模块:矩阵的特征值和特征向量8.[2009年] 若三维列向量α,β满足αTβ=2,其中αT为α的转置,则矩阵βαT的非零特征值为______.正确答案:2解析:(βαT)T=(βαT)(βαT)=β(αTβ)αT=2βαT,则βαT的任意特征值λ满足λ2=2λ,故矩阵βαT的特征值λ只能为0或2.若λ只能取零,则A为零矩阵,故αTβ=0.这与αTβ=2矛盾,故βαT有非零特征值2.知识模块:矩阵的特征值和特征向量9.[2008年] 设A为二阶矩阵,α1,α2为线性无关的二维列向量,A α1=0,Aα2=2α1+α2,则A的非零特征值为______.正确答案:λ=1解析:因矩阵A满足矩阵等式,可用定义求出A的非零特征值.事实上,因Aα1=0,故A(2α1+α2)=2Aα1+Aα2一Aα2=2α1+α2=1·(2α1+α2).又因α1,α2线性无关,故2α1+α2≠0,由定义知λ=1为A的非零特征值.知识模块:矩阵的特征值和特征向量10.[2018年] 设二阶矩阵A有两个不同的特征值,α1,α2是A的线性无关的特征向量,且满足A2(α1+α2)=α1+α2,则|A|=______.正确答案:-1解析:由A2(α1+α2)=α1+α2可知(A2一E)(α1+α2)=0.α1,α2线性无关,因此方程(A2一E)x=0有非零解,从而|A2一E|=0,所以特征值λ满足方程λ2一1=0,即λ=1或λ=一1.又A有两个不同的特征值,所以|A|=1·(一1)=一1.知识模块:矩阵的特征值和特征向量解答题解答应写出文字说明、证明过程或演算步骤。
2018考研数学一真题和答案与解析

WORD 格式整理版2017 年考研数学一真题及答案解析跨考教育数学教研室一、选择题:1~ 8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上 ....1 cos x ( 1)若函数f ( x)ax, x 0在 x0 处连续,则()b, x0( A)ab 1B ab1 22(C) ab 0D ab2【答案】 A1cos x 1 x111.选A.【解析】lim lim2, f (x) 在x0 处连续b abx0ax x 0ax2a2a2( 2)设函数 f ( x) 可导,且f (x) f'( x)0 ,则()( A) f (1) f (1)B f (1) f (1)(C ) f (1) f ( 1)D f (1) f ( 1)【答案】 C【解析】 f ( x) f ' ( x) 0, f (x)0(1)或 f ( x)0(2) ,只有C选项满足(1)且满足(2),所以选C。
f '(x)0 f '(x)0( 3)函数f (x, y, z)x2 y z2在点(1,2,0)处沿向量 u1,2,2的方向导数为()(A)12(B)6(C)4(D)2【答案】 D【解析】gradf{2 xy, x2 ,2 z},gradf (1,2,0) {4,1,0}f gradf u{4,1,0} {1,2,2} 2.u| u |333选 D.( 4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位: m)处,图中实线表示甲的速度曲线v v1 (t )(单学习指导参考Born to win!精勤求学 自强不息位: m / s ),虚线表示乙的速度曲线 v v 2 (t ) ,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t 0 (单位: s ),则()v(m / s)10 200 5 10 15 20 25 30t ( s)( A)t 0 10(B)15 t 0 20 (C)t 0 25 ( D )t 0 25【答案】 B0 到t 0t 0v 1 t 0【解析】从这段时间内甲乙的位移分别为(t)dt, v 2 (t)dt,则乙要追上甲,则t 0 v 1 (t)dt 10 ,当 t 0 25时满足,故选 C.v 2 (t)( 5)设是 n 维单位列向量,E 为 n 阶单位矩阵,则()(A)ET不可逆B E T不可逆(C)E 2T不可逆 D E 2T不可逆【答案】 A【解析】选项 A, 由 ( ET) 0 得 ( ET) x 0 有非零解,故 ET0。
2018年考研数学一试题与答案解析(完整版)

1 1 1
6.设 A, B 为 n 阶矩阵,记 r ( X ) 为矩阵 X 的秩, ( X Y ) 表示分块矩阵,则 A. r ( A AB ) r ( A). C. r ( A B ) max{r ( A),r ( B )}. 【答案】A. 【解析】根据矩阵的运算性质, r ( E , B ) n r ( A, AB ) r[ A( E , B )] r ( A) ,故 A 正确. 若A B. r ( A BA) r ( A). D. r ( A B ) r ( A B ).
T T
0 0 0 1 1 1 0 0 1 1 ,B , 则 BA , 所 以 r ( A BA) r 2, 1 1 1 0 0 0 1 1 0 0
r ( A) 1. 排除 B. 1 2 0 0 若A ,B , 那么r A B 0 0 3 4 所以C排除. 1 2 0 0 r 2, r A 1, r B 1, 0 0 3 4
1 0 1 B. 0 1 1 0 0 1 1 0 1 D. 0 1 0 0 0 1
1 1 0 令 Q 0 1 1 ,特征值为 1,1,1, r E Q 2 0 0 1 1 1 1 0 1 1 选项 A:令 A 0 1 1 , A 的特征值为 1,1,1, r E A r 0 0 1 2 0 0 1 0 0 0 1 0 1 0 0 1 选项 B:令 B 0 1 1 , B 的特征值为 1,1,1, r E B r 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 选项 C:令 C 0 1 0 , C 的特征值为 1,1,1, r E C r 0 0 0 1 0 0 1 0 0 0