专题04 三角函数与三角形

合集下载

三角函数与解三角形专题

三角函数与解三角形专题

专题 三角函数与解三角形学习目标:]三角函数的图象与性质 1.以图象为载体,考查三角函数的最值、单调性、对称性、周期性.2.考查三角函数式的化简、三角函数的图象和性质、角的求值,重点考查分析、处理问题的能力,是高考的必考点。

三角恒等变换与解三角形 1.边和角的计算.2.三角形形状的判断.3.面积的计算.4.有关参数的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是高考的关注点。

热点知识、典例精析、对点练习、思维升华:热点一 三角函数的概念、诱导公式及同角关系式1.三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦.2.同角基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 3.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.例1 已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,若它的终边经过点P (2,1),则tan 2α等于( ) A.43 B.12 C .-12 D .-43对点练:已知曲线f (x )=x 3-2x 2-x 在点(1,f (1))处的切线的倾斜角为α,则 cos 2⎝⎛⎭⎫π2+α-2cos 2α-3sin(2π-α)cos(π+α)的值为( )A.85 B .-45 C.43 D .-23思维升华 (1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关. (2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简课后练习:在平面直角坐标系中,若角α的终边经过点P ⎝⎛⎭⎫sin 5π3,cos 5π3,则sin(π+α)等于( ) A .-32 B .-12 C.12 D.32热点二 三角函数的图象及应用函数y =A sin(ωx +φ)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图象变换:(先平移后伸缩)y =sin x ――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度 y =sin(x +φ)―――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ) ―――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). (先伸缩后平移)y =sin x ―――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin ωx ――――――――→向左(φ>0)或右(φ<0)平移|φ|ω个单位长度y =sin(ωx +φ) ―――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 例2 (1)要得到函数y =sin ⎝⎛⎭⎫3x -π4的图象,只需将函数y =cos 3x 的图象( ) A .向右平移π4个单位长度 B .向左平移π4个单位长度C .向右平移3π4个单位长度D .向左平移3π4个单位长度对点练:函数f (x )=A sin(ωx +φ)()ω>0,|φ|<π的部分图象如图所示,将函数f (x )的图象向右平移5π12个单位长度后得到函数g (x )的图象,若函数g (x )在区间⎣⎡⎦⎤-π6,θ上的值域为[-1,2],则θ=________思维升华 (1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2) 在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度数和方向。

三角函数与解三角形题型归纳及习题含详解

三角函数与解三角形题型归纳及习题含详解
2 简而言之即“奇变偶不变,符号看象限”. 题型归纳及思路提示
题型 53 终边相同的角的集合的表示与区别 思路提示
(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方 法解决.
(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也 可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标
4. 熟练运用同角三角函数函数关系式和诱导公式进行三角函数式的化简、求值
和简单恒等式的证明.
命题趋势探究
1.一般以选择题或填空题的形式进行考查.
2.角的概念考查多结合函数的基础知识.
3.利用同角三角函数关系式和诱导公式进行三角函数式的化简、求值是重要考点. 知识点精讲 一、基本概念
正角---逆时针旋转而成的角; (1)任意角 负角---顺时针旋转而成的角;
二、任意角的三角函数 1.定义 已 知 角 终 边 上 的 任 一 点 P(x, y) ( 非 原 点 O ), 则 P 到 原 点 O 的 距 离
r OP x2 y2 0 . sin y , cos x , tan y .
r
r
x
此定义是解直三角形内锐角三角函数的推广.类比,对 y ,邻 x ,斜 r , 如图 4-2 所示.
的终边逆时针旋转整数圈,终边位置不变.
注:弧度或 rad 可省略 (5)两制互化:一周角= 3600 2 r 2 (弧度),即 1800 .
r
1(弧度)
180
0
57.30
57018
故在进行两制互化时,只需记忆 1800 ,10 两个换算单位即可:如: 180
5 5 1800 1500 ; 360 36 .
C. 0, ,是第一、二象限角

2014届高三名校数学(文)试题分省分项汇编 专题04 三角函数与三角形

2014届高三名校数学(文)试题分省分项汇编  专题04 三角函数与三角形

一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知4cos()65πα-=,则sin()3πα+= .2. 【江苏省兴化市安丰高级中学2014届高三】已知)0,2(πα-∈,53cos =α,则=+)4tan(πα .3.【江苏省兴化市安丰高级中学2014届高三】在ABC ∆中,若2,60,a B b =∠=︒=则c = .4. 【江苏省兴化市2013~2014学年度第一学期期中考试高三】在ABC ∆中,已知0sin sin sin sin sin 222=---C B C B A ,则A ∠的大小为 .5. 【江苏省扬州中学2013—2014期中考试模拟】设向量(cos ,sin )a αα=,(cos ,sin )b ββ= ,其中πβα<<<0,若|2||a b a b +=- ,则βα-= .6. 【盐城市2014届高三年级第一学期期中考试】函数2cos y x =的最小正周期为 .7. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】已知f (x )=3sin(2x -π6),若存在α∈(0,π),使f (α+x )= f (α-x )对一切实数x 恒成立,则α= .8. 【江苏省徐州市2013-2014第一学期高三期中试题】已知△ABC 中,c b a ,,分别是角A ,B ,C 的对边,2=a ,A = 45°,B = 60°,那么△ABC 的面积=∆ABC S .9.【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知ABC ∆的周长为1,且sin sin A B C +=(1)求边AB 的长;(2)若ABC ∆的面积为1sin 6C ,求角C .10.【江苏省兴化市安丰高级中学2014届高三】已知(cos ,sin ),(cos ,sin )a b ααββ==. (1)若67πβα=-,求a b ⋅ 的值; (2)若4,58a b πα⋅== ,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值.【答案】(1)2-;(2)7. 【解析】11.【江苏省扬州中学2013—2014期中考试模拟】已知函数2()2sin cos 1f x x x x =-++ ⑴求()f x 的最小正周期及对称中心; ⑵若[,]63x ππ∈-,求()f x 的最大值和最小值.12.【盐城市2014届高三年级第一学期期中考试】已知函数()2sin(2)f x x ϕ=+,其中角ϕ的终边经过点P ,且0ϕπ<<. (1)求ϕ的值;(2)求()f x 在[0,]π上的单调减区间.考点:三角函数的定义、()sin()f x A x ωϕ=+的单调性.二.能力题组1.【江苏启东中学2014届上学期期中模拟高三数学】将函数()2sin()3f x x πω=-(0ω>)的图象向左平移3πω个单位,得到函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,则ω的最大值为2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】求值:002cos10sin 20cos 20-= .3. 【江苏省徐州市2013-2014第一学期高三期中试题】方程0cos 3sin =++a x x 在)2,0(π内有相异两解βα,,则=+βα .【答案】3π或37π【解析】4. 【盐城市2014届高三年级第一学期期中考试】在ABC ∆中,若22()||5C A C B A B A B+⋅= ,则tan tan AB= .5. 【江苏省兴化市安丰高级中学2014届高三】在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且 .3tan )(222bc A a c b =-+(1)求角A ;(2)若2a =,求ABC ∆面积S 的最大值.6. 【江苏省兴化市2013~2014学年度第一学期期中考试高三】在△ABC 中,内角,,A B C所对的边分别为,,a b c ,已知m ()A A sin 3,cos 2=,n ()A A cos 2,cos -=,m·n 1-=.(1)求A ∠的大小;(2)若32=a ,2=c ,求△ABC 的面积.7. 【江苏省徐州市2013-2014第一学期高三期中试题】设向量)sin ,2(θ=,)cos ,1(θ= ,θ为锐角.(1)若136a b ⋅= ,求θθcos sin +的值;(2)若a b ,求)32sin(πθ+的值.8.【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】在△ABC中,内角A,B,C所对边长分别为a,b,c, =8,∠BAC=θ,a=4,(1)求b·c的最大值及θ的取值范围;(2)求函数f(θ)=23sin2(π4+θ)+2cos2θ-3的最值.9. 【盐城市2014届高三年级第一学期期中考试】在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,设(1,1)m = ,(cos ,sin )n A A =- ,记()f A m n =⋅.(1)求()f A 的取值范围;(2)若m 与n 的夹角为3π,3C π=,c =,求b 的值.10. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】 已知向量a =(2cos x ,2sin x ) ,b =(3cos x , cos x ),设函数f (x )=a •b -3, 求: (1) f (x )的最小正周期和单调递增区间;(2)若()()26212f f απαπ--+=, 且α∈(π2,π). 求α. 【答案】(1) 22T ππ== , 函数()f x 的单调递增区间为5[,]()1212k k k Z ππππ-+∈ ;(2) 712πα=或1112π.【解析】三.拔高题组1. 【江苏启东中学2014届上学期期中模拟高三数学】已知)2sin ,2(),sin ,1(2x b x a ==,其中()0,x π∈,若a b a b ⋅=⋅,则tan x =2. 【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】 已知ααcos 21s in +=,且)2,0(πα∈,则)4sin(2cos παα-的值为__ ____.3. 【江苏启东中学2014届上学期期中模拟高三数学】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B+=+.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 【答案】(1)3C π=;(2)223342a b <+≤;【解析】试题分析:(1)sin sin tan cos cos A B C A B +=+中有正切和正弦、余弦,这样的问题一般是“切化弦”,统一为同名三角函数后再利用三角函数的相关公式进行变形解答;(2)利用正弦定理,22a b +可化为角,A B 的三角函数,再利用3C π=,可消去一元,问题于是就转化为三角函数的值域问题.试题解析:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. …………………………………………………4分 所以C A B C -=-,或()C A B C π-=--(不成立). 即 2C A B =+, 得 3C π=. ………………………………7分(2)由3C π=,设,33A B ππαα=+=-,2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, ………………………………………8分 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332⎡⎤-++-=+⎢⎥⎣⎦ααα. …………………12分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.…………14分考点:两角和与差的三角函数、正弦定理.4. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角045CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?BC的长度是18 m.………………………7分。

2014届高三名校数学(理)试题分省分项汇编 专题04 三角函数与三角形

2014届高三名校数学(理)试题分省分项汇编 专题04 三角函数与三角形

一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知4cos()65πα-=,则sin()3πα+= .2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】求值:002cos10sin 20cos 20-= .3. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<< .(1) 若a b ⊥,求θ;(2) 求a b +的最大值.【答案】(1)4πθ=【解析】试题分析:(1)由向量垂直的充要条件:11221212(,y ),(,y ),0y y 0a x b x a b a b x x ==⊥⇔⋅=⇔+=,这样4. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知ABC ∆的周长1,且sin sin A B C + (1)求边AB 的长; (2)若ABC ∆的面积为1sin 6C ,求角C .试题解析:解:(1)由题意及正弦定理得:1AB BC AC ++=,BC AC +=,两式相减得1AB =.…………(6分)5. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角045CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?试题解析:解:(1)如图作AN CD ⊥ 于N .91569AB CD AB CD DN EC ∴ ,=,=,=,= .设AN x DAN θ∠=,= ,4545CAD CAN θ∠︒∴∠︒ =,=- . 在Rt ANC ∆ 和Rt AND ∆ 中,069tan ,tan(45-)=x x θ ………………………4分()91tan 451tan tan x θθθ-∴︒+=-= 化简整理得215540x x --= , 解得12)183(x x =,=-舍去 .BC 的长度是18 m . ………………………7分6. 【南京市、盐城市2014届高三第一次模拟考试】在ABC ∆中,2BC =,23A π=,则AB AC ⋅的最小值为 .7. 【南京市、盐城市2014届高三第一次模拟考试】 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2c =,3C π=.(1)若ABC ∆a ,b ;(2)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积.8. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】已知ααcos 21sin +=,且)2,0(πα∈,则)4sin(2cos παα-的值为__ ▲____.【答案】214- 【解析】9. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】 在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c , AC AB ∙=8,∠BAC =θ,a =4, (1)求b ·c 的最大值及θ的取值范围;(2)求函数f (θ)=23sin 2(π4+θ)+2cos 2θ-3的最值.当2+62ππθ=,即=6πθ时,max f()3θ=.考点:1.余弦定理;2.三角函数的图象;3.基本不等式10. 【江苏省扬州中学2013—2014学年第一学期月考】若动直线)(R a a x ∈=与函数()3sin()()cos()66f x xg x x ππ=+=+与的图象分别交于N M ,两点,则||MN 的最大值为 .11. 【江苏省扬州中学2013—2014学年第一学期月考】设向量),cos ,(sin x x a =),sin 3,(sin x x b =x ∈R ,函数)2()(b a a x f +⋅=.(1)求函数)(x f 的单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合.试题解析:(1) )2()(x f +⋅=222sin cos 2(sin 3sin cos )x x x x x =++ 3111cos 23222(sin 2cos 2)2x x x x =+-=+⋅22(sin 2coscos 2sin )22sin(2)666x x x πππ=+-=+-. …………5′ 由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+()k ∈Z ,∴()f x 的单调递增区间为[,]63k k ππππ-+()k ∈Z . …………8′12. 【苏北四市2014届高三第一次质量检测】 在△ABC 中,已知3AB =,o 120A =,且ABC ∆,则BC 边长为 .13. 【苏北四市2014届高三第一次质量检测】已知函数()2sin(2)(0)4f x x ωωπ=->的最大值与最小正周期相同,则函数()f x 在[11]-,上的单调增区间为 . 【答案】13[,]44- 【解析】试题分析:由题意可知,函数()2sin()4f x x ππ=-,令22242k x k ππππππ-+≤-≤+,解得1322,44k x k k Z -+≤≤+∈,又[1,1]x ∈-,所以1344x -≤≤,所以函数()f x 在[1,1]-上的单调递增区间为13[,]44-.考点:三角函数的图象与性质.14. 【苏北四市2014届高三第一次质量检测】已知向量(cos ,sin )θθ=a ,(2,1)=-b .(1)若⊥a b ,求sin cos sin cos θθθθ-+的值;(2)若2-=a b ,(0,)2θπ∈,求sin()4θπ+的值.15. 【苏州市2014届高三调研测试】 若函数()sin()f x x θ=+(π02θ<<)的图象关于直线π6x =对称,则θ = ▲ .【答案】3π16. 【苏州市2014届高三调研测试】已知π3sin()45x +=,π4sin()45x -=,则tan x = ▲ .17. 【苏州市2014届高三调研测试】 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且1cos 2a C c b +=.(1)求角A 的大小;(2)若a =4b =,求边c 的大小.试题解析:(1)用正弦定理,由1cos ,2a C cb +=得1sin cos sin sin .2A C C B +=………2分sin sin()sin cos cos sin ,B A C A C A C =+=+1sin cos sin .2C A C ∴=………4分 1sin 0,cos .2C A ≠∴= ………6分0,.3A A ππ<<∴=………8分18. 【江苏省兴化市安丰高级中学2014届高三12月月考】已知)0,2(πα-∈,53cos =α,则=+)4tan(πα .19.【江苏省兴化市安丰高级中学2014届高三12月月考】在ABC ∆中,若2,60,a B b =∠=︒=,则c = .20.二.能力题组1. 【江苏省诚贤中学2014届高三数学月考试题】在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++(1)求角A 值;(2)求C B cos sin 3-的最大值.2. 【江苏省兴化市安丰高级中学2014届高三12月月考】已知(cos ,sin ),(cos ,sin )a b ααββ==.(1)若67πβα=-,求a b ⋅ 的值; (2)若4,58a b πα⋅== ,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值.3. 【江苏省兴化市安丰高级中学2014届高三12月月考】 在锐角△ABC 中,角A 、B 、C的对边分别为a 、b 、c ,且 .3tan )(222bc A a c b =-+ (1)求角A ;(2)若2a =,求ABC ∆面积S 的最大值. 【答案】(1)60A ︒=;(2)3. 【解析】试题分析:(1)由式子.3tan )(222bc A a c b =-+的结构特征,很自然联想到余弦定理,将其化为关于角A 的三角函数,由其函数值则可求出角A ;(2)由第(1)题的结果,可知1sin 2S bc A ==,再由条件可得,224b c bc +=+,利用基本不等式可求出bc 的最大值,进一步可得三角形面积的最大值.三.拔高题组1. 【江苏省诚贤中学2014届高三数学月考试题】如图,两座建筑物CD AB ,的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9cm 和15cm ,从建筑物AB 的顶部A 看建筑物CD 的视角︒=∠45CAD .求BC 的长度;在线段BC 上取一点(P 点P 与点C B ,不重合),从点P 看这两座建筑物的视角分别为,,βα=∠=∠DPC APB 问点P 在何处时,βα+最小?【答案】⑴18m ;⑵当BP 为27)m 时,αβ+取得最小值. 【解析】+取得最小值.……………………………14分答:当BP为27)m时,αβ考点:1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用。

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

专题04 三角函数(新定义)一、单选题1.(2023秋·山东临沂·高一统考期末)我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为2π3,则角θ的正弦值为( ) A.2B .12C .12−D. 【答案】D【分析】根据面度数的定义,可求得角θ的弧度数,继而求得答案. 【详解】设角θ所在的扇形的半径为r ,则2212π23r r θ=, 所以4π3θ=,所以4ππsin sin sin 33θ==−=, 故选:D .2.(2023秋·江苏苏州·高一统考期末)定义:正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x +≥对任意的实数,2x x k k Z ππ∈⎛⎫≠+ ⎪⎝⎭均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】利用已知条件先化简,分离参数,转化恒成立求最值问题【详解】由已知可得22222sin csc tan 15sin cos xx x xm m x +=+≥,即422sin 15sin cos xx xm ≥−. 因为()2x k k Z ππ≠+∈,所以2cos (0,1]x ∈,则422sin 15sin cos x x x −()222222(1-cos )1=151cos =17+16cos cos cos x x x x x −−−⎛⎫ ⎪⎝⎭ 21716cos 9x x≤−=,当且仅当21cos 4x =时等号成立,故9m ≥, 故选:D.3.(2022·全国·高一专题练习)密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.若2(sin cos )2sin cos αααα−=,则角α可取的值用密位制表示错误..的是( ) A .12-50 B .2-50 C .13-50 D .32-50【答案】C【分析】根据同角三角函数的基本关系及二倍角公式求出α,再根据所给算法一一计算各选项,即可判断; 【详解】解:因为2(sin cos )2sin cos αααα−=, 即22sin 2sin cos cos 2sin cos αααααα−+=, 即4sin cos 1αα=,所以1sin 22α=,所以22,6k k Z παπ=+∈,或522,6k k Z παπ=+∈, 解得,12k k Z παπ=+∈或5,12k k Z παπ=+∈ 对于A :密位制1250−对应的角为125052600012ππ⨯=,符合题意; 对于B :密位制250−对应的角为2502600012ππ⨯=,符合题意; 对于C :密位制1350−对应的角为135092600020ππ⨯=,不符合题意; 对于D :密位制3250−对应的角为3250132600012ππ⨯=,符合题意; 故选:C4.(2022秋·山东青岛·高三山东省青岛第五十八中学校考阶段练习)计算器是如何计算sin x ,cos x ,πx ,ln x 些函数,通过计算多项式的值求出原函数的值,如357sin 3!5!7!x x x x x =−+−+,246cos 12!4!6!x x x x =−+−+,其中!12n n =⨯⨯⨯,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到3sin 12π⎛⎫−+ ⎪⎝⎭的近似值为( )A .0.50B .0.52C .0.54D .0.56【答案】C【分析】将3sin 12π⎛⎫−+ ⎪⎝⎭化为cos1,根据新定义,取1x =代入公式246cos 12!4!6!x x x x =−+−+⋅⋅⋅中,直接计算取近似值即可.【详解】由题意可得,3sin 1cos12π⎛⎫−+= ⎪⎝⎭,故246111111cos1112!4!6!224720=−+−+=−+−+10.50.0410.0010.54=−+−+⋯≈,故选:C .5.(2022春·广东中山·高二统考期末)密位制是度量角与弧的常用制度之一,周角的16000称为1密位.用密位作为角的度量单位来度量角与弧的制度称为密位制.在密位制中,采用四个数字来记角的密位,且在百位数字与十位数字之间加一条短线,单位名称可以省去,如15密位记为“00—15”,1个平角=30—00,1个周角=60—00,已知函数()2cos f x x =−,3,22x ππ⎡⎤∈⎢⎥⎣⎦,当()f x 取到最大值时对应的x 用密位制表示为( ) A .15—00 B .35—00 C .40—00 D .45—00【答案】C【分析】利用导数研究()f x 在给定区间上的最大值,结合题设密位制定义确定()f x 取到最大时x 用密位制.【详解】由题设,()2sin f x x '=,在4[,)23x ππ∈时()0f x '>,在43(,]32x ππ∈时()0f x '<,所以()f x 在4[,)23x ππ∈上递增,在43(,]32x ππ∈上递减,即max 4()()3f x f π=,故()f x 取到最大值时对应的x 用密位制表示为40—00. 故选:C6.(2022春·云南昆明·高二校考期末)在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P与原点O 之间距离为r ,比值rx 叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值x y 叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=−;乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁【答案】D【分析】当甲错误时,乙一定正确,从而推导出丙、丁均错误,与题意不符,故甲一定正确;再由丙丁必有一个错误,得到乙一定正确,由此利用三角函数的定义能求出结果.【详解】解:当甲:5sec 4β=−错误时,乙:5csc 3β=正确,此时53r y =,r =5k ,y =3k ,则|x |=4k ,(k >0), 4tan 3y x β∴==或4tan 3β=−,∴丙:3tan 4β=−不正确,丁:4cot 3β=不正确,故错误的同学不是甲;甲:5sec 4β=−,从而r =5k ,x =﹣4k ,|y |=3k ,(k >0),此时,乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=必有两个正确,一个错误,∵丙和丁应该同号,∴乙正确,丙和丁中必有一个正确,一个错误,∴y =3k >0,x =﹣4k <0,34tan ,cot 43ββ∴=−=−,故丙正确,丁错误, 综上错误的同学是丁. 故选:D .7.(2023秋·湖南邵阳·高一统考期末)设,a b R ∈,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为( )A .1−B .C .12−D .0【答案】B【分析】由定义先得出sin sin cos ()cos cos sin x x xf x x x x ≥⎧=⎨>⎩,然后分sin cos x x ≥,cos sin x x >两种情况分别求出()f x 的最小值,从而得出答案.【详解】由题意可得sin sin cos ()sin cos cos cos sin x x xf x x x x x x ≥⎧=⊗=⎨>⎩当sin cos x x ≥时,即sin cos 04x x x π⎛⎫−=−≥ ⎪⎝⎭则22,4k x k k Z ππππ≤−≤+∈,即522,44k x k k Z ππππ+≤≤+∈此时当52,4x k k Z ππ=+∈时,sin x 有最小值为当cos sin x x >时,即sin cos 04x x x π⎛⎫−=−< ⎪⎝⎭则222,4k x k k Z πππππ+<−<+∈,即5922,44k x k k Z ππππ+<<+∈此时,cos x >所以()f x 的最小值为故选:B8.(2023秋·浙江杭州·高一浙江大学附属中学校考期末)正割()secant 及余割()cos ecant 这两个概念是由伊朗数学家阿布尔⋅威发首先引入的.定义正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x ⋅+≥对任意的实数π,2k x x k ⎛⎫≠∈ ⎪⎝⎭Z 均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】由参变量分离法可得出2211716cos cos m x x ⎛⎫≥−+ ⎪⎝⎭,利用基本不等式可求得m 的取值范围,即可得解.【详解】由已知可得22222sin csc tan 15sin cos m x m x x x x ⋅+=+≥,可得422sin 15sin cos x m x x≥−, 因为()Z 2x k k ππ≠+∈,则(]2cos 0,1x ∈,因为()()2242222221cos sin 115sin 151cos 1716cos cos cos cos x x x x x xxx −⎛⎫−=−−=−+ ⎪⎝⎭179≤−=, 当且仅当21cos 4x =时,等号成立,故9m ≥. 故选:D.9.(2022春·江西景德镇·高二景德镇一中校考期中)对集合{}12,,,k a a a ⋯和常数m ,把()()()222122sin sin sin k a m a m a m kσ−+−++−=定义为集合{}12,,,k a a a ⋯相对于m 的“正弦方差",则集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为( )A .32B C .12D .与m 有关的值【答案】C【分析】先确定集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”的表达式,再利用半角公式,两角和与差的余弦公式化简可得结果.【详解】由题知,集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为2222sin sin sin 6263m m m πππσ⎛⎫⎛⎫⎛⎫−−+−++− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()1cos 21cos 21cos 21333222m m m πππ⎛⎫⎛⎫⎛⎫−−−−− ⎪ ⎪ ⎪−−⎝⎭⎝⎭ ⎪=++ ⎪ ⎪⎝⎭ ()13cos 2cos 2cos 2633m m m πππ⎡⎤⎛⎫⎛⎫⎛⎫=−++−+−⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦把()()1cos 2cos 2232m m m π⎛⎫+= ⎪⎝⎭,()()cos 2cos 2m m π−=−, ()()1cos 2cos 2232m m m π⎛⎫−= ⎪⎝⎭,代入上式整理得,212σ=.故选:C.10.(2022秋·山东·高三山东聊城一中校联考阶段练习)现有如下信息:(1)黄金分割比(简称:黄金比)是指把一条线段分割为两部分,较短部分与较长部分的长度之比等于较(2)黄金三角形被誉为最美三角形,是较短边与较长边之比为黄金比的等腰三角形. (3)有一个内角为36o 的等腰三角形为黄金三角形, 由上述信息可求得126sin =( ) AB12CD【答案】D【分析】如图作三角形,先求出5cos364=126sin 的值. 【详解】如图,等腰三角形ABC ,36ABC ∠=,,AB BC a AC b ===,取AC 中点,D 连接BD .b a =, 由题意可得1511512sin 22224bABC b a a ∠−−====,所以22cos 12sin 12ABC ABC ∠∠=−=−= 所以5cos364=所以5126364sin cos ︒==. 故选:D. 11.(2021秋·四川巴中·高一校联考期末)定义运算a bad bc c d=−,如果()()105,(0,0)2sin 2f x x πωϕωϕ=><<+的图像的一条对称轴为,4x πϕ=满足等式2cos 3tan ϕϕ=,则ω取最小值时,函数()f x 的最小正周期为( ) A .2πB .πC .3π2D .2π【答案】C【分析】根据2cos 3tan ϕϕ=,利用切化弦和同角三角函数关系转化成sin ϕ的二次方程,可求出ϕ的值,结合对称轴可求出ω,最后利用周期公式进行求解即可. 【详解】105()10sin()102sin()f x x x ωϕωϕ==+−+,因为2cos 3tan ϕϕ=,所以sin 2cos 3cos ϕϕϕ=,即22cos 3sin ϕϕ=,22(1sin )3sin ϕϕ−=, 所以(sin 2)(2sin 1)0ϕϕ+−=,解得1sin 2ϕ=或2−(舍去), 而02πϕ<<,所以6πϕ=,即()10sin()106f x x πω=+−,而()y f x =的图象的一条对称轴为4x π=,所以10sin 1046ππω⎛⎫⨯+=± ⎪⎝⎭,即462k πππωπ⨯+=+,Z k ∈,解得443k ω=+,Z k ∈,所以正数ω取最小值为43,此时函数()f x 的最小正周期为23423ππ=.故选:C .12.(2020·全国·高三校联考阶段练习)对于集合{}12,,,n x x x ⋅⋅⋅,定义:()()()22210200cos cos cos n x x x x x x n−+−+⋅⋅⋅+−Ω=为集合{}12,,,n x x x ⋅⋅⋅相对于0x 的“余弦方差”,则集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”为( ) A .14B .12CD【答案】B【解析】根据所给“余弦方差”定义公式,代入集合中的各元素,即可得Ω的表达式,结合余弦降幂公式及诱导公式化简,即可求解.【详解】由题意可知,集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”代入公式可得2222000032cos cos cos cos 1051054x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭Ω=0000321cos 21cos 21cos 21cos 210510522224x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+++=0000321cos 21cos 21cos 21cos 21051058x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++++−++− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=00002344cos 2cos 2cos 2cos 255558x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=因为0000423cos 2cos 20,cos 2cos 205555x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫++−=++−= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以原式4182Ω==, 故选:B.【点睛】本题考查了新定义应用,降幂公式及诱导公式化简三角函数式的应用,属于中档题.13.(2020秋·江西宜春·高三奉新县第一中学校考阶段练习)已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a b a b b a b⎧=⎨<⎩…,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫⎪⎝⎭内的图象是 A . B .C .D .【答案】A【分析】由题知()2tan()(0)f x x ωω=>,利用T πω=求出ω,再根据题给定义,化简求出()h x 的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π, 所以()2tan()(0)f x x ωω=> 的周期为π, 则1T ππωπ===, 所以{}2sin ,,2()max 2tan ,2sin 32tan ,,2x x h x x x x x ππππ⎧⎛⎤∈ ⎪⎥⎪⎝⎦==⎨⎛⎫⎪∈ ⎪⎪⎝⎭⎩,由正弦函数和正切函数图象可知A 正确. 故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解. 14.(2022春·陕西延安·高一校考阶段练习)对于函数()f x ,在使()f x M ≥成立的所有常数M 中,我们把M的最大值称为函数()f x 的“下确界”.若函数()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的“下确界”为12−,则m 的取值范围是( ) A .,62ππ⎛⎤− ⎥⎝⎦B .,62ππ⎛⎫− ⎪⎝⎭C .5,66ππ⎛⎤− ⎥⎝⎦D .5,66ππ⎛⎫− ⎪⎝⎭【答案】A【分析】由下确界定义,()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,由余弦函数性质可得.【详解】由题意()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,又21()3cos()13cos163332f ππππ−=−−+=+=−, 由13cos(2)132x π−+≥−,得1cos(2)32x π−≥−,22222333k x k πππππ−≤−≤+,,62k x k k Z ππππ−≤≤+∈,0k =时,62x ππ−≤≤,所以62m ππ−<≤.故选:A .【点睛】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.15.(2020·全国·高一假期作业)如果函数()f x 在区间D 上是凸函数,那么对于区间D 内的任意1x ,2x ,…,n x ,都有()()()1212n n f x f x f x x x x f nn ++++++⎛⎫≤ ⎪⎝⎭,若sin y x =在区间()0,π上是凸函数,那么在ABC ∆中,sin sin sin A B C ++的最大值是( )A .32B .3CD 【答案】D【分析】利用“凸函数”的定义得到恒成立的不等式,利用三角形的内角和为π,即可求出最大值. 【详解】因为sin y x =在区间[0,]π上是“凸函数”,所以sin sin sin sin sin 333A B C A B C π++++=…得sin sin sin A B C ++…即:sin sin sin A B C ++的最大值是2故选:D.【点睛】本题考查理解题中的新定义,并利用新定义求最值,还运用三角形的内角和.二、多选题16.(2022·全国·高一专题练习)定义:()()()22210200cos cos cos n nθθθθθθμ−+−++−=为集合{}12,,,n A θθθ=相对常数0θ的“余弦方差”.若0,2πθ⎡⎤∈⎢⎥⎣⎦,则集合,03A π⎧⎫=⎨⎬⎩⎭相对θ的“余弦方差”的取值可能为( ) A .38B .12C .34D .45【答案】ABC【分析】根据所给定义及三角恒等变换公式将函数化简,再根据0θ的取值范围,求出026θπ+的取值范围,再根据正弦函数的性质计算可得.【详解】解:依题意()2200cos cos 0πθθμ⎛⎫−+− ⎪ 22000cos cos sin cos 332sin ππθθθ=+⎛⎫+ ⎪⎝⎭220001cos cos 22θθθ⎛⎫+ ⎝⎪⎭=2220000013cos sin sin cos 4242θθθθθ++=200013cos sin 2242θθθ+= 001cos 221442θθ+=00111cos 224222θθ⎛⎫=+ ⎪⎝⎭+⎪ 011sin 2462πθ⎛⎫=+ ⎪⎝⎭+, 因为00,2πθ⎡⎤∈⎢⎥⎣⎦,所以02,7666πππθ⎡⎤+∈⎢⎥⎣⎦,所以01s 22n 1i 6,πθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎣−⎝⎭⎦,所以33,84μ⎡⎤∈⎢⎥⎣⎦;故选:ABC17.(2021秋·全国·高三校联考期中)数学中一般用{}min ,a b 表示a ,b 中的较小值,{}max ,a b 表示a ,b 中的较大值;关于函数:(){}min sin ,sin f x x x x x =;(){}max sin ,sin g x x x x x =,有如下四个命题,其中是真命题的是( ) A .()f x 与()g x 的最小正周期均为π B .()f x 与()g x 的图象均关于直线32x π=对称 C .()f x 的最大值是()g x 的最小值 D .()f x 与()g x 的图象关于原点中心对称 【答案】BD【分析】先求出()f x ,()g x ,结合函数()f x 与()g x 的图象即可求解【详解】设()sin 2sin(),()sin 2sin(),33h x x x x t x x x x ππ==+==−则{}32sin(),22,322()min (),()2sin(),22,322x k x k f x h x t x x k x k ππππππππππ⎧++≤≤+⎪⎪==⎨⎪−−+<<+⎪⎩,{}32sin(),22,322()max (),()2sin(),22,322x k x k g x h x t x x k x k ππππππππππ⎧−+≤≤+⎪⎪==⎨⎪+−+<<+⎪⎩函数()f x 与()g x 的大致图象如下所示:对A ,由图知,()f x 与()g x 的最小正周期均为2π;故A 错误; 对B ,由图知,32x π=为函数()f x 与()g x 的对称轴,故B 正确. 对C ,12f π⎛⎫= ⎪⎝⎭,由图知∶函数()f x 的值域为[]2,1−,函数()g x 的值域为[]1,2−,故C 错误;对D ,由图知,()f x 与()g x 的图象关于原点中心对称,故D 正确; 故选:BD.18.(2022·江苏·高一专题练习)已知角θ和ϕ都是任意角,若满足2,2k k Z πθϕπ+=+∈,则称θ与ϕ“广义互余”.若()1sin 4πα+=−,则下列角β中,可能与角α“广义互余”的有( )A .sin β=B .()1cos 4πβ+=C .tan β=D .tan β=【答案】AC【分析】由题可得1sin 4α=,根据诱导公式化简计算判断每个选项即可. 【详解】若α与β广义互余,则2()2k k Z παβπ+=+∈,即2()2k k Z πβπα=+−∈.又由()1sin 4πα+=−,可得1sin 4α=.对于A ,若α与β广义互余,则sin sin(2)cos 24k πβπαα=+−===±,由sin β=可得α与β可能广义互余,故A 正确;对于B ,若α与β广义互余,则1cos cos(2)sin 24k πβπαα=+−==,由()1cos 4πβ+=可得 1cos 4β=−,故B 错误;对于C ,综上可得sin β=1cos 4β=,所以sin tan cos βββ==C 正确,D 错误. 故选:AC .19.(2022春·辽宁沈阳·高一沈阳市第一二〇中学校考阶段练习)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:定义1cos θ−为角θ的正矢,记作sin ver θ,定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题正确的是( ) A .161sin32ver π= B .sin sin 2ver cover πθθ⎛⎫−= ⎪⎝⎭C .若sin 12sin 1cover x ver x −=−,则()21sin sin 5cover x ver x −=D .函数()sin 2020sin 202036f x ver x cover x ππ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭的最大值为2【答案】BC【分析】利用诱导公式化简可得A 错误,B 正确;化简已知等式得到tan x ,将所求式子化简为正余弦齐次式,由此可配凑出tan x 求得结果,知C 正确;利用诱导公式化简整理得到()22sin 20206f x x π⎛⎫=−+ ⎪⎝⎭,由此可知最大值为4,知D 错误.【详解】对于A ,16163sin 1cos 1cos 51cos 33332ver πππππ⎛⎫=−=−+=+= ⎪⎝⎭,A 错误; 对于B ,sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,B 正确;对于C ,sin 11sin 1tan 2sin 11cos 1cover x x x ver x x −−−===−−−, ()()22222sin cos sin sin 1sin 1cos 12sin cos 1sin cos x xcover x ver x x x x x x x∴−=−−+=−=−+22tan 411tan 15x x =−=−+15=,C 正确; 对于D ,()1cos 20201sin 202036f x x x ππ⎛⎫⎛⎫=−−+−+= ⎪ ⎪⎝⎭⎝⎭2cos 2020sin 2020266x x πππ⎡⎤⎛⎫⎛⎫−−++−+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22sin 20206x π⎛⎫=−+ ⎪⎝⎭,∴当sin 202016x π⎛⎫+=− ⎪⎝⎭时,()max 224f x =+=,D 错误.故选:BC.【点睛】关键点点睛:本题考查了三角函数的新定义的问题,解题关键是能够充分理解已知所给的定义,结合三角函数的诱导公式、正余弦齐次式的求解等知识来判断各个选项.20.(2022秋·河南濮阳·高一濮阳一高校考期末)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:•定义1cos θ−为角θ的正矢,记作sin ver θ,•定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题中正确的是( ) A .函数sin y ver x =在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数B .函数sin sin ver xy cover x=的最小正周期为πC .sin(sin 2ver )cover πθθ−=D .sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+=⋅+⋅ 【答案】AC【分析】由余弦函数的单调性可判断A 选项;验证得()()y x y x π≠+,可判断B 选项;由定义的诱导公式可判断C 选项;取4παβ==,代入验证可判断D 选项.【详解】因为sin 1cos y ver x x ==−,而cos y x =在3,22ππ⎡⎤⎢⎥⎣⎦上是增函数,所以函数sin 1cos y ver x x ==−在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数,故A 正确; 函数versin 1cos 1cos ();()coversin 1sin 1sin π−+==+=−+x x xy x y x x x x,所以()()y x y x π≠+,所以B 错误;sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,故C 正确;取4παβ==,sin(1cos12ver )παβ+=−=,sin sin sin sin ver cover cover ver αβαβ⋅+⋅1cos 1sin 1sin 1cos 34444+ππππ⎛⎫⎛⎫⎛⎫⎛⎫=−⋅−−⋅−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+≠⋅+⋅, 故D 错误, 故选:AC.【点睛】本题考查函数的新定义,三角函数的诱导公式,同角三角函数间的关系,余弦函数的性质,属于中档题.三、填空题21.(2023·高一课时练习)我们规定把2221cos ()cos cos ()3y B A B B A ⎡⎤=+++−⎣⎦叫做B 对A 的余弦方差,那么对任意实数B ,B 对π3的余弦方差是______.【答案】12##0.5【分析】根据余弦方差的定义求得正确答案. 【详解】依题意,B 对π3的余弦方差是:2221ππcos ()cos cos ()333y B B B ⎡⎤=+++−⎢⎥⎣⎦2π2π1cos(2)1cos(2)11cos 2333222B B B ⎡⎤+++−⎢⎥+=++⎢⎥⎢⎥⎣⎦ 12π2π3cos(2)cos 2cos(2)633B B B ⎡⎤=++++−⎢⎥⎣⎦12π2π2π2π3cos 2cos sin 2sin cos 2cos 2cos sin 2sin 63333B B B B B ⎛⎫=+−+++ ⎪⎝⎭ 11113cos 2cos 2cos 26222B B B ⎛⎫=−+−= ⎪⎝⎭. 故答案为:1222.(2022·全国·高一专题练习)已知()(),f x g x 都是定义在R 上的函数,若存在实数,m n ,使得()()()h x mf x ng x =+,则称()h x 是()f x ,()g x 在R 上生成的函数.若()()22cossin ,sin 22=−=x xf xg x x ,以下四个函数中:①π6y x ⎛⎫=− ⎪⎝⎭;②ππcos 2424x x y ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭;③2π2cos 124xy ⎛⎫=−− ⎪⎝⎭; ④22sin 2=y x .所有是()(),f x g x 在R 上生成的函数的序号为________. 【答案】①②③.【详解】()()22cossin cos ,sin 22x xf x xg x x =−==.①:πππcos sin sin )666y x x x x x ⎛⎫=−=+= ⎪⎝⎭,因此有m n ==()(),f x g x 在R 上生成的函数;②:πππcos )24242x x y x x ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,因此有0m n ==,本函数是()(),f x g x 在R 上生成的函数; ③:2ππ2cos 1cos()sin 242xy x x ⎛⎫=−−=−= ⎪⎝⎭,因此有0,1m n ==,本函数是()(),f x g x 在R 上生成的函数; ④:2222sin 28sin cos y x x x ==,显然不存在实数,m n ,使得228sin cos cos sin x x m x n x =+成立,因此本函数不是()(),f x g x 在R 上生成的函数, 故答案为:①②③23.(2021春·江苏淮安·高一校联考阶段练习)形如a bc d 的式子叫做行列式,其运算法则为a b ad bc c d=−,则行列式sin15cos15︒︒的值是___________. 【答案】12−【分析】根据新定义计算即可.【详解】由题意sin151sin 45sin15cos 45cos15cos 602cos15︒=︒︒=︒︒−︒︒=−︒=−︒. 故答案为12−.24.(2023·高一课时练习)若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列四个函数:①()1sin cos f x x x =+;②()2f x x =()3sin f x x =;④())4sin cos f x x x =+.其中“同形”函数有__________.(选填序号)【答案】①②【分析】利用三角恒等变换转化函数解析式,对比各函数的最小正周期及振幅即可得解.【详解】由题意,()1sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,())4sin cos 2sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,四个函数的最小正周期均相同,但振幅相同的只有①,②, 所以“同形”函数有①②. 故答案为:①②.25.(2023·高一课时练习)在直角坐标系中,横、纵坐标均为整数的点叫格点.若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数.在[],x ππ∈−上,下列函数中,为一阶格点函数的是___________.(选填序号)①sin y x =;②e 1x y =−;③ln y x =;④2y x = 【答案】①②③【分析】根据题目定义以及各函数的图象与性质即可判断.【详解】当[],x ππ∈−时,函数sin y x =,e 1x y =−的图象只经过一个格点()0,0,符合题意; 函数ln y x =的图象只经过一个格点()1,0,符合题意;函数2y x =的图象经过七个格点,()()()()()()()3,9,2,4,1,1,0,0,1,1,2,4,3,9−−−,不符合题意.故答案为:①②③.26.(2022春·河南商丘·高一商丘市第一高级中学校考开学考试)在平面直角坐标系xoy 中,已知任意角θ以坐标原点o 为顶点,x 轴的非负半轴为始边,若终边经过点00(,)p x y ,且(0)op r r =>,定义:00y x sos rθ+=,称“sos θ”为“正余弦函数”,对于“正余弦函数y sosx =”,有同学得到以下性质:①该函数的值域为⎡⎣; ②该函数的图象关于原点对称;③该函数的图象关于直线34x π=对称; ④该函数为周期函数,且最小正周期为2π;⑤该函数的递增区间为32,244k k k z ππππ⎡⎤−+∈⎢⎥⎣⎦.其中正确的是__________.(填上所有正确性质的序号) 【答案】①④⑤.【详解】分析:根据“正余弦函数”的定义得到函数)4y sosx x π==+,然后根据三角函数的图象与性质分别进行判断即可得到结论.详解:①中,由三角函数的定义可知00cos ,sin x r x y r x ==,所以00sin cos )[4y x y sosx x x x r π+===+=+∈,所以是正确的;②中,)4y sosx x π==+,所以()0)104f π=+=≠,所以函数关于原点对称是错误的;③中,当34x π=时,33()sin()0444f ππππ+==≠34x π=对称是错误的;④中,)4y sosx x π==+,所以函数为周期函数,且最小正周期为2π,所以是正确的;⑤中,因为)4y sosx x π==+,令22242k x k πππππ−≤+≤+,得322,44k x k k Z ππππ−≤≤+∈,即函数的单调递增区间为3[2,2],44k k k Z ππππ−+∈,所以是正确的,综上所述,正确命题的序号为①④⑤.点睛:本题主要考查了函数的新定义的应用,以及三角函数的图象与性质的应用,其中解答中根据函数的新定义求出函数y sosx =的表达式是解答的关键,同时要求熟练掌握三角函数的图象与性质是解答额基础,着重考查了分析问题和解答问题的能力,属于中档试题.27.(2015秋·广东揭阳·高一统考期中)定义一种运算,令,且,则函数的最大值是_______________【答案】54【详解】试题分析::∵,∴0≤sinx≤1∴()22255cos sin sin sin 1sin 144y x x x x x =+=−++=−−+≤ 由题意可得,()22215cos sin ,sin cos cos 224f x x x f x x x x π⎛⎫⎛⎫=+−=−=−++ ⎪ ⎪⎝⎭⎝⎭函数的最大值54考点:三角函数的最值四、解答题28.(2023春·云南文山·高一校考阶段练习)人脸识别技术在各行各业的应用改变着人类的生活,所谓人脸人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用测量距离的方式有曼哈顿距离和余弦距离.若二维空间有两个点()11,A x y ,()22,B x y ,则曼哈顿距离为:()1212,d A B x x y y =−+−,余弦相似度为:()cos ,A B =()1cos ,A B −(1)若()1,2A −,34,55B ⎛⎫⎪⎝⎭,求A ,B 之间的曼哈顿距离(),d A B 和余弦距离;(2)已知()sin ,cos M αα,()sin ,cos N ββ,()sin ,cos Q ββ−,若()1cos ,5M N =,()2cos ,5M Q =,求tan tan αβ的值【答案】(1)145,15−(2)3−【分析】(1)根据公式直接计算即可.(2)根据公式得到1sin sin cos cos 5αβαβ+=,2sin sin cos cos 5αβαβ−=,计算得到答案.【详解】(1)()3414,12555d A B =−−+−=,()34cos ,55A B ==,故余弦距离等于()1cos ,15A B −=−; (2)()cos ,M N =1sin sin cos cos 5αβαβ=+=;()cos ,M Q =2sin sin cos cos 5αβαβ=−=故3sin sin 10αβ=,1cos cos 10αβ=−,则sin sin tan tan 3cos cos αβαβαβ==−. 29.(2023·高一课时练习)知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.与之类似,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对()sad .如图,在ABC 中,AB AC =.顶角A 的正对记作sad A ,这时sad BCA AB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题: (1)sad60的值为( )A .12 B .1 C D .2 (2)对于0180A <∠<,A ∠的正对值sad A 的取值范围是______. (3)已知3sin 5α=,其中α为锐角,试求sad α的值. 【答案】(1)B(2)()0,2(3)sad α=【分析】(1)在等腰ABC 中,取60A ∠=,AB AC =,利用正对的定义可得出sad60sad A =的值; (2)在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,推导出sad 2sin 2AA =,结合正弦函数的基本性质可求得sad A 的取值范围;(3)利用同角三角函数的基本关系求出cos α,利用二倍角公式可求得sin 2α,由此可得出sad 2sin2αα=的值.【详解】(1)解:在等腰ABC 中,60A ∠=,AB AC =,则ABC 为等边三角形, 所以,sad60sad 1BCA AB===, 故选:B.(2)解:在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,则2sad 2cos 2cos 902sin 22BC BD A A A B AB AB ⎛⎫====−= ⎪⎝⎭, 因为0180A <∠<,则0902A <<,故()sad 2sin 0,22AA =∈. 故答案为:()0,2.(3)解:π02α<<,则π024α<<,所以,24cos 12sin 52αα===−,所以,sin2α=sad 2sin 2αα==. 30.(2020秋·全国·高三校联考阶段练习)若函数()()sin cos ,f x a x b x a b =+∈R ,平面内一点坐标(),M a b ,我们称M 为函数()f x 的“相伴特征点”,()f x 为(),M a b 的“相伴函数”.(1)已知()1sin sin cos 2222x x x f x ⎛⎫=+− ⎪⎝⎭,求函数()f x 的“相伴特征点”;(2)记122M ⎛' ⎝⎭的“相伴函数”为()g x ,将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),再将所得的图象上所有点向右平移4π个单位长度,得到函数()h x ,作出()h x 在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象.【答案】(1)11,22⎛⎫− ⎪⎝⎭;(2)作图见解析.【分析】(1)利用二倍角的降幂公式化简得出()11sin cos 22f x x x =−,由此可得出函数()y f x =的“相伴特征点”的坐标;(2)由题中定义可得出()sin 3g x x π⎛⎫=+ ⎪⎝⎭,利用三角函数图象变换得出()52sin 312h x x π⎛⎫=− ⎪⎝⎭,然后通过列表、描点、连线,可得出函数)y h x =在区间529,3636ππ⎡⎤⎢⎥⎣⎦上的图象. 【详解】(1)()211cos sin 111sinsin cos sin cos 222222222x x x x x f x x x −=+−=+−=−Q , 故函数()y f x =的“相伴特征点”为11,22⎛⎫− ⎪⎝⎭;(2)由题意可得()1sin sin 23g x x x x π⎛⎫==+ ⎪⎝⎭, 将函数()y g x =图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),可得到函数2sin 33y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得的图象上所有点向右平移4π个单位长度,可得到函数()52sin 32sin 34312h x x x πππ⎡⎤⎛⎫⎛⎫=−+=− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,当529,3636x ππ⎡⎤∈⎢⎥⎣⎦时,503212x ππ≤−≤,列表如下:故函数()y h x =在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象如下图所示.【点睛】本题考查三角函数的新定义、利用三角函数图象变换求解析式,同时也考查了五点作图法,考查分析问题和解决问题的能力,属于中等题. 五、双空题31.(2022秋·内蒙古包头·高一统考期末)对任意闭区间I ,I M 表示函数sin 6y x π⎛⎫=+ ⎪⎝⎭在区间I 上的最大值,则0,2M π⎡⎤⎢⎥⎣⎦=______,若[0,][,2]2t t t M M =,则t 的值为______.【答案】 1;23π或π 【分析】由题可得2,663x πππ⎡⎤+∈⎢⎥⎣⎦,故0,2M π⎡⎤⎢⎥⎣⎦=1;对t 分类讨论,利用正弦函数的性质得出符合条件的t 即可.【详解】当0,2x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,∴当62x ππ+=时,max 1y =,∴0,2M π⎡⎤⎢⎥⎣⎦=1;当62t ππ+<,即3t π<时,[0,]sin 6t M t π⎛⎫=+ ⎪⎝⎭,[,2][0,]sin 6t t t M t M π⎛⎫+= ⎪>⎝⎭, 这与[0,][,2]2t t t M M =矛盾, 当62t ππ+≥且5262t ππ+<,即736t ππ≤<时,[0,]1t M =,[,2]sin 6t t M t π=⎛⎫+ ⎪⎝⎭或[,2]sin 26t t M t π=⎛⎫+ ⎪⎝⎭,由[0,][,2]2t t t M M =可得,1sin 62t π⎛⎫+= ⎪⎝⎭或1sin 262t π⎛⎫+= ⎪⎝⎭,所以23t π=或t π=, 当5262t ππ+≥,即76t π≥时,[0,]1t M =,[,2]1t t M =,这与[0,][,2]2t t t M M =矛盾; 综上所述,t 的值为23π或π. 故答案为:1;23π或π.32.(2019秋·北京海淀·高三人大附中校考阶段练习)已知集合M 是满足下列性质的函数()f x 的全体,存在非零常数T ,对任意x ∈R ,有()()f x T Tf x +=成立.(1)给出下列两个函数:()1f x x =,()()2201f x a a =<<,其中属于集合M 的函数是__________.(2)若函数()sin f x kx M =∈,则实数k 的取值集合为__________. 【答案】 2()f x {|,}k k m m Z π=∈ 【分析】(1)根据集合M 的性质判断.(2)根据集合M 的性质求解,由sin ()sin k x T T kx +=恒成立成立,只有1T =±,【详解】(1)若1()f x M ∈,则存在非零点常数T ,使得11()()f x T Tf x +=,则x T Tx +=,(1)0T x T −+=对x R ∈恒成立,这是不可能的,1()f x M ∉;若2()f x M ∈,则存在非零点常数T ,使得22()()f x T Tf x +=,则22a Ta =,对x R ∈恒成立,1T =,2()f x M ∈; (2)函数()sin f x kx M =∈,则存在非零点常数T ,使得()()f x T T f x +=,即sin ()sin k x T T kx +=,0k =时,()0f x M =∈,0k ≠时,由x R ∈知kx R ∈,()k x T k R +∈,sin [1,1]kx ∈−,sin ()[1,1]k x T +∈−,因此要使sin ()sin k x T T kx+=成立,只有1T =±,若1T =,则sin()sin kx k kx +=,2,T m m Z π=∈,若1T =−,则sin()sin kx k kx −=−,即sin()sin kx k kx π−+=,2k m ππ−+=,(21),k m m Z π=−−∈, 综上实数k 的取值范围是{|,}k k m m Z π=∈. 故答案为:2(),f x {|,}k k m m Z π=∈.【点睛】本题考查新定义问题,此类问题的特点是解决问题只能以新定义规则为依据,由新定义规则把问题转化,转化为熟悉的问题进行解决.。

专题04 三角函数与解三角形学霸必刷100题(原卷版)

专题04  三角函数与解三角形学霸必刷100题(原卷版)

三角函数与解三角形学霸必刷100题1.已知函数()sin()(>0)6f x x πωω=+在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈使得0()1f x =,则ω的取值范围为( )A .11[,]52B .21[,]52C .14[,]55D .24[,]552.已知函数()sin f x a x x =-的一条对称轴为π6x =-,12()()0f x f x +=,且函数()f x 在12(,)x x 上具有单调性,则12||x x +的最小值为 A .2π3B .π3C .π6D .4π33.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()SA C b c +=-,则1tan 2tan()C B C +-的最小值为( )AB .2C .1D .4.边长为2的等边ABC ∆和有一内角为30的直角1ABC ∆所在半平面构成60︒的二面角,则下列不可能是线段1CC 的取值的是( )A .3BC .2D .35.函数()()()2sin 0,0f x x ωϕωϕπ=+><<,8f π⎛⎫= ⎪⎝⎭02f ⎛⎫= ⎪⎝⎭π,且()f x 在()0,π上单调,则下列说法正确的是( )A .12ω=B .82f π⎛⎫-= ⎪⎝⎭C .函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递增D .函数()y f x =的图象关于点3,04π⎛⎫⎪⎝⎭对称 6.已知函数 f (x ) = 1sin()+062x πωω-(),且 11(),()22f f αβ=-=.若 α − β 的最小值为34π,则函数的单调递增区间为( ) A .2,2,2k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .3,3,2k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .52,2,2k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .53,3,2k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦7.如图,ABC 中,ACB ∠为钝角,10AC =,6BC =,过点B 向ACB ∠的角平分线引垂线交于点P ,若62AP =,则ABP △的面积为( )A .4B .42C .6D .438.某港口某天0时至24时的水深y (米)随时间x (时)变化曲线近似满足如下函数模型0.5sin 3.246y x πωπ⎛⎫=++ ⎪⎝⎭(0>ω).若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( ) A .16时B .17时C .18时D .19时9.如图,矩形ABCD 中,1AB =,3BC =,F 是线段BC 上一点且满足1BF =,E 是线段FC 上一动点,把ABE △沿AE 折起得到1AB E △,使得平面1⊥B AC 平面ADC ,分别记1B A ,1B E 与平面ADC 所成角为α,β,平面1B AE 与平面ADC 所成锐角为θ,则:( )⇒A .θαβ>>B .θβα>>C .αθβ>>D .βθα>>10.已知A 是函数()sin 2018cos 201863f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值,若存在实数12,x x 使得对任意实数x总有12()()()f x f x f x ≤≤成立,则12||A x x ⋅-的最小值为 A .π2018B .π1009C .2π1009D .π403611.如图,已知函数()sin()(0,||)2f x x πωϕωϕ=+><的图象与坐标轴交于点1,,(,0)2-A B C ,直线BC交()f x 的图象于另一点D ,O 是ABD ∆的重心.则ACD ∆的外接圆的半径为A .2B .576C .573D .812.关于函数()cos sin f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 的最大值为2; ③()f x 在[],ππ-有3个零点;④()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增. 其中所有正确结论的编号是( ) A .①②B .①③C .②④D .①④13.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的一条对称轴为3x π=,一个对称中心为5,06π⎛⎫⎪⎝⎭,且在3,25ππ⎛⎫⎪⎝⎭上单调,则ω的最大值( ) A .5B .6C .7D .814.已知长方形的四个顶点是()0,0A ,()2,0B ,()2,1C ,()0,1D ,一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的1P 后,依次反射到CD ,DA 和AB 上的2P ,3P ,和4P (入射角等于反射角).设4P 的坐标是(),0x ,若12x <<,则tan θ的取值范围是( )A .13,55⎛⎫⎪⎝⎭B .11,52⎛⎫⎪⎝⎭C .21,52⎛⎫⎪⎝⎭D .13,25⎛⎫⎪⎝⎭15.在ΔABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =c ,且满足sin 1cos sin cos B B A A-=.若点O 是ΔABC 外一点,∠AOB =θ(0θπ<<),OA =2,OB =4,则平面四边形OACB 面积的最大值( ) A .253+B .453+C .653+D .853+16.已知ABC 的三边a ,b ,c 满足:333a b c +=,则此三角形是( ) A .锐角三角形B .钝角三角形C .直角三角形D .等腰直角三角形17.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设△ABC 的面积为S ,若22243c a b S --=,则b a 的取值范围为( ) A .(0,+∞)B .(1,+∞)C .()03,D .()3+∞,18.已知腰长为2的等腰直角ΔABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值为( )A .24162-B .24162+C .48322-D .48322+19.函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间,44ππ⎛⎫- ⎪⎝⎭内有最大值无最小值,则ω的取值范围是( )A .48,33⎛⎤⎥⎝⎦B .48,33⎛⎫ ⎪⎝⎭C .416,33⎛⎤ ⎥⎝⎦D .416,33⎛⎫ ⎪⎝⎭20.设等差数列满足:22223535317cos cos sin sin cos 2sin()a a a a a a a ,4,2k a k Z 且公差(1,0)d ∈-. 若当且仅当8n =时,数列的前项和n S 取得最大值,则首项1a 的取值范围是( ) A .3[,2]2ππ B .3(,2)2ππ C .7[,2]4ππ D .7(,2)4ππ 21.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()SA C b c+=-,则C 的取值范围为( ) A .(0,)4πB .(,)62ππC .(,)63ππD .(,)64ππ22.已知函数sin ()xf x x=,下列四个命题正确的序号是( ) ①()y f x =是偶函数 ②()1f x <③当32x π=时,()y f x =取得极小值④满足1()()66n n f f ππ+<的正整数n 的最小值为9 A .①②③B .①③④C .①②D .①②④23.设ABC ∆的内角A 、B 、C 所对的边a 、b 、c 满足2b ac =,则sin cos tan sin cos tan A A CB B C++的取值范围是( )A .⎝⎭B .⎝⎭C .11,22⎛⎫- ⎪ ⎪⎝⎭D .31,22⎛⎫⎪ ⎪⎝⎭24.在ABC ∆中,30B =,3BC =,AB =点D 在边BC 上,点,B C 关于直线AD 的对称点分别为,B C '',则BB C ''∆的面积的最大值为A B .7C .7D .225.若O 是ABC 垂心,6A π∠=且sin cos sin cos B C AB C BAC +2sin sin m B C AO =,则m =( )A .12B C D .626.在ABC 中,角A B C ,,的对边分别为a b c ,,,已知c =点P 是AB 的中点,若PC a b =-,则ABC 面积的最大值为( )A B .3C .D .1227.设 A B C 、、为三角形三内角,且方程2(sin sin )(sin sin )sin sin 0B A x A C x C B -+-+-=有两相等的实根,那么角B ( ) A .60B >︒B .60B ≥︒C .60B <︒D .60B ≤︒28.已知双曲线22221(0,0)x y a b a b-=>>的左、右顶点分别为A ,B ,P 为双曲线左支上一点,ABP ∆为等,则该双曲线的离心率为( )A B C D 29.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2(sin sin cos )sin a A c B A b B -=,且230cos()9cos 21650B C A λλ++++≤恒成立,则λ的取值范围是( )A .11,22⎡⎤-⎢⎥⎣⎦ B .71,8⎡⎤-⎢⎥⎣⎦C .7,18⎡⎤⎢⎥⎣⎦D .752,8⎡⎤⎢⎥⎣⎦30.函数π()sin 212f x x ⎛⎫=+⎪⎝⎭在区间π,,4t t t ⎡⎤-∈⎢⎥⎣⎦R 上的最大值与最小值之差的取值范围是 A .21,12⎡⎤-⎢⎥⎣⎦ B .[1,2]C .2,12⎡⎤⎢⎥⎣⎦D .21,22⎡⎤-⎢⎥⎣ 31.如图,已知ABC ∆,其内部有一点O 满足OAB OAC OBC OCA θ∠=∠=∠=∠=,命题:p θ最大值有可能超过36度;命题:q 若三边长对应分别为,,a b c ,则a bc =2;则正确的选项为( )A .p 真q 假B .p 假q 假C .p 真q 真D .p 假q 真32.已知 ()()0,,0,x y ππ∈∈,cos sin sin cos sin 1cos x x y x x y-=++,则( )A .2x y π+=B .4x y π+=C .22x y π+=D .22x y π+=33.已知函数()4sin 26f x x π⎛⎫=-⎪⎝⎭,430,3x π⎡⎤∈⎢⎥⎣⎦,若函数()()3F x f x =-的所有零点依次记为123,,,,n x x x x ,且123n x x x x <<<<,则1231222n n x x x x x -+++++=( )A .11903πB .11923πC .398πD .11963π34.已知函数()()2sin 04f x x πωω⎛⎫=+> ⎪⎝⎭)的图象在区间[]1,1-上恰有3个最低点,则ω的取值范围为( ) A .2129,44ππ⎡⎫⎪⎢⎣⎭ B .913,22ππ⎡⎫⎪⎢⎣⎭ C .1113,44ππ⎡⎫⎪⎢⎣⎭ D .[)4,6ππ35.凸四边形就是没有角度数大于180的四边形,把四边形任何一边向两方延长,其他各边都在延长所得直线的同一旁,这样的四边形叫做凸四边形,如图,在凸四边形ABCD 中,1AB =,3BC =,AC CD ⊥,AC CD =,当ABC ∠变化时,对角线BD 的最大值为( )A .3B .4C .61+D .723+36.已知ABC ∆的内角,,A B C 的对边长,,a b c 成等比数列,()1cos cos 2A CB -=+, (1)则B =__________.(2)若延长BA 至D 使得4BD =,当ACD ∆面积的最大值为3时,则a =__________. 37.在锐角三角形 ABC 中,已知 2sin 2 A+ sin 2B = 2sin 2C ,则111tan tan tan A B C++的最小值为___. 38.已知函数sin ωπωf xx N,[]1,1x ∈-;()cos g x x π=,[]1,1x ∈-.①若1ω=,则方程0g x f x解的个数为_______;②若方程()0f g x =⎡⎤⎣⎦解的个数为9,则ω=_______.39.在锐角ABC ∆中,2BC =,sin sin 2sin B C A +=,则中线AD 长的取值范围是_______;40.在ABC 中,若sin (sin cos )sin 0A B B C +-=,则角A 的值为________,当sin 22sin 2B C +取得最大值时,tan 2B 的值为________.41.在ABC ∆中,三个内角A 、B 、C 满足A B C >>,且tan A 、tan B 、tan C 的数值都是整数,则tan A 的数值是_________.42.如图,在平面四边形ABCD 中,1AD =,5BD =,AB AC ⊥,2AC AB =,则CD 的最小值为____.43.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,给出下列命题:①若222a b c +<,则2C π>;②若2ab c >,则3C π>;③若333a b c +=,则2C π<;④若()2ab a b c >+,则2C π>;⑤若()222222a bca b +<,则3C π<.其中正确的是______.(写出所有正确命题的编号)44.设数列{}n a 是首项为0的递增数列,函数11()|sin ()|,[,]n n n n f x x a x a a n+=-∈满足:对于任意的实数[0,1)m ∈,()n f x m =总有两个不同的根,则{}n a 的通项公式是n a =________.45.在下列命题中,正确的命题有________(填写正确的序号) ①若1x >,则411x x ++-的最小值是6; ②如果不等式220ax bx ++>的解集是11,23⎛⎫-⎪⎝⎭,那么10a b -=-恒成立; ③设x ,()0,y ∈+∞,且1x y +=,则22x y xy ++的最小值是34; ④对于任意1,32m ⎡⎤∈⎢⎥⎣⎦,224t mt m +>+恒成立,则t 的取值范围是()(),52,-∞-+∞;⑤“2a =-”是“复数()()241z a a i =-++(a R ∈)是纯虚数”的必要非充分条件;⑥若33cos sin x y a θθ+=,sin cos 0y x θθ-=,0xya ≠,则必有222111x y a +=; 46.有下列四个说法:①已知向量(1,2)a =,(2,)b m =-,若a 与b 夹角为钝角,则1m <;②已知函数()sin cos ()f x a x x x R =+∈的图象关于直线6x π=对称,则3a =; ③当5922ππα<<时,函数()sin log f x x x α=-有四个零点; ④已知0>ω,函数()cos 4f x x x πω⎛⎫=+⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递增,则ω的取值围是37,24⎡⎤⎢⎥⎣⎦.其中正确的是_________________.(填上所有正确说法的序号) 47.已知点,,1,,0642A B C πππ⎛⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎝⎭,若三个点中有且仅有两个点在函数()sin f x x ω=的图象上,则正数ω的最小值为__________. 48.设函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭内有零点,无极值点,则ω的取值范围是_______. 49.数列{}n a 满足:12a =,111n n a a -=-,①4a =_________;②若{}n a 有一个形如sin()n a A n B ωϕ=++(0A >,0>ω,||2ϕπ<)的通项公式,则此通项公式可以为n a =_________.(写出一个即可) 50.已知平面上三个不同的单位向量a ,b ,c 满足12a b b c ⋅=⋅=,若e 为平面内的任意单位向量,则23a e b e c e ⋅+⋅+⋅的最大值为______.51.已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点(P -,若函数()()()sin cos f x x x αα=+++(x ∈R )的图像关于直线0x x =对称,则0tan x =______.52.已知等差数列{}n a 的公差(0,1)d ∈,且223737sin sin 1sin()a a a a -=-+,若159(,)48a ππ∈--时,则数列{}n a 的前n 项和为n S 取得最小值时n 的值为_________.53.设I 为ABC ∆的内心,三边长7,6,5AB BC AC ===,点P 在边AB 上,且2AP =,若直线IP 交直线BC 于点Q ,则线段QC 的长为______.54.已知函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤⎪⎝⎭,,018π⎛⎫-⎪⎝⎭为()f x 图象的一个对称中心,79x π=为()f x 图象的一条对称轴,且()f x 在710,99ππ⎡⎤⎢⎥⎣⎦上单调,则符合条件的ω值之和为________. 55.关于函数()sin |||cos |f x x x =+有下列四个结论: ① ()f x 是偶函数 ② ()f x 在区间(,)2ππ单调递减③ ()f x 在区间(,)22ππ-上的值域为 ④ 当57(,)44x ππ∈时,()0f x <恒成立 其中正确结论的编号是____________(填入所有正确结论的序号).56.用长度分别为3,4,5,6cm cm cm cm 的四根木条围成一个平面四边形,则该平面四边形面积的最大值是____2cm .57.已知函数f (x )=sin (ωx +φ)(ω>0,|φ|2π≤),x 4π=-为f (x )的零点,x 4π=为y =f (x )图象的对称轴,且f (x )在(147ππ,)上单调,则ω的最大值为_____.58.在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,且2cos (2cos )A a C =-,2c =,D 为AC 上一点,:1:3AD DC =,则ABC 面积最大时,BD =____________.59.如图所示,四边形ABCD 中,7AC AD CD ===,120ABC ︒∠=,53sin 14BAC ∠=,则ABC ∆的面积为________,BD =________.60.在ABC ∆中,设角,,A B C 的对边分别是,,a b c ,若,,a b c 成等差数列,则11sin sin A C+的最小值为_____.61.设ABC ∆的内角A B C ,,的对边长a b c ,,成等比数列,()1cos cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为__________.62.ABC ∆的垂心H 在其内部,30A ∠=︒,3AH =3BH CH +的取值范围是_____ 63.在ABC ∆中,若222sin 3sin 3sin 23sin sin C A B A B C =+-,则角C =__________. 64.已知在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c ,若2(sin )2sin sin 0A B C -=,则sin sin sin B CA+的取值范围为_________.65.ABC 中,23BC =3AC =,2A B =,D 是BC 上一点且AD AC ⊥,则ABD 的面积为______. 66.如图ABC ∆中,90ACB ∠=︒,30CAB ∠=︒,1BC =,M 为AB 边上的动点,MD AC ⊥,D 为垂足,则MD MC + 的最小值为______;67.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2sin sin (2)A B cos B C <-+,则对任意的2,,,n n n n n N a b c ≥∈,都必须满足___________.68.若函数()f x 的导函数()cos()(0,0,||)2f x A x A πωϕωϕ'=+>><,()f x '的部分图象如图所示,()()12g x f x π=-,当1x ,2[,]123x ππ∈-时,则12()()g x g x -的最大值为_________.69.已知221x y +=,则23223322x y x y x ++++-+-的取值范围是_________. 70.在中,内角所对的边分别为,是的中点,若且,则面积的最大值是___71.在ABC ∆中,角,,A B C 的对边分别为,,a b c 已知25c =,且52sin cos sin sin sin a C B a A b B C =-+,点O 满足0OA OB OC ++=,3cos 8CAO ∠=,则ABC ∆的面积为( ) A .35B 55C 55D 5572.如图,某景区内有一半圆形花圃,其直径AB 为6,O 为圆心,且OC AB ⊥,在OC 上有一座观赏亭Q ,其中23AQC π∠=,计划在圆弧BC 上再建一座观赏亭P ,记POB θ∠=02πθ⎛⎫<< ⎪⎝⎭,当OPQ ∠越大时,游客在观赏亭P 处的观赏效果越佳,则观赏效果最佳时,sin θ=( )A .33B .22C .32D .1273.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 成等比数列,则sin cos tan sin cos tan A A CB B C++的取值范围是( )A .5135,22+ B .5151,)22 C .3535-+ D .3551()-+ 74.已知函数()()2sin 04f x x πωω⎛⎫=-> ⎪⎝⎭在[]0,2π上的图象有且仅有3个最高点.下面四个结论: ①()f x 在()0,2π上的图象有且仅有3个最低点; ②()f x 在()0,2π至多有7个零点;③()f x 在0,12π⎛⎫⎪⎝⎭单调递增;④ω的取值范围是1927,88⎡⎫⎪⎢⎣⎭;正确的结论是( ) A .①④B .②③C .②④D .②③④75.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭,4πx =-是函数的一个零点,且4x π=是其图象的一条对称轴.若,96ππ⎛⎫⎪⎝⎭是()f x 的一个单调区间,则ω的最大值为( ) A .18B .17C .15D .1376.已知函数()()3sin f x x ωϕ=+,()0,0πωϕ><<,若03f π⎛⎫-= ⎪⎝⎭,对任意x ∈R 恒有()3f x f π⎛⎫≤ ⎪⎝⎭,在区间ππ,155⎛⎫ ⎪⎝⎭上有且只有一个1x 使()13f x =,则ω的最大值为( )A .1234B .1114C .1054D .117477.已知函数()cos2cos f x x x =+,[],x ππ∈-,则下列说法中错误的是( ) A .()f x 有2个零点B .()f x 最小值为2-C .()f x 在区间0,4π⎛⎫⎪⎝⎭单调递减 D .()f x 的图象关于y 轴对称78.如图,已知OPQ 是半径为2,圆心角为75°的扇形,点A ,B ,C 分别是半径OP ,OQ 及扇形弧上的三个动点(不同于O ,P ,Q 三点),则ABC 周长的最小值是( )A 61B 62C .612D .62279.已知()()2514f x x k x =+++,在函数sin y x =图象上存在一点()00,x y ,使()()00f f y y =,则实数k 的取值范围是( ) A .3,3k k ≤-≥B .5,5k k ≤≥C .135,44k k ≤-≥ D .99,44k k ≤-≥ 80.在平面内,四边形ABCD 的B 与D ∠互补,1,3,30DC BC DAC ︒==∠=,则四边形ABCD 面积的最大值=( ) A 3B 31+ C .212+ D .281.(2370tan 70)sin 80︒-︒︒=A .12B 3C 3D .182.已知函()()2sin (0,||)2f x x πωϕωϕ=+>≤对任意x 满足033f x f x ππ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭,066f x f x ππ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,且()f x 在43,1510ππ⎛⎫ ⎪⎝⎭上单调递增,则ω的最大值为( ) A .3B .9C .15D .2783.如图,在ABC 中,2,AC BC AC BC ==⊥,D 为BC 边上的一点,将ACD 折叠至1AC D △的位置,使点1C 在平面ABD 外,且点1C 在平面ABD 上的射影E 在线段AB 上,设AE x =,则x 的取值范围是( )A .2,2)B .2)C .(2,22)D .(1,2)84.已知0>ω,在函数()2sin y x ωθ=+与()2cos y x ωθ=+的图象的交点中,距离最短的两个交点间的距离为23ω=( ) A .12B .2π C .2θ D .185.将函数())cos2sin 23cos 30222x x x f x ωωωω⎛⎫=-+> ⎪⎝⎭的图象向左平移3πω个单位,得到函数()y g x =的图像,若()y g x =在0,4⎡⎤⎢⎥⎣⎦π上为增函数,则ω的最大值为( ) A .1B .2C .3D .486.若不等式()cos 023x a b x ππ⎛⎫--+≥ ⎪⎝⎭对[]13,x ∈-恒成立,则-a b =( )A .13B .23 C .56D .7387.已知函数()()sin f x x R ωω=∈是7,212ππ⎛⎫ ⎪⎝⎭上的增函数,且满足3244f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则12f π⎛⎫⎪⎝⎭的值组成的集合为( )A .11,2⎧⎫--⎨⎬⎩⎭B .1,⎧⎪-⎨⎪⎪⎩⎭C .11,2⎧⎪--⎨⎪⎪⎩⎭D .11,2⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭88.设函数()()()1122()sin sin sin n n f x a x a a x a a x a =++++⋅⋅⋅++,其中,i a j a (1,2,,i n =⋅⋅⋅,*n N ∈,2n ≥)为已知实常数,x ∈R ,下列关于函数()f x 的性质判断正确的个数是( )①若(0)02f f π⎛⎫==⎪⎝⎭,则()0f x =对任意实数x 恒成立;②若(0)0f =,则函数()f x 为奇函数;③若02f π⎛⎫= ⎪⎝⎭,则函数()f x 为偶函数;④当22(0)02f f π⎛⎫+≠ ⎪⎝⎭时,若()()120f x f x ==,则12()x x k k Z π-=∈;A .4B .3C .2D .189.若不等式()sin 06x a b x ππ⎛⎫--+≤ ⎪⎝⎭对[]1,1x ∈-上恒成立,则a b +=( ) A .23B .56C .1D .2 90.设函数()cos()cos()f x m x n x αβ=+++,其中,,,m n αβ为已知实常数,x ∈R ,则下列命题中错误的是( )A .若(0)()02f f π==,则()0f x =对任意实数x 恒成立;B .若(0)0f =,则函数()f x 为奇函数;C .若()02f π=,则函数()f x 为偶函数;D .当22(0)()02f f π+≠时,若12()()0f x f x ==,则122x x k π-= (k ∈Z ).91.将函数32x y x -=-的图象向左平移1个单位,再向下平移1个单位得到函数()f x ,则函数()f x 的图象与函数2sin (46)y x x π=-≤≤图象所有交点的横坐标之和等于( )A .12B .4C .6D .892.在ABC ∆中,AB AC =,D 为AC 的中点,且1BD =,则ABC ∆周长的最大值为( )A .B .C .D .93.若[0,],[,],44R ππαπβλ∈∈-∈,满足33()cos 20,4sin cos 02πααλβββλ---=++=,则cos()2αβ+的值是( )A .0B .2-C .2D .关于λ的非常值函数94.已知函数π()sin()(0,02f x x ωϕωϕ=+><<).若π()8f x -为奇函数,π()8f x +为偶函数,且()2f x =在π(0,) 6至多有2个实根,则ω的最大值为( ) A .10B .14C .15D .1895.关于函数()sin 2|sin |f x x x =⋅有下述四个结论: ①()f x 的图象关于点,02π⎛⎫⎪⎝⎭对称②()f x 的最大值为34③()f x 在区间,33ππ⎛⎫-⎪⎝⎭上单调递增④()f x 是周期函数且最小正周期为π 其中所有正确结论的编号是( ) A .①②B .①③C .①④D .②④96.关于函数()f x cos x sinx =+有下述四个结论:①()f x 的图象关于y 轴对称;②()f x 在[]ππ-,有3个零点;③()f x 的最小值为;④()f x 在区间4ππ⎛⎫⎪⎝⎭,单调递减.其中所有正确结论的编号是( ) A .①②B .①③C .①④D .③④97.已知双曲线C :22145x y -=的左、右焦点分别为1F ,2F ,点P 在双曲线C 上.若12PF F ∆为钝角三角形,则12PF PF +的取值范围是( )A .()9,+∞B .(()0,9,+∞C .(()6,9,+∞D .(6,98.已知函数()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭,则下述结论中错误..的是( ) A .若()f x 在[]0,2π有且仅有4个零点,则()f x 在[]0,2π有且仅有2个极小值点B .若()f x 在[]0,2π有且仅有4个零点,则()f x 在2π0,15⎛⎫⎪⎝⎭上单调递增 C .若()f x 在[]0,2π有且仅有4个零点,则ω的范围是1519,88⎡⎫⎪⎢⎣⎭D .若()f x 图像关于π4x =对称,且在π5π,1836⎛⎫⎪⎝⎭单调,则ω的最大值为9 99.如图,函数sin f x A x ωϕ=+()()(其中00||2A ωϕπ≤>,>,)与坐标轴的三个交点P Q R 、、满足204P PQR M π∠=(,),,为QR 的中点,25PM =,则A 的值为( )A 1633B 833C .8D .16100.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =⋅.若对于任意实数,不等式2(2sin 2)x B ++22sin 14t B π⎡⎤⎛⎫+⋅+ ⎪⎢⎥⎭⎦≥⎝恒成立,则实数t 的取值范围为( )A .(,1][1,)-∞-+∞B .(,1)(1,)-∞-+∞C .(2,1]2)--⋃D .[2,1][1,2]--101.已知函数(1)y f x =+的图象关于直线1x =-对称,且当0x ≤时,()ln(1)f x x x =-+-,设()8a f π=-,1cos 45()2b f -=,22tan16()1tan 16c f ππ=-,则,,a b c 的大小关系为( ) A .c a b >>B .c b a >>C .a c b >>D .b a c >>102.若函数()2sin()f x x ω=在区间[,]54ππ-上存在最小值2-,则非零实数ω的取值范围是( ) A .(,2]-∞-B .[6,)+∞C .5(,2][,)2-∞-+∞D .15(,][6,)2-∞-+∞103.已知Rt ABC ,3AB =,4BC =,5CA =,P 为ABC △外接圆上的一动点,且AP xAB y AC =+,则x y +的最大值是( )A .54B .43C .6D .53104.己知函数()()ππsin (00)23f x x ωϕωϕ=+><<-,,为f (x )的一个零点,x π6=为f (x )图象的一条对称轴,且f (x )在(0,π)上有且仅有7个零点,下述结论正确的是( ) A .π6ϕ=B .f (x )的最小正周期为4π C .5ω=D .f (x )在(0,π42)上单调递增 105.已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦。

超实用高考数学专题复习:第四章三角函数解三角形 三角函数与解三角形热点问题

超实用高考数学专题复习:第四章三角函数解三角形  三角函数与解三角形热点问题

【尝试训练】 (2020·郑州质检)在△ABC 中,内角 A,B,C 的对边分别为 a,b,c, 若向量 m=2cos2C2 ,cos A-2 B,n=58,cos A-2 B,m·n=98. (1)求 tan Atan B 的值; (2)求c2a-bsai2n-Cb2的最小值. 解 (1)由题意可得 m·n=54cos2C2+cos2A-2 B=98, 即-58cos(A+B)+12cos(A-B)=0,展开可得 cos Acos B=9sin Asin B,
所以 f(x)的最小正周期 T=22π=π.
(2)由-π2+2kπ≤2x-π3≤π2+2kπ(k∈Z),得-1π2+kπ≤x≤51π2+kπ(k∈Z). 设 A=-4π,π4,B=x-1π2+kπ≤x≤51π2+kπ,k∈Z,易知 A∩B=-1π2,π4.
所以当 x∈-π4,π4时,f(x)在区间-1π2,π4上单调递增,在区间-π4,-1π2上单调 递减.
6+ 4
2 .
两角差正弦公式的应用
12′
[高考状元满分心得]
❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点
步骤一定要写全,如第(1)问中只要写出 0°<A<180°就有分,没写就扣 1 分,第(2)
问中 0°<C<120°也是如此.
❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时
教你如何审题——三角函数与平面向量
【例题】 (2020·湘赣十四校联考)已知向量 m=(sin x,-1),n=( 3,cos x),且函
数 f(x)=m·n. (1)若 x∈0,2π,且 f(x)=23,求 sin x 的值;
(2)在锐角三角形 ABC 中,内角 A,B,C 的对边分别为 a,b,c.若 a= 7,△ABC

(新课标I版01期)2014届高三数学_名校试题分省分项汇编专题04_三角函数与三角形(含解析)理

(新课标I版01期)2014届高三数学_名校试题分省分项汇编专题04_三角函数与三角形(含解析)理

(新课标I 版01期)2014届高三数学 名校试题分省分项汇编专题04三角函数与三角形(含解析)理一.基础题组1. 【山西省长治二中 康杰中学 临汾一中 忻州一中2013届高三第四次四校联考】在ABC ∆中,角A 、B 、C 所对的边分别为a ,b ,c 且a=1,B=45°,ABC S ∆=2,则b 等于( )A .5B .25C .41D .252. 【唐山市2013-2014学年度高三年级摸底考试】已知1sin 23α=,则2c o s ()4πα-=( ) A .13-B .23-C .13D .233. 【河北唐山开滦二中2013~2014学年度第一学期高三年级期中考试】若1sin()63πα-=,则22cos ()162πα+-=( ) A. 31 B. 31- C. 97 D. 97-【答案】A. 【解析】试题分析:212cos ()1cos()sin[()]sin()6232363παππππααα+-=+=-+=-=,选A. 考点:三角函数的倍角公式、诱导公式.4. 【2012-2013学年度南昌市高三第二次模拟测试卷】将函数))(6sin(R x x y ∈+=π图像上所有的点向左平行移动6π个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图像的解析式为( ) A.)32sin(π+=x y B.)32sin(π+=x y C.2sin xy = D.2cosx y =5. 【河北省保定市八校联合体2014届高三上学期第一次月考】已知sin()sin 0,32ππααα++=-<<则2cos()3πα+等于( )A .45-B .35-C .35D .456. 【河北省邯郸市2014届高三9月摸底考试数学】设函数()sin cos 2f x x x =图象的一个对称轴是( )A .B .0x = C7. 【河北衡水中学2013~2014学年度高三上学期二调高三数学试卷】已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位B.向右平移π12个长度单位C.向左平移π6个长度单位D.向左平移π12个长度单位【答案】A 【解析】试题分析:由图像知1A =,724()123T ππππω=-==,∴2ω=,又∵23πϕπ⨯+=,∴3πϕ=,∴()sin(2)3f x x π=+将图像向右平移π6个长度单位可得到()sin 2g x x =. 考点:1.由图像确定函数解析式;2.图像变换.8. 【河北唐山开滦二中2013~2014学年度第一学期高三年级期中考试】函数x x y sin 2cos 2+= (656ππ≤≤-x )的值域是_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k 专题四 三角函数与三角形1.【2015高考新课标1,理2】o o o o sin 20cos10cos160sin10- =( )(A ) (B (C )12- (D )122.【2015高考山东,理3】要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 3.【2015高考新课标1,理8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈4.【2015高考四川,理4】下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+ ()sin 2cos 2C y x x =+()sin cos D y x x =+5.【2015高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A 、1 B 、2 C 、3 D 、46.【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .107.【2015高考安徽,理10】已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<- 8.【2015高考湖南,理9】将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π9.【2015高考上海,理13】已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值为 .8.【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 .【2015高考上海,理14】在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DFE ⋅=.9.【2015高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a =1sin 2B =,6C =π,则b = .10.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .11.【2015高考湖北,理12】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .12.【2015高考四川,理12】=+ 75sin 15sin .13.【2015高考湖北,理13】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75 的方向上,仰角为30 ,则此山的高度CD = m.14.【2015高考重庆,理13】在 ABC 中,B =120o ,AB ,A 的角平分线AD ,则AC =_______.15.【2015高考浙江,理11】函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .16.【2015高考福建,理12】若锐角ABC ∆的面积为 ,且5,8AB AC == ,则BC 等于________.17.【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .18.【2015江苏高考,8】已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.19.【2015高考新课标2,理17】(本题满分12分)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍.(Ⅰ) 求sin sin BC∠∠;(Ⅱ)若1AD =,DC =BD 和AC 的长.20.【2015江苏高考,15】(本小题满分14分)在ABC ∆中,已知60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值.21.【2015高考福建,理19】已知函数f()x 的图像是由函数()cos g x x =的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2p个单位长度. (Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程;(Ⅱ)已知关于x 的方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b . (1)求实数m 的取值范围;(2)证明:22cos ) 1.5m a b -=-(22.【2015高考浙江,理16】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为7,求b 的值.23.【2015高考山东,理16】设()2sin cos cos 4f x x x x π⎛⎫=-+⎪⎝⎭. (Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.24.【2015高考天津,理15】(本小题满分13分)已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34p p-上的最大值和最小值.25.【2015高考安徽,理16】在ABC ∆中,3,6,4A AB AC π===点D 在BC 边上,AD BD =,求AD 的长.26.【2015高考重庆,理18】 已知函数()2sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭(1)求()f x 的最小正周期和最大值; (2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.27.【2015高考四川,理19】 如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角. (1)证明:1cos tan;2sin A A A-= (2)若180,6,3,4,5,A C AB BC CD AD +=====o求tan tan tan tan 2222A B C D+++的值.A BCD28.【2015高考湖北,理17】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.29.【2015高考陕西,理17】(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量()m a =与()cos ,sin n =A B 平行.(I )求A ;(II )若a =2b =求C ∆AB 的面积.30.【2015高考北京,理15】已知函数2()cos 222x x xf x =.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.31.【2015高考广东,理16】在平面直角坐标系xoy中,已知向量m = ,()sin ,cos n x x = ,0,2x π⎛⎫∈ ⎪⎝⎭.(1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为3π,求x 的值.32.【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围.。

相关文档
最新文档