2018年考研数学一真题及答案解析

合集下载

2018-2019年考研数学一真题及答案

2018-2019年考研数学一真题及答案

2018考研数学一真题及答案一、选择题 1—8小题.每小题4分,共32分.1.若函数1cos 0(),0xx f x b x ⎧->⎪=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab = 【详解】0001112lim ()lim lim 2x x x xx f x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A ) 2.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <- 【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )3.函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为(A )12 (B )6 (C )4 (D )2 【详解】22,,2f f fxy x z x y z∂∂∂===∂∂∂,所以函数在点(1,2,0)处的梯度为()4,1,0gradf =,所以22(,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为()014,1,0(1,2,2)23f gradf n n∂=⋅=⋅=∂应该选(D )4.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,如图中,实线表示甲的速度曲线1()v v t =(单位:米/秒),虚线表示乙的速度曲线2()v v t =(单位:米/秒),三块阴影部分的面积分别为10,20,3,计时开始后乙追上甲的时刻为0t ,则( ) (A )010t = (B )01520t <<(C )025t = (D )025t >【详解】由定积分的物理意义:当曲线表示变速直线运动的速度函数时,21()()T T S t v t dt =⎰表示时刻[]12,T T 内所走的路程.本题中的阴影面积123,,S S S -分别表示在时间段[][][]0,10,10,25,25,30内甲、乙两人所走路程之差,显然应该在25t =时乙追上甲,应该选(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )TE αα-不可逆 (B )TE αα+不可逆 (C )2TE αα+不可逆 (D )2TE αα-不可逆 【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2T T T T E E E E αααααααα-+-+的特征值分别为0,1,1,1;2,1,1,,1;1,1,1,,1-;3,1,1,,1.显然只有T E αα-存在零特征值,所以不可逆,应该选(A ). 6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B 是两个随机事件,若0()1P A <<,0()1P B <<,则(/)(/)P A B P A B >的充分必要条件是(A )(/)(/)P B A P B A > (B )(/)(/)P B A P B A < (C )(/)(/)P B A P B A > (D )(/)(/)P B A P B A <【详解】由乘法公式:()()(/),()()((/)P AB P B P A B P AB P B P A B ==可得下面结论:()()()()(/)(/)()()()()1()()P AB P AB P A P AB P A B P A B P AB P A P B P B P B P B ->⇔>=⇔>- 类似,由()()(/),()()(/)P AB P A P B A P AB P A P B A ==可得()()()()(/)(/)()()()()1()()P AB P AB P B P AB P B A P B A P AB P A P B P A P A P A ->⇔>=⇔>- 所以可知选择(A ). 8.设12,,,(2)n X X X n ≥为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i Xμ=-∑服从2χ分布 (B )()212n X X -服从2χ分布 (C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.已知函数21()1f x x=+,则(3)(0)f = .解:由函数的马克劳林级数公式:()0(0)()!n nn f f x x n ∞==∑,知()(0)!n n f n a =,其中n a 为展开式中nx 的系数. 由于[]24221()1(1),1,11n n f x x x x x x==-+-+-+∈-+,所以(3)(0)0f =.10.微分方程230y y y '''++=的通解为 .【详解】这是一个二阶常系数线性齐次微分方程,特征方程2230r r ++=有一对共共轭的根1r =-,所以通解为12()x y e C C -=+ 11.若曲线积分221L xdx aydy x y -+-⎰在区域{}22(,)|1D x y x y =+<内与路径无关,则a = .【详解】设 2222(,),(,)11x ay P x y Q x y x y x y -==+-+-,显然 (,),(,)P x y Q x y 在区域内具有连续的偏导数,由于与路径无关,所以有1Q Pa x y∂∂≡⇒=-∂∂ 12.幂级数111(1)n n n nx ∞--=-∑在区间(1,1)-内的和函数为【详解】111121111(1)(1)()(1)1(1)n n n nn n n n n x nxx x x x ∞∞∞----===''⎛⎫⎛⎫'-=-=-== ⎪ ⎪++⎝⎭⎝⎭∑∑∑ 所以21(),(1,1)(1)s x x x =∈-+13.设矩阵101112011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的分布函数4()0.5()0.52x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX = .【详解】随机变量X 的概率密度为4()()0.5()0.25()2x f x F x x ϕϕ-'==+,所以 4()()0.5()0.25()240.25()0.252(24)()22()2x E X xf x dx x x dx x dx x x dx t t dt t dt ϕϕϕϕϕ+∞+∞+∞-∞-∞-∞+∞+∞-∞-∞+∞-∞-==+-==⨯+==⎰⎰⎰⎰⎰⎰三、解答题15.(本题满分10分)设函数(,)f u v 具有二阶连续偏导数,(,cos )xy f e x =,求0|x dy dx=,202|x d y dx =.【详解】12(,cos )(,cos )(sin )x x x dy f e x e f e x x dx ''=+-,01|(1,1)x dyf dx='=; 2111122222122(,cos )((,cos )sin (,cos ))cos (,cos )sin (,cos )sin (,cos )x x x x x x x x x x d ye f e x e f e x e xf e x xf e x dx xe f e x xf e x ''''''=+--''''-+2011122|(1,1)(1,1)(1,1)x d yf f f dx=''''=+-.16.(本题满分10分) 求21limln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰17.(本题满分10分)已知函数()y x 是由方程333320x y x y +-+-=. 【详解】在方程两边同时对x 求导,得2233330x y y y ''+-+= (1)在(1)两边同时对x 求导,得2222()0x y y y y y '''''+++=也就是222(())1x y y y y'+''=-+令0y '=,得1x =±.当11x =时,11y =;当21x =-时,20y = 当11x =时,0y '=,10y ''=-<,函数()y y x =取极大值11y =; 当21x =-时,0y '=,10y ''=>函数()y y x =取极小值20y =. 18.(本题满分10分)设函数()f x 在区间[]0,1上具有二阶导数,且(1)0f >,0()lim 0x f x x-→<,证明: (1)方程()0f x =在区间()0,1至少存在一个实根;(2)方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.证明:(1)根据的局部保号性的结论,由条件0()lim 0x f x x-→<可知,存在01δ<<,及1(0,)x δ∈,使得1()0f x <,由于()f x 在[]1,1x 上连续,且1()(1)0f x f ⋅<,由零点定理,存在1(,1)(0,1)x ξ∈⊂,使得()0f ξ=,也就是方程()0f x =在区间()0,1至少存在一个实根;(2)由条件0()lim 0x f x x-→<可知(0)0f =,由(1)可知()0f ξ=,由洛尔定理,存在(0,)ηξ∈,使得()0f η'=;设()()()F x f x f x '=,由条件可知()F x 在区间[]0,1上可导,且(0)0,()0,()0F F F ξη===,分别在区间[][]0,,,ηηξ上对函数()F x 使用尔定理,则存在12(0,)(0,1),(,)(0,1),ξηξηξ∈⊂∈⊂使得1212,()()0F F ξξξξ''≠==,也就是方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.19.(本题满分10分)设薄片型S 是圆锥面z =被柱面22z x =所割下的有限部分,其上任一点的密度为μ=C .(1)求C 在xOy 布上的投影曲线的方程; (2)求S 的质量.M【详解】(1)交线C的方程为22z z x⎧=⎪⎨=⎪⎩z ,得到222x y x +=.所以C 在xOy 布上的投影曲线的方程为222.0x y xz ⎧+=⎨=⎩(2)利用第一类曲面积分,得222222(,,)1864SSx y xx y xM x y z dS μ+≤+≤=====⎰⎰⎰⎰⎰⎰⎰⎰20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥. 假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他.(1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=,利用12,,,n Z Z Z 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量122ni i Z nσ===∑.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >=时似然函数为221121()(,)ni i nnz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=2019考研数学一真题及答案一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0→x 时,若x x tan -与k x 是同阶无穷小,则=k A.1. B.2. C.3.D.4.2.设函数⎩⎨⎧>≤=,0,ln ,0,)(x x x x x x x f 则0=x 是)(x f 的A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是A..1∑∞=n n nu B.nn nu 1)1(1∑∞=-. C.∑∞=+⎪⎪⎭⎫ ⎝⎛-111n n n u u . D.()∑∞=+-1221n n n u u.4.设函数2),(yxy x Q =,如果对上半平面(0>y )内的任意有向光滑封闭曲线C 都有⎰=+Cdy y x Q dx y x P 0),(),(,那么函数),(y x P 可取为A.32yx y -.B.321yx y -. C.y x 11-. D.yx 1-. 5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+.C.232221y y y --.D.232221y y y ---.6.如图所示,有3张平面两两相交,交线相互平行,它们的方程)3,2,1(321==++i d z a y a x a i i i i组成的线性方程组的系数矩阵和增广矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A rD..1)(,1)(==A r A r7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是 A.).()()(B P A P B A P += B.).()()(B P A P AB P = C.).()(A B P B A P = D.).()(B A P AB P =8.设随机变量X 与Y 相互独立,且都服从正态分布),(2σμN ,则{}1<-Y X PA.与μ无关,而与2σ有关.B.与μ有关,而与2σ无关.C.与2,σμ都有关. D.与2,σμ都无关.二、填空题:9~14小题,每小题4分,共24分. 9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx ∂∂⋅+∂∂⋅11= . 10. 微分方程02'22=--y y y 满足条件1)0(=y 的特解=y .11. 幂级数nn n x n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S . 12. 设∑为曲面)0(44222≥=++z z y x 的上侧,则dxdy z x z⎰⎰--2244= .13. 设),,(321αααA =为3阶矩阵.若 21αα,线性无关,且2132ααα+-=,则线性方程组0=x A 的通解为 .14. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )( . 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)设函数)(x y 是微分方程2'2x e xy y -=+满足条件0)0(=y 的特解.(1)求)(x y ;(2)求曲线)(x y y =的凹凸区间及拐点.16.(本题满分10分)设b a ,为实数,函数222by ax z ++=在点(3,4)处的方向导数中,沿方向j i l 43--=的方向导数最大,最大值为10.(1)求b a ,;(2)求曲面222by ax z ++=(0≥z )的面积.17.求曲线)0(sin ≥=-x x e y x与x 轴之间图形的面积.18.设dx x x a n n ⎰-=121,n =(0,1,2…)(1)证明数列{}n a 单调减少,且221-+-=n n a n n a (n =2,3…) (2)求1lim-∞→n nn a a .19.设Ω是锥面())10()1(2222≤≤-=-+z z y x 与平面0=z 围成的锥体,求Ω的形心坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的一个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的一个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A 与⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012相似(1)求y x ,.(2)求可可逆矩阵P ,使得.1B AP P =-22.设随机变量X 与Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为{}{}),10(,11,1<<-===-=p p Y P p Y P 令XY Z =(1)求z 的概率密度.(2)p 为何值时,X 与Z 不相关. (3)X 与Z 是否相互独立?23.(本题满分11分) 设总体X 的概率密度为⎪⎩⎪⎨⎧<≥--=,0,2)(),(222μμσσA σx x u x e x f 其中μ是已知参数,0>σ是未知参数,A 是常数,n X …X X ,,21来自总体X 的简单随机样本.(1)求A ;(2)求2σ的最大似然估计量参考答案1.C2.B3.D4.D5.C6.A7.C8.A9.yx x y cos cos + 10.23-xe 11.x cos 12.332 13. ,T)1,2,1(-k k 为任意常数. 14.3215. 解:(1))()()(2222c x ec dx e ee x y x xdxx xdx+=+⎰⎰=---⎰,又0)0(=y ,故0=c ,因此.)(221x xe x y -=(2)22221221221)1(x x x ex ex ey ----=-=',222221221321221)3()3()1(2x x x x ex x e x x xex xey -----=-=---='',令0=''y 得3,0±=x所以,曲线)(x y y =的凹区间为)0,3(-和),3(+∞,凸区间为)3,(--∞和)3,0(,拐点为)0,0(,)3,3(23---e,)3,3(23-e .16. 解:(1))2,2(by ax z =grad ,)8,6()4,3(b a z =grad ,由题设可得,4836-=-ba ,即b a =,又()()108622=+=b a z grad ,所以,.1-==b a(2)dxdy y z x z S y x ⎰⎰≤+∂∂+∂∂+=22222)()(1=dxdy y x y x ⎰⎰≤+-+-+22222)2()2(1 =dxdy y x y x ⎰⎰≤+++22222441 =ρρρθπd d ⎰⎰+202241=20232)41(1212ρπ+⋅=.313π 17.18.19.由对称性,2,0==y x ,⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--===ΩΩ102102101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ=.4131121)1()1(1212==--⎰⎰dz z dz z z20.(1)123=b c βααα++即11112311231b c a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 解得322a b c =⎧⎪=⎨⎪=-⎩.(2)()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的一个基.()()12323=P αααααβ,,,,则()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,.21.(1)A 与B 相似,则()()tr A tr B =,A B =,即41482x y x y -=+⎧⎨-=-⎩,解得32x y =⎧⎨=-⎩(2)A 的特征值与对应的特征向量分别为1=2λ,11=20α⎛⎫ ⎪- ⎪ ⎪⎝⎭;2=1λ-,22=10α-⎛⎫ ⎪ ⎪ ⎪⎝⎭;3=2λ-,31=24α-⎛⎫⎪ ⎪ ⎪⎝⎭. 所以存在()1123=P ααα,,,使得111212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦.B 的特征值与对应的特征向量分别为1=2λ,11=00ξ⎛⎫ ⎪ ⎪ ⎪⎝⎭;2=1λ-,21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭;3=2λ-,30=01ξ⎛⎫ ⎪ ⎪⎪⎝⎭.所以存在()2123=P ξξξ,,,使得122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦. 所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当0z ≤时,()zF z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0zzpez f z p e z -⎧<⎪=⎨->⎪⎩. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,又()()1,12D X E Y p ==-,从而当12p =时,(),0Cov X Z =,即,X Z 不相关.(III )由上知当12p ≠时,,X Z 相关,从而不独立;当12p =时,121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭而12112P X e -⎧⎫≤=-⎨⎬⎩⎭,121111112222222P Z P X P X e -⎛⎫⎧⎫⎧⎫⎧⎫≤=≤+≥-=-⎨⎬⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎩⎭⎝⎭,显然1111,2222P X Z P X P Z ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,即,X Z 不独立. 从而,X Z 不独立. 23. 解:(I )由()2221x Aedx μσμσ--+∞=⎰t =2012t e dt +∞-==⎰,从而A =(II )构造似然函数()()22112212,,1,2,,,,,,0,ni i n x i n A e x i nL x x x μσμσσ=--⎧∑⎛⎫⎪≥= ⎪=⎨⎝⎭⎪⎩其他,当,1,2,,i x i nμ≥=时,取对数得()22211ln ln ln 22nii n L n A x σμσ==---∑,求导并令其为零,可得()22241ln 1022ni i d L n x d μσσσ==-+-=∑,解得2σ的最大似然估计量为()211n i i x n μ=-∑.。

考研真题【2018考研数学(一)真题+答案解析】2018年考研数学一真题及答案解析

考研真题【2018考研数学(一)真题+答案解析】2018年考研数学一真题及答案解析

2018年全国硕士研究生入学统一考试数学(一)试卷及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)下列函数中,在0x =处不可导的是()(A)()sin f x x x =(B)()f x x =(C)()cos f x x =(D)()f x =【答案】(D)【解析】根据导数的定义:(A)sin limlim0,x x x x x x x x→→== 可导;(B)0,x x →→==可导;(C)1cos 12limlim0,x x xx xx→→--==可导;(D)000122lim lim,x x x xx x→→→-==极限不存在,故选D。

(2)过点()()1,0,0,0,1,0,且与曲面22z x y =+相切的平面为()(A)01z x y z =+-=与(B)022z x y z =+-=与2(C)1x y x y z =+-=与(D)22x y x y z =+-=与2【答案】(B)【解析】()()221,0,0,0,1,0=0z z x y =+过的已知曲面的切平面只有两个,显然与曲面相切,排除C 、D22z x y =+曲面的法向量为(2x,2y,-1),111(1,1,1),,22x y z x y +-=-==对于A选项,的法向量为可得221.z x y x y z z A B =++-=代入和中不相等,排除,故选(3)()()23121!nn n n ∞=+-=+∑()(A)sin1cos1+(B)2sin1cos1+(C)2sin12cos1+(D)2sin13cos1+【答案】(B)【解析】00023212(1)(1)(1)(21)!(21)!(21)!nn nn n n n n n n n ∞∞∞===++-=-+-+++∑∑∑0012=(1)(1)cos 2sin1(2)!(21)!nn n n l n n ∞∞==-+-=++∑∑故选B.(4)设()(2222222211,,1,1x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰则()(A)M N K >>(B)M K N >>(C)K M N >>(D)K N M>>【答案】(C)【解析】22222222222(1)122=(1).111x x x x M dx dx dx x x x πππππππ---+++==+=+++⎰⎰⎰22222111(0)11xx xxx e x N dx dx Meeπππππ--+++<≠⇒<⇒=<=<⎰⎰2222=11K dx dx M πππππ--+>==⎰⎰(,K M N >>故应选C 。

2018年考研数学一试题及答案解析

2018年考研数学一试题及答案解析

2018年全国硕士研究生入学统一考试数学一试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)下列函数中,在0x =处不可导是( )()()()()sin ()()()cos ()A f x x x B f x x xC f x xD f x x====【答案】D(2)过点(1,0,0)与(0,1,0)且与22z x y =+相切的平面方程为(A )01z x y z =+-=与(B )022z x y z =+-=与2(C )1y x x y z =+-=与 (D )22y x x y z =+-=与2【答案】B (3)23(1)(21)!nn n n ∞=+-=+∑(A )sin1cos1+(B )2sin1cos1+(C )2sin12cos1+ (D )3sin12cos1+ 【答案】B(4)设2222(1)1x M dx x ππ-+=+⎰,221x xN dx e ππ-+=⎰,22(1cos )K x dx ππ-=+⎰,则,,M N K 的大小关系为 (A )M N K >> (B )M K N >> (C )K M N >> (D )K N M >>【答案】C 【解析】(5)下列矩阵中,与矩阵110011001⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的为 111()011001A -⎛⎫ ⎪ ⎪ ⎪⎝⎭101()011001B -⎛⎫ ⎪ ⎪ ⎪⎝⎭111()010001C -⎛⎫ ⎪ ⎪ ⎪⎝⎭101()010001D -⎛⎫⎪ ⎪⎪⎝⎭【答案】A全国统一服务热线:400—668—2155 精勤求学 自强不息(6) 设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,()X Y 表示分块矩阵,则(A )()()r A AB r A = (B )()()r A BA r A = (C )()max{(),()}r A B r A r B = (D )()()T T r A B r A B =【答案】A(7)设随机变量X 的概率密度函数()f x 满足(1)(1)f x f x +=- ,且2()0.6,f x dx =⎰则{0}P X <=( )(A )0.2 (B )0.3 (C )0.4 (D )0.5【答案】 A 【解析】(8)设总体X 服从正态分布2(,)N μσ,12,,,n X X X 是来自总体X 的简单随机样本,据样本检测:假设:0010:,:H H μμμμ=≠则( )(A)如果在检验水平0.05α=下拒绝0,H 那么在检验水平0.01α=下必拒绝0,H (B) 如果在检验水平0.05α=下拒绝0,H 那么在检验水平0.01α=下必接受0,H (C) 如果在检验水平0.05α=下接受0,H 那么在检验水平0.01α=下必拒绝0,H (D) 如果在检验水平0.05α=下接受0,H 那么在检验水平0.01α=下必接受0,H 【答案】A二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 1sin 01tan lim 1tan kxx x e x →-⎛⎫=⎪+⎝⎭则k=___-2____(10) 设函数()f x 具有2阶连续导数,若曲线()f x 过点(0,0)且与曲线2xy =在点(1,2)处相切,则1()xf x dx ''=⎰_____【答案】2ln22-(11) 设(,,)F x y z xyi yzj zxk =-+则(1,1,0)rotF =_____【答案】(1,0,1)-(12)曲线S 由2221x y z ++=与0x y z ++=相交而成,求Sxyds ⎰【答案】0(13)设2阶矩阵A 有两个不同特征值,12,αα是A 的线性无关的特征向量,且满足21212()A αααα+=+则A =【答案】-1.(14)设随机事件A 与B 相互独立,A 与C 相互独立,BC =∅,若11()(),()24P A P B P AC AB C ==⋃=,则()P C = .【答案】1/4三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求不定积分21x xe e dx -⎰(16)(本题满分10分)将长为2m 的铁丝分成三段,依次围成圆、正方形与正三角形,三个图形的面积之和是否存在最小值?若存在,求出最小值。

2018年考研数学一试题与答案解析(完整版)

2018年考研数学一试题与答案解析(完整版)

1 1 1
6.设 A, B 为 n 阶矩阵,记 r ( X ) 为矩阵 X 的秩, ( X Y ) 表示分块矩阵,则 A. r ( A AB ) r ( A). C. r ( A B ) max{r ( A),r ( B )}. 【答案】A. 【解析】根据矩阵的运算性质, r ( E , B ) n r ( A, AB ) r[ A( E , B )] r ( A) ,故 A 正确. 若A B. r ( A BA) r ( A). D. r ( A B ) r ( A B ).
T T
0 0 0 1 1 1 0 0 1 1 ,B , 则 BA , 所 以 r ( A BA) r 2, 1 1 1 0 0 0 1 1 0 0
r ( A) 1. 排除 B. 1 2 0 0 若A ,B , 那么r A B 0 0 3 4 所以C排除. 1 2 0 0 r 2, r A 1, r B 1, 0 0 3 4
1 0 1 B. 0 1 1 0 0 1 1 0 1 D. 0 1 0 0 0 1
1 1 0 令 Q 0 1 1 ,特征值为 1,1,1, r E Q 2 0 0 1 1 1 1 0 1 1 选项 A:令 A 0 1 1 , A 的特征值为 1,1,1, r E A r 0 0 1 2 0 0 1 0 0 0 1 0 1 0 0 1 选项 B:令 B 0 1 1 , B 的特征值为 1,1,1, r E B r 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 选项 C:令 C 0 1 0 , C 的特征值为 1,1,1, r E C r 0 0 0 1 0 0 1 0 0 0

2018年全国硕士研究生入学统一考试数学(一)真题及解析

2018年全国硕士研究生入学统一考试数学(一)真题及解析

2018年硕士研究生入学考试数学一 试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 下列函数不可导的是:()()()()sin sin cos cosA y x xB y xC y xD y====(2)22过点(1,0,0)与(0,1,0)且与z=x 相切的平面方程为y + ()()()()0与10与222与x+y-z=1与222A zx y z B z x y z C y x D yx c y z =+-==+-===+-=(3)023(1)(2n 1)!nn n ∞=+-=+∑()()()()sin 1cos 12sin 1cos 1sin 1cos 13sin 12cos 1A B C D ++++(4)22222222(1x)1xN= K=(11xM dx dx x e ππππππ---++=++⎰⎰⎰),则M,N,K的大小关系为()()()()A M N K B M K N C K M N D NM K>>>>>>>>(5)下列矩阵中,与矩阵110011001⎛⎫⎪ ⎪⎪⎝⎭相似的为______. A.111011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ B.101011001-⎛⎫⎪ ⎪⎪⎝⎭ C.111010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ D.101010001-⎛⎫⎪ ⎪⎪⎝⎭(6).设A ,B 为n 阶矩阵,记()r X 为矩阵X 的秩,(X Y ) 表示分块矩阵,则A.()()r A AB r A =B.()()r A BA r A =C.()max{(),()}r A B r A r B =D.()()TT r A B r A B =(7)设()f x 为某分部的概率密度函数,(1)(1)f x f x +=-,20()d 0.6f x x =⎰,则{0}p X = .A. 0.2B. 0.3C. 0.4D. 0.6 (8)给定总体2(,)XN μσ,2σ已知,给定样本12,,,n X X X ,对总体均值μ进行检验,令0010:,:H H μμμμ=≠,则A . 若显著性水平0.05α=时拒绝0H ,则0.01α=时也拒绝0H . B. 若显著性水平0.05α=时接受0H ,则0.01α=时拒绝0H . C. 若显著性水平0.05α=时拒绝0H ,则0.01α=时接受0H . D. 若显著性水平0.05α=时接受0H ,则0.01α=时也接受0H .二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)1sin 01tan lim ,1tan kxx x e x →-⎛⎫= ⎪+⎝⎭则k =(10)()y f x =的图像过(0,0),且与x y a =相切与(1,2),求1'()xf x dx =⎰(11)(,,),(1,1,0)F x y z xy yz xzk rot F εη=-+=求(12)曲线S 由22210x y z x y z ++=++=与相交而成,求xydS =⎰ (13)二阶矩阵A 有两个不同特征值,12,αα是A 的线性无关的特征向量,21212()(),=A A αααα+=+则(14)A,B 独立,A,C 独立,11,()()(),()24BC P A P B P AC ABC P C φ≠===,则=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15).求不定积分2x e ⎰(16).一根绳长2m ,截成三段,分别折成圆、三角形、正方形,这三段分别为多长是所得的面积总和最小,并求该最小值。

2018考研数学一真题最强解析及点评(没有之一),给你2019考研数学最科学的指引

2018考研数学一真题最强解析及点评(没有之一),给你2019考研数学最科学的指引

半送分题
可能是部分同学卷面遇上的第四道难题,考查具有对称 性的重积分的简化运算。积分对称性的应用一直是《金 讲》的反复重点强调的要点,同型题见《金讲》262页 例1.8.5.如若掌握,本题亦是送分题。但《金讲》以外 大部分参考书对重积分的本质定义的理解讲解甚少,只 是繁杂公式的罗列,会让大部分同学对重积分产生畏惧, 简单题亦变成难题,所以本题有可能成为《金讲》以外 学习者的第四道难题。
用在乎泄题带来的不公,本源内容的掌握才是胜券在握 的根本保障。
条件最值是最值求解中最简单的问题,没 有难题,直接用公式就好。《金讲》202 页给出了明确详细的方法,属于送分题。
送 分 题
送 分 题
高斯公式的简单应用。基础试题,见《金讲》291页高 斯公式应用详解,同型例题见296页例1.9.15,送分题。 但《金讲》以外大部分参考书对重积分的本质定义理 解讲解甚少,只是繁杂公式的罗列,让大部分同学对 重积分产生畏惧,简单题亦成难题,所以本题有可能 成为《金讲》以外学习者的第六道难题。
完全同型题
随机变量数字特征计算的关键掌握公式的使 用。《金讲》在随机变量的数字特征这一章 给出了每个公式的详细推导及通俗解释,足 以应对任何本章的考题。问题2中求复合随机 变量问题,《金讲》给出了同型例题的详细 过程,足以化解这方面的任何问题。
应用公式
同型 例题
同型 例题
《金讲》645-646页不仅超越教材的理解给出最大似然估计的白 话解释,更详细列出了似然估计的详细解题步骤,给出可以全 面覆盖所有可能的似然估计函数例题,足以应对任何本章的考 题。问题2是求随机变量特征值,《金讲》在610有完全同型例 题的详细过程,足以化解这方面的任何问题。
半 送 分 题
《金讲》403-405页不仅给出了通用性齐次 方程组的详细解题过程,还给予具体具体方 程解析示例,详细程度超越市面任何一本数 学参考书,足以解答任何复杂齐次方程组。

2018考研数学一参考答案

2018考研数学一参考答案

) 1 1 − tan x sin(kx) = e, 则 k = 9. lim x →0 1 + tan x 【解析】原极限为 1∞ 型, 故恒等变形为
.
−2 tan x lim 1 + x →0 1 + tan x
(
1+tan x )− 2 tan x
−2 tan x (1+tan x ) sin(kx )
−2 tan x = exp lim x →0 (1 + tan x ) sin ( kx )
(
)
=e
第2页 共8页
本科院校 目标院校 目标专业 姓名 .....................................装.......................................订.......................................线.......................................
.
L
xyds =
L
( xy + yz + xz) ds =
)] ( 1 ( x + y + z )2 − x 2 + y2 + z2 ds = 6
L
( −1) ds = −
π 3
13. 设二阶矩阵 A 有两个不同的特征值, α1 , α2 是 A 的线性无关的特征向量, A2 (α1 + α2 ) = α1 + α2 , 则 | A| =
A. 若显著性水平 α = 0.05 时拒绝 H0 , 则 α = 0.01 时必拒绝 H0 B. 若显著性水平 α = 0.05 时接受 H0 , 则 α = 0.01 时必拒绝 H0 C. 若显著性水平 α = 0.05 时拒绝 H0 , 则 α = 0.01 时必接受 H0 D. 若显著性水平 α = 0.05 时接受 H0 , 则 α = 0.01 时必接受 H0 【解析】α 越小, 显著性差异越小, 越容易接受 H0 , 若 α = 0.05 时接受 H0 , 则 α = 0.051 时显著性变弱, 更加容易接受 H0 , 选 D. 评卷人 二、 ( 得分 填空题(每题 4 分, 共 24 分)

2018考研数学真题及答案

2018考研数学真题及答案

2018考研数学真题及答案考研对于许多学子来说,是一场知识与毅力的较量。

而数学作为其中的重要科目,更是备受关注。

下面就让我们一起来回顾一下 2018 年考研数学的真题,并探讨一下相应的答案。

2018 年考研数学一真题涵盖了高等数学、线性代数、概率论与数理统计等多个方面的知识点。

在高等数学部分,函数、极限、连续的相关题目要求考生对基本概念和定理有深入的理解。

比如,有一道关于函数极限存在性的证明题,需要考生熟练运用极限的定义和性质进行推理。

导数与微分的题目则注重考查考生对导数定义和计算方法的掌握,以及运用导数解决函数单调性、极值和凹凸性等问题的能力。

例如,通过求导判断函数在某个区间内的单调性,并求出极值点。

积分的题目类型多样,包括定积分的计算、不定积分的求解以及利用积分解决几何和物理问题等。

线性代数部分,矩阵、向量和线性方程组是重点。

有题目涉及矩阵的运算、矩阵的秩以及向量组的线性相关性。

要求考生能够灵活运用矩阵的初等变换和线性方程组的解法来解决问题。

概率论与数理统计部分,随机变量及其分布、数字特征以及参数估计等内容均有考查。

像计算随机变量的概率密度、期望和方差,以及利用样本数据进行参数估计等。

接下来,我们看一下对应的答案和解题思路。

对于高等数学中函数极限存在性的证明题,首先要明确极限的定义,然后通过适当的放缩和不等式的运用来逐步推导。

在导数与微分的题目中,要准确计算导数,注意复合函数求导法则的应用。

对于积分的题目,熟练掌握积分公式和换元积分法、分部积分法等技巧是关键。

在线性代数中,处理矩阵的运算要细心,注意矩阵乘法的规则。

判断向量组的线性相关性时,可以通过构造矩阵并求秩来得出结论。

在概率论与数理统计部分,计算概率密度要确定分布类型和参数,运用相应的公式进行计算。

参数估计的题目则要根据给定的样本数据,选择合适的估计方法。

总的来说,2018 年考研数学真题难度适中,既考查了基础知识的掌握,又注重对考生综合运用能力和解题技巧的检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档