离散傅里叶变换及其快速算法
[理学]离散傅里叶变换及其快速算法
![[理学]离散傅里叶变换及其快速算法](https://img.taocdn.com/s3/m/a4bbbd1b0912a21615792901.png)
非周期序列的离散时间傅里叶变换 (DTFT) /序列的傅里叶变换
• 定义序列x(n)的离散时间傅里叶变换(DTFT)为:
X (e ) DTFT{x(n)}
j n jn x ( n )e
• 序列x(n)的离散时间傅里叶逆变换(IDTFT)为:
x(n) IDTFT{X (e j )} 1 2
按时间抽取的FFT算法
• 设N=2M,M为正整数,如取N=23=8,即离散时间信号为
x(n) {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}
• 按照规则①将序列x(n)分为奇偶两组,一组序号为偶数, 另一组序号为奇数,即
{x(0), x(2), x(4), x(6) | x(1), x(3), x(5), x(7)}
X (e j )e jn d
傅里叶变换对小结
• 傅里叶级数(FS)(时域:连续周期;频域:非周期离散)
1 Xk T
T 2
T 2
x(t )e jk1t dt
x(t )
k
X k e jk1t
k 0, 1, 2,
• 傅里叶变换(FT)(时域:连续非周期;频域:非周期连续)
第2章 离散傅里叶变换和快速算法.ppt

杨毅明 第2章 离散傅里叶变换和快速算法
2.1.1 离散傅里叶级数
离散傅里叶级数的定义:
X~ (k )
N 1 ~x (n)e
j 2 N
kn
n0
~x (n)
杨毅明 第2章 离散傅里叶变换和快速算法
2.2 利用DFT做连续信号的频谱分析
离散傅里叶变换可以用来分析连续时间信号的频谱,其 原理如下:
这种方法存在如下问题: 混叠,泄漏,栅栏效应,分辨率,周期效应。 根据例6(书上63页)说明上面5个问题。
杨毅明 第2章 离散傅里叶变换和快速算法
clear;close all; f=10;a=4;T=1/(a*f);t=0:T:3; x=sin(2*pi*f*t); subplot(211);plot(t,x);xlabel('t/s');ylabel('x(t)'); N=length(t);n=0:N-1;k=n; W=exp(-j*2*pi/N*k'*n); X=W*conj(x'); subplot(212);stem(k,abs(X),'.');xlabel('k');ylabel('X(k)');
N 1 ~x1 (m) ~x2 (n rL m) RN (n)
m0
r
yL (n rL) RN (n) r
杨毅明 第2章 离散傅里叶变换和快速算法
yL(n)和yC(n) 的关系
yC (n) yL (n rL) RN (n) r
第3章 离散傅里叶变换及其快速算法

计算中, 在DFT计算中,不论是乘法和加法,运算量均与 计算中 不论是乘法和加法, N2成正比。因此,N较大时,运算量十分可观。例 成正比。因此, 较大时 运算量十分可观。 较大时, 计算N=10点的 点的DFT,需要 次复数相乘, ,计算 点的 ,需要100次复数相乘,而 次复数相乘 N=1024点时,需要 点时, 点时 需要1048576(一百多万)次复数乘 (一百多万) 如果要求实时处理, 法,如果要求实时处理,则要求有很高的计算速 度才能完成上述计算量。 度才能完成上述计算量。 反变换IDFT与DFT的运算结构相同,只是多 与 的运算结构相同, 反变换 的运算结构相同 乘一个常数1/N,所以二者的计算量相同。 乘一个常数 ,所以二者的计算量相同。
nk X (k ) = ∑ { Re [ x( n)]Re WN − I m [ x(n)]I m [WNnk ] n =0 N −1
(
+ j Re [ x(n)]I m
(
[ ] [W ]+ I
nk N
)
nk [ x( n)]Re WN } m
[ ])
又每个复数相加包括2个实数相加,所以,每计算一个 X( k) 要进行 次实数相乘和 次实数相乘和2N+2( N-1) =2( 2N-1) 次实 ( ) 要进行4N次实数相乘和 ( ) ( ) 数相加,因此,整个DFT运算需要 2实数相乘和 (2N-1) 运算需要4N 实数相乘和2N( 数相加,因此,整个 运算需要 ) 次实数相加。 次实数相加。
虽然频谱分析和DFT运算很重要 , 但在很长 运算很重要, 虽然频谱分析和 运算很重要 一段时间里, 由于DFT运算复杂 , 并没有得到 运算复杂, 一段时间里 , 由于 运算复杂 真正的运用, 真正的运用 , 而频谱分析仍大多采用模拟信号 滤波的方法解决, 直到1965年首次提出 年首次提出DFT运 滤波的方法解决 , 直到 年首次提出 运 算的一种快速算法以后, 情况才发生了根本变 算的一种快速算法以后 , 人们开始认识到DFT运算的一些内在规律 , 运算的一些内在规律, 化 , 人们开始认识到 运算的一些内在规律 从而很快地发展和完善了一套高速有效的运算 方法——快速付里变换(FFT)算法。FFT的出 快速付里变换( 方法 快速付里变换 )算法。 的出 现 , 使 DFT 的 运 算 大 大 简 化 , 运 算 时 间 缩 短 二个数量级, 一 ~ 二个数量级 , 使 DFT的运算在实际中得到 的运算在实际中得到 广泛应用。 广泛应用。
第三章 离散傅里叶变换(DFT)及其快速算法-庄

频域
离散
周期
时域的离散造成频域的延拓(周期性)。根据 对偶性,频域的离散也会造成时域的延拓(周 期散化,
令 d 0 从而 k 0
k 2F0 , N
j 0 kT N 1 n 0
s 0
n 0
N 1
j
2 kn N
0 k N 1
N称为DFT变换区间长度, N M
令
WN e
j
2 N
,记作旋转因子
傅里叶变换与逆变换对为:
kn X (k ) DFT [ x(n)] x(n)WN n 0 N 1 N 1
0 k N 1 0 n N 1
N
示周期序列的频谱特性,即DFT能够描述FT的特征
24
2.DFT与FT、ZT之间的关系
有限长序列
x(n) n 0,1, 2, M 1
N M
DFT与ZT、FT、DFS
X ( z ) ZT [ x(n)] X (e ) FT [ x(n)]
j j
n
x(n) z
7
2 时域:以Ts 采样,频域延拓周期 s Ts 2 频域:以0 采样,时域延拓周期T0 0
x(n)
T0 1 F0
Ts
1 fs
t n
| X (e
jk0T
)|
s
2 Ts
0
2 T0
k
8
四种形式归纳
类型
傅里叶变换 傅里叶级数
时间函数
连续 非周期
频率函数
N
(1)
1-z -8 X(z)= , -1 1-z
离散傅里叶变换及其快速算法

离散傅里叶变换及其快速算法离散傅里叶变换(Discrete Fourier Transform,DFT)是一种将离散信号转换为频域表示的数学工具。
它在信号处理、图像处理、通信等领域有广泛的应用。
而快速傅里叶变换(Fast Fourier Transform,FFT)是一种能够高效计算DFT的算法,大大减少了计算量。
首先,我们来看一下DFT的原理。
给定一个有限长度的离散信号序列x(n),DFT将其转换为频谱X(k),其中k为频率索引,取值范围为0到N-1,N为序列的长度。
DFT的定义公式如下:X(k) = Σ x(n) * exp(-j * 2π * nk / N)其中,exp为自然指数函数,j为虚数单位。
DFT将信号分解为了N个复数的和,这些复数代表了不同频率分量在信号中的贡献。
然而,直接计算DFT的时间复杂度非常高,为O(N^2)。
为了提高计算效率,Cooley和Tukey于1965年提出了FFT算法。
FFT算法基于以下性质:若N为2的整数次幂,则DFT可以被分解为两个较小长度的DFT的线性组合。
具体来说,将N个点的DFT拆分为长度为N/2的两个DFT,然后再对这两个子序列进行DFT,最后将两个子序列的结果组合起来。
这个过程可以递归地进行,直到序列长度为1,即可得到最终的DFT结果。
FFT算法的时间复杂度为O(NlogN),远远小于直接计算DFT的复杂度。
这使得FFT成为了处理大规模数据的首选方法之一、此外,FFT还有其他一些优点,如可并行化计算、对称性质等。
FFT算法可以采用不同的实现方式,最著名的是基于蝶形运算的Cooley-Tukey算法。
这种实现方式将FFT过程分为了两个阶段:置换阶段和蝶形运算阶段。
置换阶段通过将信号重新排序,将原始序列分为奇偶两个子序列,并计算每个子序列的DFT。
这个过程可以递归地应用于子序列,直到长度为1蝶形运算阶段是FFT算法的核心部分。
蝶形运算是指将两个频域上的复数进行运算,得到新的复数。
fft计算公式

fft计算公式摘要:一、引言二、FFT 计算公式简介1.离散傅里叶变换2.快速傅里叶变换三、FFT 计算公式推导1.基2 递归算法2.蝴蝶运算四、FFT 在实际应用中的优势五、总结正文:一、引言在数字信号处理、图像处理等领域,傅里叶变换是一种非常重要的数学工具。
然而,对于大规模的信号处理问题,直接应用傅里叶变换的计算复杂度较高,因此,快速傅里叶变换(FFT)应运而生。
本文将详细介绍FFT 的计算公式及应用。
二、FFT 计算公式简介为了便于理解FFT 的计算公式,我们先简要介绍一下离散傅里叶变换(DFT)和快速傅里叶变换(FFT)。
1.离散傅里叶变换(DFT)DFT 是一种将离散信号从时域转换到频域的方法,其计算公式如下:X[k] = ∑N/2^n i^(-k+n) * x[n]其中,X[k] 表示频域的系数,x[n] 表示时域的信号,k 和n 分别为频域和时域的下标,N 为信号长度。
2.快速傅里叶变换(FFT)FFT 是DFT 的高效实现方法,它采用分治策略和循环移位技术,将DFT 的计算复杂度从O(N^2) 降低到O(NlogN)。
FFT 的计算公式如下:X[k] = ∑(N/2^n)^(2m) * C[m, k] * x[n]其中,m 为迭代次数,k 和n 分别为频域和时域的下标,N 为信号长度,C[m, k] 为复合基函数。
三、FFT 计算公式推导为了更直观地理解FFT 的计算过程,我们分两步进行推导。
1.基2 递归算法(1)首先,将输入序列x[n] 进行零填充,使其长度变为2 的整数次幂,即N = 2^n。
(2)将x[n] 和x[n+N/2] 进行旋转,得到x[n] 和x[n+N/2],其中x[n] 为原始序列,x[n+N/2] 为旋转后的序列。
(3)对旋转后的序列进行DFT 计算,得到频域系数X[k] 和X[k+N/2]。
(4)根据旋转序列的关系,可以得到频域系数X[k+N/2] = X[k],因此,我们只需计算一半的频域系数。
离散傅里叶变换及快速算法

(5-5)
W e N
j
2 N
的性质:
正交性,周期性,
共轭对称性(偶序列),可约性。
§5.离散傅里叶变换及快速算法
1.离散傅里叶级数
1.2离散傅里叶级的计算
例5-1 求出下面周期序列的DFS
x(n) 0 ,1,2,3, 0 ,1,2,3, 0,1,2,3
n0
为改进嵌套循环计算的效率,将循环结构改为矩阵形式计算
§5.离散傅里叶变换及快速算法
0.概述
离散时间傅里叶变换(DTFT)是通过周期频谱 来描述一个离散信号序列,即DTFT是连续变 量w的连续函数。离散傅里叶变换(DFT)则是 针对有限长序列,是对DTFT采样后得到的离 散序列。 此种表示方法非常有利于数值计算以及数字信 号处理算法的DSP硬件实现。 本章将研究离散傅里叶级数,离散傅里叶变换 (DFT),及离散傅里叶变换的快速算法FFT。
(5-3)
n0
称之为离散傅里叶级数DFS的系数。是一个基波周期为N的 周期序列。
X (k) X (k N)
§5.离散傅里叶变换及快速算法
W e 在DFS变换中引入复数 N
j
2 N
将DFS正反变换描述为
N 1
X (k) x(n)WNnk
n0
x (n)
1 N
N 1
X (k )WNnk
k 0
n0
x(n)
1 N
N 1
X (k )WNnk
k 0
x
1 N
WN* X
WN WNkn 0
k,n
N
1
1 1
1
WN1
1
W ( N 1) N
1
W ( N 1) N
第三章-离散傅里叶变换(DFT)及其快速算法(FFT)

回到本节
x(n)
IDFT[ X (k)]N
1 N
N 1
X (k)WNk n ,
k 0
n 0, 1,
, N 1
也可以表示为矩阵形式:
x DN1 X
DN1称为N点IDFT矩阵,定义为
1
DN1
1 N
1 1
1
1 WN1 WN2
WN( N 1)
线性性质 DFT的隐含周期性 循环移位性质 复共轭序列的DFT DFT的共轭对称性 循环卷积定理 离散巴塞伐尔定理
返回
回到本节
① 线性性质 设有限长序列x1(n)和x2 (n)的长度分别为N1和N2 , x(n) ax1(n) bx2 (n) ,a和b为常数。
则
)
N M
xN (n) x((n))N X (k ) X ((k ))N
有限长序列x(n)的DFT变换X(k),就是x(n)的周期延拓序列 ~x(n) 的DFS系数 X~(k ) 的主值序列
返回
回到本节
DFS与FT之间的关系:
M 1
X (k) DFS[xN (n)] x(n)WNkn n0
xN (n) xN (n)RN (n)
主值区间序列 N M , xN (n) x(n)
返回
回到本节
x8 (n) x4 (n)
返回
回到本节
周期序列DFS: N 1 X (k ) DFS[ xN (n)] xN (n)WNkn n0
M 1
x(n)WNkn
k
返回
回到本节
xN (n)
n
N
0
N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 离散傅里叶变换及其快速算法 1 离散傅里叶变换(DFT)的推导(1) 时域抽样:目的:解决信号的离散化问题。
效果:连续信号离散化使得信号的频谱被周期延拓。
(2) 时域截断:原因:工程上无法处理时间无限信号。
方法:通过窗函数(一般用矩形窗)对信号进行逐段截取。
结果:时域乘以矩形脉冲信号,频域相当于和抽样函数卷积。
(3) 时域周期延拓:目的:要使频率离散,就要使时域变成周期信号。
!方法:周期延拓中的搬移通过与)(s nT t -δ的卷积来实现。
表示:延拓后的波形在数学上可表示为原始波形与冲激串序列的卷积。
结果:周期延拓后的周期函数具有离散谱。
(4)1。
图1 DFT 推导过程示意图(5) 处理后信号的连续时间傅里叶变换:∑∑∞-∞=-=π--δ⋅⎥⎥⎦⎤⎢⎢⎣⎡=k N n N kn j s kf f e nT h f H )()()(~010/2(i) )(~f H 是离散函数,仅在离散频率点SNT k T k kf f ===00处存在冲激,强度为k a ,其余各点为0。
(ii) )(~f H 是周期函数,周期为ss T NT N T N Nf 100===,每个周期内有N 个不同的幅值。
(iii)时域的离散时间间隔(或周期)与频域的周期(或离散间隔)互为倒数。
2 DFT 及IDFT 的定义(1) , (2) DFT 定义:设()s nT h 是连续函数)(t h 的N 个抽样值1,,1,0-=N n ,这N 个点的宽度为N的DFT 为:[])1,...,1,0(,)()(1/2-=⎪⎪⎭⎫⎝⎛==∆-=π-∑N k NT k H e nT h nT h DFT s N n N nk j s s N(3) IDFT 定义:设⎪⎪⎭⎫⎝⎛s NT kH 是连续频率函数)(f H 的N 个抽样值1,,1,0-=N k , 这N 个点的宽度为N 的IDFT 为:())1,...,1,0(,110/21-==⎪⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛∆-=π--∑N k nT h e NTkH N NT k H DFT s N k N nk j s s N (4) N nk j e /2π-称为N 点DFT 的变换核函数,N nk j e /2π称为N 点IDFT 的变换核函数。
它们互为共轭。
(5) 同样的信号,宽度不同的DFT 会有不同的结果。
DFT 正逆变换的对应关系是唯一的,或者说它们是互逆的。
(6) 引入N j N e W /2π-=(i) 用途:(a) 正逆变换的核函数分别可以表示为nk N W 和nkN W -。
(b) 核函数的正交性可以表示为:())(*10r n N W W krN N k kn N -δ=∑-=(c) DFT 可以表示为:)1,,1,0(,)(10-==⎪⎪⎭⎫⎝⎛∑-=N k W nT h NT kH N n nk N s s(d) IDFT 可以表示为:)1,,1,0(,1)(10-=⎪⎪⎭⎫⎝⎛=∑-=-N n W NT k H NnT h N k nk N s s(ii) )(iii) 性质:周期性和对称性:(a) 12==π-j NNe W (b) 12/-==π-j N Ne W (c) r N r N N N r N N W W W W ==+ (d) r N r N N N r N N W W W W -=-=+2/2/(e) )(1Z m W mN ∈∀=(f) ),(/2/2Z n m W e e W nN N n j mN mn j mn mN∈∀===π-π- 3 离散谱的性质(1) 离散谱定义:称)(Z k NT k H H S k ∈⎪⎪⎭⎫⎝⎛=∆为离散序列)0)((N n nTs h <≤的DFT 离散谱,简称离散谱。
(2) 性质:(i) 周期性:序列的N 点的DFT 离散谱是周期为N 的序列。
(ii) {(iii) 共扼对称性:如果)0)((N n nTs x <≤为实序列,则其N 点的DFT 关于原点和N /2都具有共轭对称性。
即*k k H H =-;*k k N H H =-;*22kNkNH H =±(iv) 幅度对称性:如果)0)((N n nTs x <≤为实序列,则其N 点的DFT 关于原点和N /2都具有幅度对称性。
即k k H H -=;k k N H H =-;kNkNH H 22=±(3) 改写:(i) 简记)(s nT h 为)(n h(ii) 简记⎪⎪⎭⎫⎝⎛sNT kH 为)(k H (iii)DFT 对简记为:)()(k H n h DFT⇔或)()(k H n h ⇔(iv) ()[])1,,1,0(,)()(10-===∑-=∆N k W n h n h DFT k H N n nkN(v) []())1,,1,0(,1)()(101-===∑-=--∆N n W k H Nk H DFTn h N k nkN4 DFT 总结(1) DFT 的定义是针对任意的离散序列)(nTs x 中的有限个离散抽样)0(N n <≤的,它并不要求该序列具有周期性。
(2) 由DFT 求出的离散谱)()(Z k NT k H H k H S k ∈⎪⎪⎭⎫⎝⎛==∆是离散的周期函数,周期为s s s f T NT N T N Nf ====1/00、离散间隔为0011f T N f NT s s ===。
离散谱关于变元k 的周期为N 。
(3)(4) 如果称离散谱经过IDFT 所得到的序列为重建信号,))(('Z n nTs x ∈,则重建信号是离散的周期函数,周期为001f T NT s ==(对应离散谱的离散间隔的倒数)、离散间隔为001/Nf N T N NT T s s ===(对应离散谱周期的倒数)。
(5) 经IDFT 重建信号的基频就是频域的离散间隔,或时域周期的倒数,为SNT T f 1100==。
(6) 实序列的离散谱关于原点和2N(如果N 是偶数)是共轭对称和幅度对称的。
因此,真正有用的频谱信息可以从0~12-N范围获得,从低频到高频。
(7) 在时域和频域N ~0范围内的N 点分别是各自的主值区间或主值周期。
5 DFT 性质(1) 线性性:对任意常数m a (M m ≤≤1),有[]∑∑==⇔⎥⎥⎦⎤⎢⎢⎣⎡M m m m M m mm n x DFT a n x a DFT 11)()( (2) 奇偶虚实性:(i) DFT 的反褶、平移:先把有限长序列周期延拓,再作相应反褶或平移,最后取主值区间的序列作为最终结果。
(ii) DFT 有如下的奇偶虚实特性: 奇⇔奇;偶⇔偶;实偶⇔实偶;实奇⇔虚奇;实 ⇔(实偶) + j(实奇);实 ⇔(实偶)·EXP(实奇)。
(3) $ (4)(5) 对偶性:)()(k Nx n X -⇔(i) 把离散谱序列当成时域序列进行DFT ,结果是原时域序列反褶的N 倍; (ii) :(iii) 如果原序列具有偶对称性,则DFT 结果是原时域序列的N 倍。
(6) 时移性:kmN W k X m n x )()(⇔-。
序列的时移不影响DFT 离散谱的幅度。
(7) 频移性:)()(l k X W n x nlN-⇔- (8) 时域离散圆卷积定理:)()()()(k Y k X n y n x ⇔⊗(i) 圆卷积:周期均为N 的序列)(n x 与)(n y 之间的圆卷积为∑-=-=⊗1)()()()(N i i n y i x n y n x)()(n y n x ⊗仍是n 的序列,周期为N 。
(ii) 非周期序列之间只可能存在线卷积,不存在圆卷积;周期序列之间存在圆卷积,但不存在线卷积。
(9) 频域离散圆卷积定理:)()(1)()(k Y k X Nn y n x ⊗⇔(10) 时域离散圆相关定理:)()()(*)(k Y k X n R P xy⇔ 周期为N 的序列)(n x 和)(n y 的圆相关:()∑-=∆-==10*)()()()()()(),(N i P xy P n i y i x n R n y n x R!是n 的序列,周期为N 。
(11) []{}**)(1)(k H DFT Nn h k =。
其中[]⋅kDFT 表示按k 进行DFT 运算。
(12) 帕斯瓦尔定理: ∑∑-=-==102102)(1)(N k N n k X Nn x6 快速傅里叶变换FFT(1) F FT 不是一种新的变换,而是DFT 的快速算法。
(2) 直接DFT 计算的复杂度:)(2N O计算DFT 需要:2*N N N =次复数乘法;2*N N N =次复数加法。
(3) F FT 算法推导:(i) 第L 次迭代中对偶结点值的计算公式为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->>===-⎪⎩⎪⎨⎧-=+=-----))((22)()()()()()(1111L r K BR P N K K W K x K x K x W K x K x K x L r LL L r L L P N L L L L LL P N L L L L L L LL,L K 是循环控制变量。
(ii) 对偶结点的关系如图2所示:!1)(L P NW- 1)(L P N W)(1L L K x -)(1L L K x -)(L L K x)(L L K x图2 FFT 中对偶结点关系图 (iii) 旋转因子:kN W 被称为旋转因子,可预先算好并保存。
(iv) 整序:经过r 次迭代后,得到结果()()b r r k k k x 110- ,实际结果应是()()b r k k k X 011 -,所以流程的最后一步是按下标的正常二进制顺序对结果进行整序。
(4) F FT 算法特点:(r N 2=)(i) 共需r 次迭代; (ii) 第)1(r L L ≤≤次迭代对偶结点的偶距为L L r L L N K K 2/2==--,因此一组结点覆盖的序号个数是12)(2-=-L L L N K K 。
(iii) 第)1(r L L ≤≤次迭代结点的组数为[]12)(2/-=-L L L K K N 。
(iv)L PN W 可以预先计算好,而且L P 的变化范围是12~0-N。
(5) F FT 算法流程:(r N 2=)(i) 初始化:10),()(0-≤≤←N n n x n x ; (ii) —(iii) 第)1(r L L ≤≤次迭代:(a) 下标控制变量初始化0=L K ; (b) “结点对”的个数初始化0=num ;(c) DO Nnum WHILE L)2(<按对偶结点对的计算公式进行置位运算,得到)(L L K x 和)(L L K x 的值; 1+←L L K K ;1+←num num ;跳过已经计算过的结点(即上面L K 所对应的那些结点):L L N K 2/=+; 如果N K L <,转到b)继续计算下一组结点;否则结束本次迭代。