数字信号处理实验报告

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验六报告

数字信号处理实验六报告

实验六 频域抽样定理和音频信号的处理实验报告 (一)频域抽样定理给定信号1, 013()27, 14260, n n x n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它 1.利用DTFT 计算信号的频谱()j X e ω,一个周期内角频率离散为M=1024点,画出频谱图,标明坐标轴。

n=0:100; %设定n 及其取值范围for n1=0:13 %对于n 处于不同的取值范围将n 代入不同的表达式xn(n1+1)=n1+1;endfor n2=14:26xn(n2+1)=27-n2;endfor n3=27:100xn(n3+1)=0;endM=1024; %设定抽样离散点的个数k=0:M-1; %设定k 的取值范围w=2*pi*k/M; %定义数字角频率[X,w] = dtft2( xn,n, M ) %调用dtft2子程序求频谱plot(w,abs(X)); %画出幅度值的连续图像xlabel('w/rad');ylabel('|X(exp(jw))|');title(' M=1024时的信号频谱图像'); %标明图像的横纵坐标和图像标题function [X,w] = dtft2(xn, n, M ) %定义x(n)的DTFT 函数w=0:2*pi/M:2*pi-2*pi/M; %将数字角频率w 离散化L=length(n); %设定L 为序列n 的长度 for (k=1:M) %外层循环,w 循环M 次sum=0; %每确定一个w 值,将sum 赋初值为零for (m=1:L) %内层循环,对n 求和,循环次数为n 的长度sum=sum+xn(m)*exp(-j*w(k)*n(m)); %求和X(k)=sum; %把每一次各x(n)的和的总值赋给X ,然后开始对下一个w 的求和过程end %内层循环结束end%外层循环结束M=1024时的信号频谱图像如图1-1所示:图1-1 M=1024时的信号频谱图像2.分别对信号的频谱()jX eω在区间π[0,2]上等间隔抽样16点和32点,得到32()X k和16()X k。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告实验一信号(模拟、数字)的输入输出实验(常见离散信号产生和实现)一、实验目的1.加深对常用离散信号的理解;2.掌握matlab 中一些基本函数的建立方法。

二、实验原理 1. 单位抽样序列δ(n ) =⎨⎧1⎩0n =0n ≠0在MATLAB 中可以利用zeros()函数实现。

x =zeros (1, N );x (1) =1;如果δ(n ) 在时间轴上延迟了k 个单位,得到δ(n -k ) 即:δ(n -k ) =⎨2.单位阶跃序列⎧1⎩0n =k n ≠0n ≥0⎧1u (n ) =⎨n在MATLAB 中可以利用ones()函数实现。

x=ones(1,N)3.正弦序列x (n ) =A sin(2πfn /Fs +ϕ)在MATLAB 中,n=0:N-1;x=A*sin(2*pi*f*n/Fs+fai)4.复指数序列x (n ) =r ⋅e j ϖn在MATLAB 中,n=0:N-1;x=r*exp(j*w*n) 5.指数序列x (n ) =a n在MATLAB 中,n=0:N-1;x=a.^n三、实验内容实现和图形生成 1.五种基本函数的生成程序如下: (1)单位抽样序列% 单位抽样序列和延时的单位抽样序列 n=0:10;x1=[1 zeros(1,10)];x2=[zeros(1,5) 1 zeros(1,5)]; subplot(1,2,1);stem(n,x1);xlabel ('时间序列n');ylabel('振幅');title('单位抽样序列x1');subplot(1,2,2);stem(n,x2); xlabel('时间序列n');ylabel('振幅');title('延时了5的单位抽样序列');单位抽样序列x122延时了5的单位抽样序列1.51.511振幅0.5振幅5时间序列n100.500-0.5-0.5-1-15时间序列n10(2)单位阶跃序列 n=0:10;u=[ones(1,11)];stem(n,u);xlabel ('时间序列n');ylabel('振幅');title('单位阶跃序列'); 所得的图形如下所示:振幅123456时间序列n78910(3)正弦函数 n=1:30;x=2*sin(pi*n/6+pi/3);stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列x=2*sin(pi*n/6+pi/3)');21.510.5振幅0-0.5-1-1.5-2时间序列n(4)复指数序列 n=1:30; x=2*exp(j*3*n);stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('复指数序列x=2*exp(j*3*n)'); 图形如下:复指数序列x=2*exp(j*3*n)21.510.5振幅0-0.5-1-1.5-2时间序列n(5)指数序列 n=1:30;x=1.2.^n;stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('指数序列x=1.2.^n');指数序列x=1.2.n250200150振幅100500时间序列n2.绘出信号x (n ) =1. 5sin(2π*0. 1n ) 的频率是多少?周期是多少?产生一个数字频率为0.9的正弦序列,并显示该信号,说明其周期? 程序如下: n=0:40;x1=1.5*sin(2*pi*0.1*n);x2=sin(0.9*n); subplot(1,2,1);stem(n,x1); xlabel ('时间序列n');ylabel('振幅');title('正弦序列x1=1.5*sin(2*pi*0.1*n)'); subplot(1,2,2);stem(n,x2); xlabel ('时间序列n');ylabel('振幅');title('正弦序列x2=sin(0.9*n)'); 运行结果如下:正弦序列x1=1.5*sin(2*pi*0.1*n)正弦序列x2=sin(0.9*n)振幅振幅102030时间序列n40时间序列n由上图看出:x1=1.5*sin(2*pi*0.1*n)的周期是10,而x2=sin(0.9*n)是非周期的。

数字信号处理实验一报告

数字信号处理实验一报告

实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

史上最全数字信号处理实验报告完美版

史上最全数字信号处理实验报告完美版

实验一、零极点分布对系统频率响应的影响Y(n)=x(n)+ay(n-1)1、调用MATLAB函数freqz计算并绘制的幅频特性和相频特性其中:1 代表a=0.7;2代表a=0.8;3代表a=0.9a=0.7时的零极点图A=0.8时的零极点图a=0.9时的零极点图观察零极点的分布与相应曲线易知:小结:系统极点z=a,零点z=0,当B点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi点形成波谷;z=0处零点不影响幅频响应2、先求出系统传函的封闭表达式,通过直接计算法得出的幅频特性和相频特性曲线。

其中:1代表a=0.7;2代表a=0.8;3代表a=0.9附录程序如下:(对程序进行部分注释)>> a=0.7;w=0:0.01:2*pi;%设定w的范围由0到2π,间隔为0.01y=1./(1-a*exp(-j*w)); %生成函数subplot(211);plot(w/2/pi,10*log(abs(y)),'g');%生成图像其中通过调用abs函数计算幅值hold on;xlabel('Frequency(Hz)');%定义横坐标名称ylabel('magnitude(dB)');%定义纵坐标名称title('a=0.8,直接计算h(ejw)');grid on;%定义图片标题subplot(212);plot(w/2/pi,unwrap(angle(y)),'g');grid on;%生成图像其中通过调用angle计算相角,‘g’为规定线条颜色hold on;>> a=0.8;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'r');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.8,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'r');grid on;hold on;>> a=0.9;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'b');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.9,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'b');grid on;hold on;2、y(n)=x(n)=ax(n-1)通过调用freqz函数绘图,其中:1代表a=0.7,;2代表a=0.8;3代表a=0.9附录程序如下:(因为程序同实验一相同不再进行注释)a=0.7;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.7');hold on;a=0.8;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.8');hold on;a=0.9;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.9');以下为a为不同数值时的零极点图a=0.7A=0.8A=0.9小结:系统极点z=0,零点z=a,当B点从w=0逆时针旋转时,在w=0点,由于零点向量长度最长,形成波峰:在w=pi点形成波谷;z=a处极点不影响相频响应。

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告西南交通大学信息科学与技术学院姓名:伍先春学号:20092487班级:自动化1班指导老师:张翠芳实验一序列的傅立叶变换实验目的进一步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅立叶变换(FFT )的应用。

实验步骤1. 复习DFS 和DFT 的定义,性质和应用;2. 熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;利用提供的程序例子编写实验用程序;按实验内容上机实验,并进行实验结果分析;写出完整的实验报告,并将程序附在后面。

实验内容1. 周期方波序列的频谱试画出下面四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。

2. 有限长序列x(n)的DFT(1) 取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2) 将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3) 取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。

利用FFT进行谱分析 已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。

请分别画出N=45; N=50;N=55;N=60时的幅值曲线。

数字信号处理实验一1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=⎩⎨⎧-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验二 用双线性变换法设计IIR 数字滤波器 一、 实验目的1. 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法; 2. 掌握数字滤波器的计算机仿真方法;3.通过观察对实际心电图的滤波作用,获得数字滤波器的感性知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

四、 程序clc; close all; clear alln=0:50; %定义序列长度A=444.128;a=50*sqrt(2.0)*pi;T=1/1000; %采样频率定位1000Hz 当频率为% 300Hz 和200Hz 时将T 分别改为% T=1/300和T=1/200即可w0=50*sqrt(2.0)*pi;x=A*exp(-a*n*T).*sin(w0*n*T); %构造离散信号函数subplot(3,1,1);stem(x); %输出离散信号波形title('理想采样信号序列');k=-25:25;W=(pi/12.5)*k;X=x*(exp(-j*pi/12.5)).^(n'*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title('离散信号的幅度谱');angX=angle(X);subplot(3,1,3);stem(angX);title('离散信号的相位谱'); %绘制离散信号的相位谱五、结果图形(1)f=1000Hz(2)f=300Hz(3)f=200Hz六、 思考题1、在分析理想采样信号序列的特性实验中,利用不同采样频率所得到的采样信号序列的傅里叶变换频谱,数字频率度量是否相同?他们所对应的模拟频率是否都相同?答: (1)由数字频率ω和模拟频率Ω的关系ω=ΩT 可知,对于不同的采用频率其采用间隔T 不同,因此对应的数字频率度量ω不同。

(2)对于同一个信号,它们的模拟频率是相同的。

2、实验中,当频域有频谱混淆时,在实验结果中是如何体现的?答:由图可以看出,当采样频率为1000Hz 时,在20—30之间幅频比较明显,在10—20之间不明显;而当采样频率分别为200Hz 和300Hz 时,幅频整体上都有增加,显然在20和40附近有明显的频谱混淆叠加。

实验二 应用FFT 对信号进行频谱分析一、实验目的1、 在理论学习基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT 算法及编程的编写。

2、 熟悉应用FFT 对典型信号进行频谱分析的方法。

3、 了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。

二、实验原理一个连续信号x a (t)的频谱可以用它的傅里叶变换表示为X a (j Ω)= ∫x a +∞−∞(t)e −j Ωt dt如果对信号进行理想采样,可以的到采样序列x a (n )= x a (n Τ)同样可以对该序列进行z 变换,其中T 为采样周期X a (z )=∑x (n )z −n +∞−∞当z=e i ω的时候,我们就得到了序列的傅里叶变换X (e j ω)=∑x (n )z−j ωn +∞−∞ 其中ω成为数字频率,它和模拟频率的关系为ω=ΩΤ=Ω/f s式子中的f s 是采样频率。

上式说明数字频率是模拟频率对采样频率的归一化。

同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅里叶变换成为序列的频谱。

序列的傅里叶变换和对应的采样信号频谱所具有的对应的关系:X (e j ω)=1Τ∑X a (j ω−j 2πΤ+∞−∞m)即序列的频谱是采样信号频谱的周期延拓。

离散傅里叶变换:X (k) =DFT[x(n)]=∑x (n )W N kn N−1n=0其中W N −kn =e −j 2πN ,它的反定义为:x (n) =IDFT[X(n)]=1N ∑X(k)W N −kn N−1k=0 令z=W N −k ,则有X (z )|z=W N−k =∑x (n )W N kn N−1n=0=DFT[x(n)] 可以的到X(k)=X(z) |z=W N −k =e j 2πN ,W N −k 是z 平面单位圆上幅角ω=2πN k 的点,就是将单位圆进行N 等分以后第k 个点。

相关基本信号:衰减正弦序列:x b (n)= {e −an sin2πfn ,0≤n ≤500,其他三角波序列:x c (n)={n +1,0≤n ≤38−n,4≤n ≤70,其他反三角序列:x d (n)={4−n,0≤n ≤3n −3,4≤n ≤70,其他三、简明步骤2、观察衰减正弦序列的时域和幅频特性绘制a=0.1,f 分别为0.0625,0.4375,0.5625编程绘制其图形及其频谱3 观察三角波序列和反三角序列的时域和幅频特性绘制8点、16点FFT 信号序列形状和频谱曲线,并进行比较说明。

四、程序1、衰减正弦序列的时域和幅频特性程序clc; clear all ; close alla=0.1; %衰减指数n=0:15; %定义序列长度f=0.0625; %信号频率f ,可以改变频f=0.4375%和f=0.5625x=exp(-a*n).*sin(2*pi*f*n); %生成衰减正弦信号xclose all ;subplot(2,1,1);stem(x); %生成信号x 的序列特性图title('衰减正弦序列特性');subplot(2,1,2);stem(abs(fft(x)));title('衰减正弦序列幅频特性'); %生成衰减正弦序列的幅频特性2、三角波序列与反三角波序列时域与幅频特性clc ; clear all ; close alln=0:7;for i=1:4xd(i)=i; %三角波序列前四点数值(如果是end %反三角波序列则有xd(i)=5-i )for i=5:8xd(i)=9-i; %三角波序列前四点数值(如果是end %反三角波序列则有xd(i)=i-4)for i=9:16xd(i)=0;end %定义生成(反)三角波序列subplot(3,1,1);stem(xd); %生成(反)三角波序列图形title('绘制(反)三角波序列');subplot(3,1,2);stem(abs(fft(xd,8))); %生成绘制(反)三角波8点FFT图形title('绘制(反)三角波8点FFT图形');subplot(3,1,3);stem(abs(fft(xd,16))); %生成绘制(反)三角波16点FFT图形title('绘制(反)三角波16点FFT图形');五、结果图形2、观察衰减正弦序列的时域和频域特性(1)f=0.0625Hz(2)f=0.4375Hz(3)f=0.5625Hz3、观察三角波序列和反三角波序列的时域和频域特性(1)三角波序列(2)反三角波序列六、 思考题1、实验中的信号序列Xc(n)和Xd(n),在单位圆上的z 变换频谱会相同吗?如果不同,你能说出哪一个低频分量更多一些吗?为什么?答:两者z 变换不同。

其中,Xd(n)的低频分量较多,由图形可以看出,在低频处,Xd(n)的取值较多,呈递减趋势。

实验三 用双线性变换法设计IIR 滤波器一、实验目的1. 了解两种工程上最常用的变换方法:脉冲响应不变法和双线性变换法。

2. 掌握双线性变换法设计IIR 滤波器的原理及具体设计方法,熟悉用双线性法设计低通、带通和高通IIR 滤波器的计算机程序。

3. 观察用双线性变换法设计的滤波器的频域特性,并与脉冲响应不变法相比较,了解双线性变换法的特点。

4. 熟悉用双线性变换法设计数字Butterworth 和Chebyshev 滤波器的全过程。

5. 了解多项式乘积和多项式乘方的计算机变成方法。

二、实验原理利用模拟滤波器设计IIR 数字滤波器方法(1)根据所给出的数字滤波器性能指标计算出相应的模拟滤波器的设计指标。

(2)根据得出的滤波器性能指标设计出相应的模拟滤波器的系统函数H(S)。

(3)根据得出的模拟滤波器的系统函数H(S),经某种变换得到对该模拟滤波器相应的数字仿真系统——数字滤波器。

将模拟滤波器转换成数字滤波器的实质是,用一种从s 平面到z 平面的映射函数将Ha(s)转换成H(z)。

对这种映射函数的要求是:(1) 因果稳定的模拟滤波器转换成数字滤波器,仍是因果稳定的。

(2)数字滤波器的频率响应模仿模拟滤波器的频响,s 平面的虚轴映射z 平面的单位圆,相应的频率之间成线性关系。

脉冲响应不变法和双线性变换法都满足如上要求。

2.脉冲响应不变法用数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应h a (t),让h(n)正好等于h a (t)的采样值,即h(n)=h a (nT),其中T 为采样间隔。

3.双线性变换法s 平面与z 平面之间满足以下映射关系:1111T 2--+-=z z ss 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

相关文档
最新文档