群论的应用
群论的基本概念与应用

群论的基本概念与应用在现代数学中,群论是一门重要的研究对象。
它是数学中的一个分支领域,研究代数结构的深刻性质,以及在物理、化学、计算机科学等领域的应用。
本文将针对群论的基本概念和应用进行探讨。
一、群的定义和基本概念群是一种代数结构,具有以下特性:1. 封闭性:对于群中的任意两个元素,其运算结果仍然属于该群。
2. 结合性:群运算是一个可结合的运算。
3. 单位元素:群中存在一个单独的元素,对于该群中的任意元素,它与单位元素的运算结果等于其本身。
4. 逆元素:群中的每个元素都有一个逆元素,在该元素与其逆元素运算后等于单位元素。
5. 可交换性:在群运算中,交换任意两个元素的位置不会影响整个运算的结果。
此外,群还有两个重要的概念:群的阶和子群。
群的阶是指群中元素的个数,记为|G|。
对于一个有限群G,其阶等于元素个数。
而对于无限群G,其阶可以用“无穷大”来表示。
子群指一个群G的子集,它包含G中的所有单位元素和逆元素,并且对于G中的任意两个元素之间的运算,在该子群中仍然成立。
二、常见的群类型常见的群类型包括置换群、加法群和乘法群。
置换群是由一组置换组成的群,其中每个置换都是将集合中的元素重新排列的函数。
这种群在密码学、组合学和物理学中都有应用。
加法群是指一个按照加法运算组成的群,例如整数集上的加法和向量空间的加法。
这种群在物理、化学和工程学中得到广泛应用。
乘法群是指一个按照乘法运算组成的群,例如复数集合上的乘法和单位圆上的乘法。
这种群在数论、几何学和代数学的许多领域中都有应用。
三、群论在数论中的应用群论在数论中的应用非常广泛。
其中一项重要的应用是解决费马大定理(Fermat's last theorem)。
费马大定理是由法国数学家皮埃尔·费马于17世纪提出的。
它的表述是:当n大于2时,关于x、y和z的方程x^n + y^n = z^n没有正整数解。
这个问题一直是数学家们的难题,直到1994年,英国数学家安德鲁·怀尔斯(Andrew Wiles)通过运用群论的方法,完美地解决了费马大定理。
群论的应用

群论的应用群论是数学中的一门重要分支,它是研究对称性的一种数学工具。
群论的应用非常广泛,尤其在物理、化学、计算机科学等领域中,其应用更是不可或缺。
本文将从这些领域中的具体应用来介绍群论的重要性。
在物理学中,群论被广泛应用于研究粒子物理学和凝聚态物理学。
在粒子物理学中,群论被用来研究基本粒子的对称性,如电荷守恒、自旋守恒等。
在凝聚态物理学中,群论被用来研究晶体结构的对称性,如晶格点群、空间群等。
这些对称性的研究可以帮助科学家预测物质的性质,并且为新材料的设计提供了理论基础。
在化学中,群论被广泛应用于分子对称性的研究。
分子的对称性可以通过群论来刻画,而分子的对称性又直接决定了分子的性质,如极性、光学活性等。
因此,群论在化学中的应用非常重要,不仅可以帮助化学家理解分子的性质,还可以在合成新药物、新材料等方面提供指导。
在计算机科学中,群论被广泛应用于密码学和计算机图形学中。
在密码学中,群论被用来设计安全的加密算法,如RSA算法、椭圆曲线加密算法等。
在计算机图形学中,群论被用来描述三维物体的对称性,如旋转对称性、平移对称性等。
这些对称性的研究可以帮助计算机图形学家设计出更加逼真的三维模型,并且可以在虚拟现实、游戏等方面得到应用。
除此之外,群论还被应用于音乐理论、经济学、生物学等多个领域。
在音乐理论中,群论被用来研究音乐的对称性,如和声、旋律等。
在经济学中,群论被用来研究市场的对称性,如货币汇率、股票价格等。
在生物学中,群论被用来研究生物分子的对称性,如蛋白质的空间结构等。
通过上述应用的介绍,我们可以看出群论在各个领域中的作用是非常重要的。
无论是物理、化学、计算机科学还是其他领域,群论都为科学家提供了一个强有力的数学工具,帮助他们更好地理解和预测物质的性质。
因此,我们可以说群论在现代科学中具有不可替代的地位。
群论的基本理论及其应用

群论的基本理论及其应用群论是现代数学中的一个重要分支,它研究的对象和思想对现代科学和技术的发展具有深远影响。
本文将简要介绍群论的基本理论,包括群的定义和基本性质、同构与同态、正则表示等,以及群论在物理、化学、密码学等领域的应用。
一、群的定义和基本性质群是指一个集合G,和一个二元运算“·”,满足以下四个条件:1. 封闭性:对于任意的a,b∈G,a·b∈G。
2. 结合律:对于任意的a,b,c∈G,(a·b)·c=a·(b·c)。
3. 单位元:存在一个元素e∈G,对于任意的a∈G,有a·e=e·a=a。
4. 逆元:对于任意的a∈G,存在一个元素a^-1∈G,使得a·a^-1=a^-1·a=e。
以上四个条件被称作群的基本公理,满足这些公理的集合和运算就构成了一个群。
除了以上四个基本性质,群还具有一些重要的衍生性质,如:1. 唯一性:群的单位元和逆元是唯一的。
2. 闭合性:群的任意子集在运算下仍构成一个群。
3. 基本定理:任意群都同构于一个置换群。
二、同构与同态同构和同态是群论中最重要的概念之一。
同构指两个群之间存在一个双射函数,满足这个函数保持乘法运算,即对于任意的群元素a,b∈G,有f(a·b)=f(a)·f(b)。
同构很像一种数学上的等价关系,它说明两个群结构上是相同的。
同态指两个群之间存在一个映射,满足这个映射保持群的乘法和单位元素,即对于任意的群元素a,b∈G,有f(a·b)=f(a)·f(b)且f(e)=e',其中e和e'分别是两个群的单位元素。
同态具有保持群结构的性质,它将一个群映射到另一个群上,并保留了群的结构特征。
三、正则表示群的正则表示是指把一个任意群转化成可逆矩阵群的一种数学方法。
这种转化方法常用于群论与物理学、化学等学科的交叉研究领域。
群论及其应用

群论及其应用
群论是一门研究群与群之间关系的数学分支,它包含了群的定义、性质以及群之间的映射等内容。
群论的应用非常广泛,涉及到许多领域,如物理学、化学、计算机科学等。
本文将从几个具体的应用角度来介绍群论的相关内容。
一、物理学中的群论应用
物理学是群论最早应用的领域之一。
在量子力学中,对称性和群论有着密切的联系。
通过研究粒子的对称性,可以得到许多重要的结论。
例如,角动量算符的对易关系可以通过群论的方法导出,从而得到粒子的角动量量子化条件。
此外,群论还可以用来描述粒子的内禀对称性,如同位旋对称性、荷共轭对称性等。
二、化学中的群论应用
在化学中,对称性和群论有着重要的地位。
通过对分子的对称性进行分析,可以预测分子的性质和反应。
群论可以用来描述分子的对称元素、对称操作和对称操作的代数性质。
通过对分子的对称性进行分类,可以预测分子的振动谱和光谱,从而得到关于分子结构和性质的信息。
三、计算机科学中的群论应用
在计算机科学中,群论被广泛应用于密码学和编码理论。
群论可以用来描述密码系统的对称性和置换操作。
通过研究群的性质,可以设计出高效、安全的密码算法。
此外,群论还可以用来研究编码理
论中的纠错码和分组密码等问题。
群论是一门重要的数学分支,具有广泛的应用领域。
无论是在物理学、化学还是计算机科学中,群论都发挥着重要的作用。
通过研究群的性质和对称性,可以得到许多重要的结论和应用。
因此,深入理解和应用群论对于相关领域的研究和发展具有重要意义。
数学中的群论

数学中的群论群论是数学中一个重要的分支,在代数学领域中占有重要地位。
它研究的是一种代数结构称为群。
群论的概念和理论对于深入理解和解决许多数学问题都起着关键的作用。
本文将介绍群论的基本概念、性质以及在数学中的应用。
一、群的定义和基本性质群是一个集合G,配合一个二元运算"*",满足以下四个条件:1. 封闭性:对于任意的a,b∈G,a*b仍然属于G.2. 结合性:对于任意的a,b,c∈G,(a*b)*c = a*(b*c).3. 存在单位元:存在一个元素e∈G,对于任意的a∈G,有a*e = e*a = a.4. 存在逆元:对于任意的a∈G,存在一个元素b∈G,使得a*b = b*a = e.群论的基本性质包括:1. 结合律:对于群G中的任意元素a,b,c,有(a*b)*c = a*(b*c).2. 单位元唯一:群G的单位元是唯一的,记作e.3. 逆元唯一:群G中的每个元素a都有唯一的逆元b,满足a*b = b*a = e.4. 取消律:对于群G中的任意元素a,b和c,如果a*b = a*c,那么b = c.二、群的例子1. 整数加法群:整数集合Z构成一个群,其中的二元运算为加法。
2. 整数乘法群:非零整数集合Z*构成一个群,其中的二元运算为乘法。
3. 实数集合R上的乘法群:实数集合R中除去0以外的元素构成一个群,其中的二元运算为乘法。
4. 矩阵群:所有n阶可逆矩阵构成一个群,其中的二元运算为矩阵乘法。
5. 置换群:n个元素的置换构成一个群,其中的二元运算为置换的复合运算。
三、群的作用和应用1. 群在密码学中的应用:群论在密码学中具有广泛的应用,如素数取模、离散对数、RSA加密等加密算法都与群有关。
2. 群在物理学中的应用:群论在量子力学、粒子物理学等多个物理学领域中起着重要的作用,如对称群、李群等。
3. 群在图论中的应用:图的自同构和等价性质的研究中,群论的方法被广泛应用,极大地推动了图论的发展。
数学中的群论

数学中的群论数学中的群论是一门关于代数结构的分支,它探究了集合上的一种运算,这种运算满足一些特定的性质。
群论在数学各个领域,如代数、几何和数论中都有广泛的应用。
本文将介绍群论的基本概念、性质以及一些应用示例。
一、群的定义与性质群是一个集合G,配合一个二元运算*,满足以下四个性质:1. 封闭性:对于任意的a,b∈G,a*b仍然属于G。
2. 结合律:对于任意的a,b和c∈G,(a*b)*c = a*(b*c)。
3. 存在单位元素:存在一个元素e∈G,对于任意的a∈G,a*e =e*a = a。
4. 存在逆元素:对于任意的a∈G,存在一个元素b∈G,使得a*b= b*a = e。
群的定义和性质为我们提供了一个强大的理论框架,使得我们能够对代数结构进行深入研究和分类。
群可以分为有限群和无限群两种类型,根据群元素的数目进行分类。
二、群的例子与分类在群论中,存在许多经典的群示例,有助于我们理解群的性质和应用。
下面将介绍几个常见的群:1. 整数加法群:整数集合Z配合加法运算构成一个群。
它满足封闭性、结合律、单位元素为0和逆元素为相反数。
2. 实数乘法群:实数集合R中除0以外的数配合乘法运算构成一个群。
它满足封闭性、结合律、单位元素为1和逆元素为倒数。
3. 对称群:对称群是指有限集合上的所有排列构成的群。
它的运算是排列的复合,单位元素是恒等排列,逆元素是逆序排列。
4. 特殊线性群:特殊线性群是指特定维度上可逆矩阵构成的群,记作SL(n, R)。
它满足矩阵乘法的封闭性、结合律、单位矩阵为单位元素和逆矩阵为逆元素。
根据群的性质和结构,我们可以对群进行分类。
常见的分类方法有:交换群、循环群、有限群等。
其中,交换群也称为阿贝尔群,满足群运算的交换律。
三、群论的应用群论在数学中的应用广泛且重要,下面将介绍几个典型的应用示例:1. 密码学:群论在密码学中发挥了重要作用,特别是在公钥密码体制中。
基于群论的数学算法,如Diffie-Hellman密钥交换和椭圆曲线密码算法,确保了数据的安全性和机密性。
群论在生物学中的应用

群论在生物学中的应用
群论在生物学中的应用主要包括以下几方面:
1、生态群论:它可以应用于生物群落研究中,即关注不同生态群落中
物种总数和多样性,结构和功能的变化,以及物种之间的关系。
一般
而言,通过采用生态学的群落概念,使用专业的统计技术来研究群落
结构谱和变化,以及分析群落稳定性和调节性。
2、分子群论:它可以应用于生物化学和分子生物学中,即研究多种同
源基因序列和编码蛋白质在遗传上的分类关系,以及复杂分子系统和
活动中配体吸附细节以及物种间信息传递等行为特征。
3、分类群论:它可以应用于生物学分类中,即应用群落和家族的概念,研究物种的演化过程以及应用数据分析的方法建立分类树。
4、系统发育群论:它可以应用于系统发育研究中,即采用分子标记研
究物种之间进化关系,研究物种系统发育、迁移和成型以及分布和演
化的特性。
高等数学中的群论及其应用

高等数学中的群论及其应用近年来,数学在日益发展的同时,群论已经成为高等数学领域中最重要的分支之一。
群论近年来开始引起了越来越多人的关注,并成为数学界中的研究热点之一。
本文旨在介绍群论概念及其应用领域,并探讨其在高等数学中的重要性。
一、群论的概念及其基本定义1. 概述群论,是一种代数学的分支,它是由19世纪末20世纪初的法国数学家李阿德(E. Galois)所创立的。
群论是研究群的性质、群的分类、群之间的关系等相关问题的一种数学分支。
2. 基本定义群是一个在给定的一组定义下,满足四个基本条件的数学对象。
这四个条件分别为:(1) 封闭性:任何两个元素之间进行特定的运算仍然得到一个在该集合内的元素;(2) 结合律性:任何三个元素之间进行特定的运算,无论按哪种顺序执行,其结果均相同;(3) 单位元素性:存在一个元素,它在进行特定运算时,任何元素与其相乘都不会改变原来的结构,并使得元素维持其不变性;(4) 可逆性:集合中的所有元素都存在一个逆元素,使得元素乘以它的逆元素得到单位元素。
在群论中,还有一些特殊的群,如半群、环、矢量空间等,它们具有不同的性质,但群是最具代表性的一种。
二、群论在数学领域的应用1. 几何学有人认为群论在几何学中是最为常见和重要的一种应用。
在几何学中,群论可以用来描述各种变换的对称性。
同时,群论也涵盖了几何方面的多个概念,例如:对称群、柯西定理、拉格朗日定理等。
2. 数论在数论中,群论也有着广泛的应用,特别是在代数数论中。
代数数论是指关于数论中的代数性质的研究,针对一些不同的数域来比较其代数性质,如复数域、有限域、Galois域等,其中,群论的概念是进行这类研究的重要工具之一。
3. 物理学群论在物理学领域中也有着广泛的应用,特别是在量子力学中。
量子力学是其中比较新颖而重要的物理学分支之一,而群论在许多与对称性相关的问题上被使用。
三、群论在高等数学中的重要性群论在高等数学领域中的重要性不言而喻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
群论的基础及应用第二章群论的应用2.1图论的结构群应用在所有数学分支以及计算科学中,结构的概念是最基本的,以不正式的角度看,一个结构s 是在点集U 的一个construction r,它由一对点集组成。
图 2.1通常说,U 是结构s 的底图集,图2.1描述了两个结构的例子:一个e有根树,和一个有向圈。
在集合论上,题中的树可以描述为s=(γ,xU ),其中U={a,b,c,d,e,f},γ=({d},{{d,a},{d,c},{c,b},{c,f},{c,e}})出现在γ上第一部分的根点{d}指的是树的根节点。
对于有向圈它可以写成形式为s=(γ, U),其中U={x ,4,y,a,7,8},γ={(4,y)(y,a)(a,x)(x,7)(7,8)(8,4)}U={a ,b, c,d,e,f}图 2.2考虑有根树s=(γ, U)它的底图集是U,通过图2.2 中的σ变换,将U 中每一个元素替换成V 中的元素,这幅图清晰的显示了变换中如何将结构树s 对应到集合V 上相应的树t=(,V),我们说树t 可以由树s通过变换σ得到。
记作t=σ· s.则树s和树t是同构的,σ叫做s到t 的同构。
我们可以将底图的点视为无标记的点,这样就得到同构图的通用形式。
如果σ是U 到U,则它是自同构。
此时树的变换σ· S 等价于树s,即s=σ· s.我们已经知道结构s的定义,那么可以定义它在规则F下的结构群,我们用F[U]表示集合U 上所有满足F的结构F[U]={f|f= (γ, U),γ [U]}其中[U]表示U 中所有未排序的元素对所组成的边。
一个结构群满足规则F:1.对任意一个有限集U,都存在一个有限集F[U]2.对每一个变换:U→V,存在一个作用F[ ]:F[U]到F[V] 进一步F[ ]满足下列函数性质:1.对所有的变换:U→ V 和:V →WF[ · ]=F[ ]· F[ ] ;2.对恒等映射一个元素s数域F[U]叫做U 上的一个F 结构,作用F[ ]称为F 结构在下的变换。
例:对所有的整数 n 0,指定S n是由[n] {1,2, ,n} 的置换作成的对称群,在群作用的操作下,集合F[n]是[n]上的F-结构。
说明对每个 n 0 ,每个F-结构群,通过令 s F[ ]( s)(对S n和s F[n])诱导出群S n在集合F[n]上的一个作用S n F[n] F[n] (1)证明:设F[n]是[n]上的F-结构,不妨令 F[n] {s|s ( ,(i1i2 i n)),[2][n],对任意s F[n]和S n 作用在s上等价于(i1i2 i n)( j1j2 j n)即 s F[ ](s) s' ( ,( j1 j2jn))仍然属于F[n] ,因此得到群S n 在集合F[n]上的一个作用 S n F[n]F[n] 同样的,任何集合作用族S n F n F n (2)满足一个F-结构群的定义,因为在(1)和(2)的作用族是同构的。
2.2群论在物理学中的应用在物理学中,群论被广泛应用到固体物理,理论物理中,比如点群的数学理论用于分析晶体对称性,规范场论、弦理论的数学基础李群李代数,还有量子场论中有关对称性运用到的群理论。
群论在固体物理中的一个经典的应用就是对晶体对称性的研究。
由于晶体具有平移不变性,通过群理论的方法,就可将晶体进行分类,并计算出晶体可能有11种固定点群、32种点群、7 种晶系、14 种布拉菲格子、73种简单空间群和230 种空间群。
单从这方面看,群论对于晶体的研究就起到了不可或缺的作用。
在群论的基础知识中,我们曾经提到过,对于某些变换关系我们也可以构成群,如数域P 上的线性空间V 的全体可逆线性变换对于变换的乘法构成一个群。
同样的,由于晶体的原子在三维空间有周期性列(晶格),晶格对三维空间一定的平移变换保持不变r r T ( l ) r r l这样的平移矢量 l 叫做晶格矢量。
晶格的原胞是晶格最小的周期单元,其不共面的三条棱可作为晶格的基本矢量,称为晶格矢量,用a i表示。
原始的晶格晶格基本矢量要求晶格矢量都可被基本矢量用整数线性组合表示出来,即3l a1l1 a2l2 a3l 3 a i l i l i是整数i1保持晶体不变的平移变i换1 T( l )的集合构成群,称为晶体的平移群,简称平移群,记作T。
除了晶体的平移不变性外,晶体理论中晶体的对称操作平移、转动、反演的协同变换也具有不变性,一般记作 g( R,)3r r g( R,) r Rr ,a i ii1i 1其中,R :三维实正交变换(固有转动和非固有转动),它保持原点不变.i :实常数,描述原点的平移.当R=E时,i必须取整数l i,g(E,l)T(l )是平移变换。
对称变换的乘积定义为相继做两次对称变换g (R , )g (R , )r g (R , ){R r } RR rg (R , )g (R , ) g (RR , g (R , )-1 g (R -1,-R -1) 对于给定的晶体, 在它的对称变换 g ( R , 集合构成群,称为晶格点群,简称点群,记作 G空间群是晶体对称变换的集合构成晶体对称群, 记作 S 。
平移群 T 是空间群S 的子群,而且是不变子群,因为平移变换的共轭元素仍然是平移变换, g(R , )T (l )g (R , )-1 g (E , R (l -R -1)) T (Rl ),Rl l ,设l i 是 i 的整数部分,则i l i t i, 0 t i 1, g (R , ) T (l )g (R ,t ) 现在我们来证明: 对于给定的晶体和选定的晶格基矢, 在对称变换中, 每 个 R 只能对对应一个t 。
用反证法,设 g (R ,t )和g (R ,t )都是晶体的对称变换,则g (R ,t )-1g (R ,t ) T (-R -1t R -1t ) T (l ) t -t Rl l 由于式 对t 的限制,只能 t t ,得证。
物理学中各个领域还有众多对于群理论的应用, 群论对于系统对称性的研究 使得群论称为物理工作者必备的工具。
2.3 群论在化学中的应用在化学研究中, 运用群论研究分子的对称性是一种常见的手段。
分子中, 原 子的空间排列是对称的, 且原子固定在平衡位置上, 运用群论研究其对成性, 进 一步解决分子的结构和性质问题,是人们认识分子的主要途径和方法。
分子、离子、原子簇所属的对称点群经常要在化学研究中确定。
由于群论原 理的制约,某个分子具有的对称元素和可能的对称操作是有限的。
例:简述苯分子点群类型并求其群的轨道 首先确定苯分子的点群:一个是 C 6轴;六个 C 2 C 6;一个苯分子平面垂直于垂直于 C 6 轴的镜面 e h ;R ) )中出现的所有实正交变换 R所以苯分子属于 D 6h 点群其次求群的轨道C 4 h 4E 1b C 5 h 5E 2a C 6 h 6E2bh 3E 1a ; h 5E2a ; h 2B2.在上面对苯分子的点群处理之后, 我们可以得出苯分子共轭结构大 c 键分子轨道波函数 J C 1~J C 6 。
2.4 欧拉定理的证明对于学习数学的人来说, 欧拉这个人名绝不陌生, 因为在数学中, 有很多的 公式、定理都以欧拉命名。
在数论中,欧拉定理也称为费马 -欧拉定理,此定理是关于同余性质的理论。
这个理论在数学中占有很重要的地位, 被称为最美6 A 2 B 2E 1 E 2 A B E 1 E 2处理得到1(O 16J 1A2O 2O 3 O 4 O 5 O 6)J 2B2 1(O 1 6 -O 2 O 3 - O 4 O 5 - O 6)J 3E1a1 12(2O 1 O 2 - O 3 - 2O 4 - O 5 O 6)J 4E 1b 2(O 2 O 3- O 5O 6)J 5E2a112(2O 1-O 2 -O 3 2O 4-O 5 -O 6)J 6E2b112(O 2-O 3O 5 - O 6)C 3 h 1E1a h 1A2; J C h 4E1b ;J C4C 1h 1A2 C 2 h 2B2 J C 1JC 3JC 5妙的公式之一。
下来我们就用群论知识来证明欧拉定理。
定理(欧拉定理)设m 是一个大于1 的整数,(a,m)=1,则我们有a m(1 mod m ),其中φ( m)是欧拉函数。
在证明之前,我们提出群论中关于剩余类的概念。
对于一个给定模数n,全体整数按模n 同余分成一些等价类,此时的等价类叫做整数模n 的剩余类证明:首先我们来考虑这样的情况。
用M={[0],[1],[2] ,...,[m-1]} 表示模m 的剩余类。
集合N={[ a1 ],[ a2 ],...,[ a (m)]} M 是模m 的一个简化剩余类,其中[ a1 ]=1。
我们规定M 的一个二元运算“·”,即[a]· [b]=[ab]. 进而证明M 的二元运算“·”与剩余类代表元的选取无关.对于任意整数a1,b1,若a1 ∈[a], b1 ∈ [b], 则a1=a+km,b1=b+lm,其中k,l 是整数,所以a1 b1 =ab+(kb+la+klm )m∈[ab], 即有[ a1]·[ b1 ]=[a] ·[b].因此二元运算“·”是M 的一个代数运算,易得“·” 也是M 的子集N 的一个代数运算,这时根据前面的群论基础知识,我们可以得到N 关于二元运算“·”是一个阶为φ( m )的有限群。
有了上面的结论,我们来考虑集合N={[ a1],[ a2 ],...,[ a (m)]} 。
由于N关于二元运算“·”是一个群,其中[1] 是单位元,对任意整数a,若(a,m)=1,则[a] ∈N,用[a]k表示k个[a]连续做运算,由于N含有φ( m)个元,即群N的阶为φ (m)。
于是[a](m) [a(m)] [1] ,从而得到a (m) 1 sm,故a(m)(1 mod m)成2.5结论经过以上对于群论基础的学习和其在各学科中的应用,我们可以清楚的看到群论对于自身所处的数学领域和其他各学科所做出的巨大贡献。
本文由于作者才疏学浅,无法把群论在所有学科领域的应用一一列举出来,所以无法把群论更深层次的贡献表达出来,但是可以肯定,群论对于各个学科都做出了或多或少的贡献。
并且,随着学科的发展,群论的内容将会更加丰富,对各学科的贡献将会越来越大。