数字电子钟

合集下载

大学数字钟实训报告

大学数字钟实训报告

一、摘要本次实训旨在通过设计和制作一个数字时钟,加深对数字电子技术理论知识的理解,提高动手实践能力。

在实训过程中,我们学习了数字钟的原理、电路设计、元件选择、焊接调试等技能。

最终,我们成功制作出了一个具有时、分、秒显示功能的数字时钟,并通过实际运行验证了其功能。

二、实训目的1. 掌握数字电子钟的原理和设计方法。

2. 熟悉常用数字电路元件的功能和特性。

3. 提高动手实践能力,培养创新意识。

4. 增强团队协作精神,提高沟通能力。

三、实训内容1. 数字钟原理数字钟是一种将时间信息转换为数字信号,并通过数码管显示的电子计时设备。

其基本原理是利用石英晶体振荡器产生稳定的时钟信号,通过计数器进行计数,并通过译码器和数码管显示时间。

2. 电路设计本次实训采用以下电路设计:(1)时钟信号产生:利用555定时器产生1Hz的时钟信号。

(2)秒计数器:采用CD4060计数器,实现秒的计数。

(3)分计数器:采用CD4518计数器,实现分的计数。

(4)时计数器:采用CD4518计数器,实现时的计数。

(5)译码器:采用CD4511译码器,将计数器的输出信号转换为数码管所需的信号。

(6)数码管显示:采用共阴极七段数码管,显示时、分、秒。

3. 元件选择本次实训选用的元件如下:(1)时钟信号产生:555定时器、电阻、电容。

(2)计数器:CD4060、CD4518。

(3)译码器:CD4511。

(4)数码管显示:共阴极七段数码管。

(5)其他元件:电阻、电容、电位器、晶体管、开关等。

4. 焊接调试(1)按照电路图进行元件焊接。

(2)检查电路连接是否正确,并进行初步调试。

(3)调整电位器,使数码管显示正确的时间。

(4)测试电路功能,确保时、分、秒显示准确。

四、实训总结1. 通过本次实训,我们掌握了数字电子钟的原理和设计方法,熟悉了常用数字电路元件的功能和特性。

2. 在实训过程中,我们提高了动手实践能力,培养了创新意识。

3. 团队协作精神得到了加强,沟通能力得到提高。

电子行业数字电子钟说明书

电子行业数字电子钟说明书

电子行业数字电子钟说明书概述本说明书旨在向用户介绍并指导使用电子行业数字电子钟。

本产品是一款高精度、多功能的数字电子钟,适用于电子行业及其他需要精确时间记录和显示的场景。

1.高精度:采用了先进的时钟芯片,确保准确的时间显示。

2.多功能:除了基本的时间显示功能,还提供了闹钟、倒计时、计时器等实用功能。

3.大屏幕显示:采用了大尺寸的数字液晶屏幕,清晰明了。

4.多种显示模式:提供了12小时制和24小时制两种时间显示模式,可以根据实际需要进行切换。

•尺寸:150mm x 100mm x 30mm•重量:200g(不含电池)•电源:2节AAA干电池(不包含)•屏幕:大屏幕液晶显示屏•温度范围:0℃ ~ 50℃•湿度范围:10% ~ 90% RH使用方法安装电池1.打开电子钟背部的电池仓盖。

2.按照正负极的标识,正确地安装2节AAA干电池。

3.关上电池仓盖。

时间设置1.电池安装完成后,屏幕将亮起,并显示12:00 AM。

2.按下“设置”按钮,屏幕上会显示时间设置的界面。

3.使用“上”和“下”按钮调整小时、分钟和秒数。

长按“上”或“下”按钮可以快速调整。

4.设置完成后,再次按下“设置”按钮退出设置模式。

闹钟设置1.在时间显示界面,按下“闹钟”按钮进入闹钟设置模式。

2.使用“上”和“下”按钮调整闹钟的小时和分钟。

3.设置完成后,按下“闹钟”按钮保存设置,并返回时间显示界面。

4.在设定的闹钟时间到达时,电子钟将发出蜂鸣声提醒。

倒计时设置1.在时间显示界面,按下“倒计时”按钮进入倒计时设置模式。

2.使用“上”和“下”按钮调整倒计时的小时和分钟。

3.设置完成后,按下“倒计时”按钮保存设置,并返回时间显示界面。

4.在倒计时结束时,电子钟将自动停止并发出蜂鸣声提醒。

计时器功能1.在时间显示界面,按下“计时器”按钮进入计时器模式。

2.按下“开始/暂停”按钮开始计时,再次按下暂停计时。

3.按下“复位”按钮重置计时。

注意事项1.请勿将产品暴露在高温、高湿度或极低温度环境下,以免对电子元件造成损坏。

《电子技术》课程设计报告-数字电子钟设计

《电子技术》课程设计报告-数字电子钟设计

《电子技术》课程设计报告-数字电子钟设计一、背景介绍数字电子钟是一个实时的计时器,它可以按照设定的时刻精确地表示时间。

它使用微处理器和时钟芯片来处理时间。

因此,它可以被视为一个微处理器系统,系统中含有存储器、计数器、报警功能等。

最新的电子时钟如石英钟使用特制石英晶片来制定时钟。

由于石英可以产生完美的电振动,因此可以更准确地检测时钟改变。

二、数字电子钟的设计原理1、时钟驱动电子时钟的操作需要一定的时间和精度,主要是依靠特殊的驱动器来实现的。

驱动器有石英、硅、力学和光学等多种。

其中石英芯片是电子时钟的核心部件并且最常用。

可以让电子时钟每秒产生32千分之一秒的精度。

2、晶振电路晶体振荡器电路是将电能转换成振荡信号和时钟信号的基础电路。

在电子时钟中,晶振电路可以将3.3V的DC电源转换成正弦波信号。

3、控制电路控制电路是接收电子时钟信号,并将其转换为可读取的数字信号的电路。

它通过检测当前的时钟值与它预设的标准值,来决定是否需要重新设定。

4、显示电路为了使时间显示准确,显示电路需要有一定的能力,它可以将控制电路经过变换后的数字转化为可视的数字或符号信号,比如LED。

我们首先使用PIC16F628A微控制器来控制数字电子钟,PIC16F628A是一款常用的单片机,在实现数字电子钟的最基本功能时天然的具有很多优势,即具有丰富的I/O口及高性能的CPU。

而在驱动这个数字电子时钟时,我们选择了普通的石英晶振,其工作电压为3.3V,频率为32.768kHz。

它的作用是将电源电压转换成正弦波信号,然后此信号可以被PIC单片机读取,从而实现全电子时钟功能。

在处理每秒钟走过的时间时,我们使用计数器根据晶振输入的时钟信号逐渐计数,而当计数器计数到一定值时,PIC单片机就知道一秒的时间已经过去,然后继续进行计算.最后,我们选用一个4位共阳极数码管来将这些数据转化为显示数字的动作,它从数据地址上读取数据,然后一次送到一位,就可以实时显示电子时钟的实时时间。

数字电子钟--数电(带闹钟调节时间和整点报时)

数字电子钟--数电(带闹钟调节时间和整点报时)

物理与电子工程学院课程设计题目:数字电子钟专业电子信息工程班级12级电信三班学号********学生姓名李长炳指导教师张小英张艳完成日期:2013 年7月数字电子钟前言:数字钟是一个将“时”、“分”、“秒’’显示于人的视觉器官的计时装置。

它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和报时闹铃等功能。

一、基本原理时显示器分显示器秒显示器时译码器分译码器秒译码器时计数器分计数器秒计数器振荡器分频器主体电路1.1 振荡电路晶体振荡器的作用是产生时间标准信号。

我采用由门电路或555定时器构成的多谐振荡器作为时间标准信号源。

本系统中的振荡电路选用555定时器构成的多谐振荡器,见图1。

多谐振荡器的振荡频率可由式估算。

图11.2 时、分、秒显示电路模块设计①秒的产生采用74LS160产生60进制的加法计数器,输出端Q0,Q1,Q2,Q3分别接到七段数码管的相应的各端,由上图的555产生的秒脉冲链接秒的两个160的cp,第一片的进位来控制第二片的EP,ET来构成秒。

如下图所示图2注意:两个CP都是连接到555的输出。

②分的产生采用74LS160产生60进制的加法计数器,输出端Q0,Q1,Q2,Q3分别接到七段数码管的相应的各端,由上图的秒产生的进位连接秒的两个160的cp,第一片的进位来控制第二片的EP,ET来构成秒。

如下图所示图3注意:两个CP都是连接的秒的进位的输出。

③小时的产生采用74LS160产生24进制的加法计数器,输出端Q0,Q1,Q2,Q3分别接到七段数码管的相应的各端,由上图的分产生的进位连接秒的两个160的cp,第一片的进位来控制第二片的EP,ET来构成秒。

如下图所示图4注意:两个CP都是连接的秒的进位的输出。

1.3闹钟我设置的闹钟是00:03响的。

会响一分钟,采用与非门和或门组成的电路。

可以得出以下的电路图当达到00:03时就开始响,当不是00:03是就停止了,喇叭一端节地。

数字电子钟设计

数字电子钟设计

数字电子钟设计数字电子钟是指一种通过数字显示时间的钟表。

它是现代化生活中不可或缺的一部分,随着时间的推移,数字电子钟也在不断地演变,设计出更加人性化的功能和操作方式。

下面介绍一下数字电子钟的设计。

一、需求分析在数字电子钟的设计之前,需要对市场需求进行分析。

用户对数字电子钟的需求一般集中在以下几个方面:显示数字清晰,时间准确,操作简单方便,样式美观大方,价格实惠,功能齐全等。

因此,在设计数字电子钟时,需要考虑这些方面的需求。

二、结构设计数字电子钟的结构设计包括:电路设计、显示屏设计和电源设计。

电路设计是数字电子钟的核心,主要指控制数字显示、计时和报时等功能的电路。

电路设计需要满足硬件和软件的要求,确保数字电子钟具有高速度、高精度和高可靠性的特点。

同时,为了方便用户操作,电路设计中需要设置一些指示灯指示模式、报警和定时等功能。

为了保证数字电子钟在长时间使用中不出现故障,电路板的制作需要采用高质量的材料,如陶瓷基板或玻璃纤维板。

显示屏设计是数字电子钟的外观设计,它直接关系到数字电子钟的美观度和实用度。

显示屏必须具备数字清晰、字体美观、对比度高的特点。

常用的显示屏有LED数字管和LCD液晶屏,LED数字管显示清晰、亮度高,但造型单调,适用性较小。

LCD液晶屏则能够呈现更加丰富多彩的界面,造型也更加美观,但价格相对较高。

电源设计是数字电子钟长时间稳定工作的保障。

数字电子钟一般采用市电插头和纽扣电池作为电源,设计制作时需要考虑化学电源和市电设备在使用中产生的漏电和电磁干扰。

为了避免出现电源波动等情况,电源设计中还需要加入节约能源的控制电路和电源滤波器等。

三、功能设计数字电子钟的功能设计是数字电子钟设计时的重要环节之一。

一般来说,数字电子钟的功能包括时间显示、闹钟功能、计时、秒表以及温度和湿度显示等。

这些功能在设计时需要充分考虑用户的需求,设置用户可以自由修改的选项和键盘快捷键等,方便用户掌握和操作。

时间显示是数字电子钟的基础功能。

数字电子钟电路图

数字电子钟电路图

数字电子钟电路图一、引言数字电子钟是一种广泛应用于现代生活中的电子设备,它能够精确显示时间,并具有一系列实用的功能,如日期显示、闹钟设置等。

数字电子钟的核心部分是电路板,通过电路板上的元件和连接线来实现时间的获取和显示。

本文将详细介绍数字电子钟的电路图设计及其原理。

二、电路图设计数字电子钟的电路图设计通常包括以下几个主要部分:1. 电源电路:数字电子钟需要一个稳定的电源来供电,通常使用直流电源。

在电路图中,电源电路主要由变压器、整流电路、滤波电路和稳压电路组成。

变压器将交流电转换为适当的电压,整流电路将交流电转换为直流电,滤波电路去掉直流电中的杂波,稳压电路稳定电压,以保证电子元件的正常工作。

2. RTC芯片:RTC芯片负责获取并记录时间信息。

它通常包含一个晶振电路、一个时钟计数器、一个时钟芯片以及一些时钟设置和显示控制的接口。

在电路图中,RTC芯片与其他电子元件通过引脚相连接,以实现时间数据的传输和显示。

3. 数码管:数码管是显示时间和日期的主要输出设备。

它具有多个数码管显示单元,每个数码管显示一个数字。

数码管接收来自RTC芯片的时间信息,并将其以数码形式显示出来。

在电路图中,数码管与RTC芯片之间通过引脚相连,以传输和显示时间数据。

4. 控制电路:控制电路负责对数字电子钟的功能进行控制和设置。

它通常包括按键开关、解码电路和逻辑门电路等。

按键开关用于设置闹钟、日期等功能,解码电路将接收到的按键信号转换为相应的控制信号,逻辑门电路用于实现各种功能的逻辑判断。

三、原理解析数字电子钟的原理基于时钟的计算和显示。

具体原理如下:1. 时间计算原理:RTC芯片中的晶振电路产生一个精确的时钟信号,通过时钟计数器进行计数,并根据计数结果得出当前的时间信息。

通过时钟计数器的设置和控制,可以实现时间的增减、精确校准等功能。

2. 时间显示原理:数字电子钟使用数码管将时间信息以数字形式显示出来。

数码管的每个数码显示单元通过不同的电压脉冲控制来显示不同的数字。

数字电子钟的设计

数字电子钟的设计

数字电子钟的设计数字电子钟的设计随着科技的不断发展,数字电子钟已经成为人们生活中不可或缺的一部分。

它不仅可以告诉我们时间,还可以让我们随时随地掌握时间。

本文将从数字电子钟的功能、设计要素和实现过程三个方面探讨数字电子钟的设计。

一、数字电子钟的功能数字电子钟最基本的功能是显示当前时间。

同时,数字电子钟还可以有多种附加功能,例如显示当前日期、闹钟定时、倒计时、秒表计时等等。

这些功能可以根据用户的需求进行扩展和定制。

数字电子钟还可以根据个人偏好设定显示模式。

比如,可以设定12小时还是24小时制显示,可以选择显示中文还是英文,可以选择不同的背景颜色和字体大小等等。

二、数字电子钟的设计要素数字电子钟的设计要素包括时钟芯片、数字显示器、主芯片、功率模块等多个组成部分。

下面我们来分别介绍一下。

1. 时钟芯片时钟芯片是数字电子钟的核心部件。

它可以提供高精度的时间信号,控制数字显示器显示时间。

常见的时钟芯片有DS1302和DS3231等。

其中,DS3231是一款高精度时钟芯片,可以达到非常高的精度要求。

2. 数字显示器数字显示器是数字电子钟最显著的部分。

常见的数字显示器有LED、LCD和OLED三种类型。

LED数字显示器是最常见的数字显示器,具有显著的视觉效果。

LCD数字显示器可以显示更多的信息,而且更加柔和。

OLED数字显示器颜色更加丰富,显示效果更加真实。

3. 主芯片主芯片是数字电子钟的中央处理器,负责控制各个组成部分间的通讯和协同。

常见的主芯片有STM32和ATMega328P等。

其中,STM32性能比较出色,可以满足高性能要求。

4. 功率模块数字电子钟的功率模块负责提供电源。

常见的功率模块有锂电池和AC/DC适配器两种。

锂电池电量长,使用方便,但是需要经常充电。

AC/DC适配器可以提供长期稳定的电源,但是需要连续供电。

三、数字电子钟的实现过程数字电子钟的实现过程需要进行硬件设计和软件开发两个步骤。

硬件设计包括电路设计和PCB设计两个方面。

数字电子钟实习报告

数字电子钟实习报告

数字电子钟实习报告数字电子钟实习报告一、实习背景和目的在现代社会中,数字电子钟被广泛应用于家庭、办公室、学校等场所。

作为一种数字化产品,数字电子钟具有精确的时间显示功能,操作简便,设计多样化等特点,十分受人们的喜爱。

为了深入了解数字电子钟的生产制造过程,提高自身实践能力,我选择了参加数字电子钟的实习。

二、实习内容1. 入职培训:入职后,我接受了一周的职场培训,学习了公司的产品知识、工艺流程、质量标准等。

通过培训,我对数字电子钟的制造过程有了初步的了解。

2. 生产线实习:之后,我被分派到生产线进行实习。

在生产线上,生产过程被细分为多个环节,每个环节都有专门的工人进行操作。

我从最基础的环节开始,一步一步学习,逐渐掌握了数字电子钟的生产技术。

3. 质量控制:数字电子钟的制作需要严格的质量控制,确保每一台产品都符合标准。

我参与了质检部门的工作,学习了如何进行产品的质量检测和品质把控。

4. 设计创新:在实习期间,我还有机会参与数字电子钟的设计创新。

通过研究市场需求和竞争对手的产品,我学到了如何提出创新设计,并与设计师团队合作进行改进和优化。

5. 解决问题:在实习期间,我也遇到了一些生产中的问题,例如产品缺陷、工艺不合理等。

我积极与相关部门合作,寻找解决方案,并提出改进措施。

三、收获和体会通过数字电子钟的实习,我获得了很多宝贵的经验和知识。

首先,我深刻理解到了团队合作的重要性。

在生产线上,每个环节都需要不同的工人配合完成,只有团队紧密合作,才能完成高质量的产品。

其次,在质量控制方面,我学到了严谨的态度和细致的观察力,能够准确判断产品的问题并提出改进建议。

另外,设计创新也是数字电子钟实习中的重要组成部分,通过学习和实践,我对产品设计的原则和流程有了更深入的了解。

此外,实习过程中我也有一些反思。

首先是要加强自身的技术能力,只有掌握更多的专业知识,才能更好地适应未来的工作。

其次是注重团队协作和沟通能力的培养,这对于工作中的合作和协调至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字电子钟
一、设计目的
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.
二、设计要求
1.时钟功能:具有可选的24h(小时)或12h(小时)的计时方式,显示时、
分、秒。

2.具有快速校准时、分、秒的功能。

3.能设定起闹时刻,响闹时间为1min,超过1min自动停止;具有人工止闹
功能,止闹后不再重新操作,将不再发生起闹。

4. 要求电路具有整点报时功能。

三、原理框图
1.数字钟的构成
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。

通常使用石英晶体振荡器电路构成数字钟。

(a)数字钟组成框图
2.晶体振荡器电路
晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。

不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。

一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。

如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。

输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。

电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。

由于晶体具有较高的频
率稳定性及准确性,从而保证了输出频率的稳定和准确。

(b)CMOS 晶体振荡器(仿真电路)
3.时间记数电路
一般采用10进制计数器如74HC290、74HC390等来实现时间计数单元的计数功能。

本次设计中选择74HC390。


其内部逻辑框图可知,其为双2-5-10异
步计数器,并每一计数器均有一个异步
清零端(高电平有效)。

秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。

CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连。

秒十位计数单元为6进制计数器,需要进制转换。

将10进制计数器转换为6进制计数器的电路连接方法如图2.4所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连。

十进制-六进制转换电路
分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连。

时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换。

利用1片74HC390实现12进制计数功能的电路如图(d)所示。

(d)十二进制电路
另外,图(d)所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。

4.译码驱动及显示单元电路
选择CD4511作为显示译码电路;选择LED数码管作为显示单元电路。

由CD4511把输进来的二进制信号翻译成十进制数字,再由数码管显示出来。

这里的LED数码管是采用共阴的方法连接的。

计数器实现了对时间的累计并以8421BCD码的形式输送到CD4511芯片,再由4511芯片把BCD码转变为十进制数码送到数码管中显示出来。

5.校时电路
数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。

即为用COMS与或非门实现的时或分校时电路,In1端与低位的进位信号相连;In2端与校正信号相连,校正信号可直接取自分频器产生的1HZ或2HZ(不可太高或太低)信号;输出端则与分或时个位计时输入端相连。

当开关打向下时,因为校正信号和0相与的输出为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态;当开关打向上时,情况正好与上述相反,这时校时电路处于校时状态。

实际使用时,因为电路开关存在抖动问题,所以一般会接一个RS触发器构成开关消抖动电路,所以整个较时电路就如图(f)。

(f)带有消抖电路的校正电路
6.整点报时电路
电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号。

当时间在59分50秒到59分59秒期间时,分十位、分个位和秒十位均保持不变,分别为5、9和5,因此可将分计数器十位的QC和QA、个位的QD和Q A及秒计数器十位的QC和QA相与,从而产生报时控制信号。

报时电路可选74HC30来构成。

74HC30为8输入与非门。

5V
数字钟设计-整点报时电路部分
四、所用到的元器件
1.共阴八段数码管6个
2.CD4511集成块6块
3.CD4060集成块1块
4.74HC390集成块3块
5.74HC51集成块1块
6.74HC00集成块4块
7.74HC30集成块1块
8.10MΩ电阻5个
9.500Ω电阻14个
10.30p电容2个
11.32.768k时钟晶体1个
12.蜂鸣器
1)芯片连接图
1)74HC00D2)CD4511
3)74HC390D 4)74HC51D
五、各功能块仿真电路图(你们在写的时候尽量把每个模块的工作原理都写出来,其中的图都应该是仿真图,要求从仿真软件中截图)!!!!!!!!!!!!!!!!!!!!!!
数字钟从原理上讲是一种典型的数字电路,可以由许多中小规模集成电路组成,所以可以分成许多独立的电路。

(一)六进制电路
由74HC390、7400、数码管与4511组成,电路如图一。

SEVEN_SEG_COM_K
将十进制计数器转换为
六进制的连接方法
(二)十进制电路
由74HC390、7400、数码管与4511组成,电路如图二。

SEVEN_SEG_COM_K
(三) 六十进制电路
由两个数码管、两4511、一个74HC390与一个7400芯片组成,电路如图三。

(四) 双六十进制电路
由2个六十进制连接而成,把分个位的输入信号与秒十位的Qc 相连,使其产生进位,电路图如图四。

(五)时间计数电路
由1个十二进制电路、2个六十进制电路组成,因上面已有一个双六十电路,只要把它与十二进制电路相连即可,详细电路见图五。

(六)校正电路
由74CH51D 、74HC00D 与电阻组成,校正电路有分校正和时校正两部分,电路如图六。

(七) 晶体振荡电路
由晶体与2个30pF 电容、1个4060、一个10兆的电阻组成,芯片3脚输出2Hz 的方波信号,电路如图七。

(八) 整点报时电路
由74HC30D 和蜂鸣器组成,当时间在59:50到59:59时,蜂鸣报时,电路如图八。

5V
数字钟设计-整点报时电路部分
六、总电路仿真图
七、总结
1.设计过程中遇到的问题及解决方法
2.设计体会
3.对设计的建议
八、参考资料
包括网站、网页
九、附录
如果有软件编程需要附上源程序;硬件电路需要另外单独打印电路原理图(仿真图)与PCB制版图
10
第页。

相关文档
最新文档