数字化变电站新技术的发展现状及其对行业影响浅探概要
智能变电站的发展及现状

智能变电站的发展及现状智能变电站的发展及现状一、引言智能变电站是指利用先进的信息通信技术和自动化控制技术,对传统的变电站进行升级改造,实现设备互联互通、自动化运维和智能化管理的一种新型变电站。
随着电力系统的发展和技术的进步,智能变电站已经成为电力行业的重要发展任务。
本文将对智能变电站的发展历程及现状进行详细阐述。
二、智能变电站的发展历程⒈传统变电站的局限性传统变电站存在着设备信息孤立、运维成本高、响应速度慢等问题。
随着电力行业的快速发展,传统变电站已经无法满足现代电力系统的需求。
⒉智能变电站的概念提出为了解决传统变电站存在的问题,智能变电站的概念应运而生。
智能变电站利用先进的信息通信技术和自动化控制技术,实现设备之间的互联互通,并通过高效的智能化管理系统,提高运维效率,降低运维成本,实现变电站的可靠运行。
⒊智能变电站的发展进程智能变电站的发展经历了几个阶段:网络互联阶段、数据采集与分析阶段、自主决策与控制阶段。
目前,智能变电站已经进入智能运营与维护阶段,实现了从传统变电站到智能变电站的转型。
三、智能变电站的主要特点⒈互联互通智能变电站通过网络连接,实现了设备之间的信息互通和数据共享。
这使得变电站的运行更加高效可靠,并且便于对变电站进行远程监控和运维。
⒉自动化运维智能变电站采用自动化控制技术,实现对设备的自动巡检、故障诊断和维护。
这大大降低了人工巡检的工作量,提高了运维效率。
⒊智能化管理智能变电站依靠智能化管理系统,对变电站进行综合管理和优化调度。
通过数据分析和决策支持,可以及时发现问题并采取相应的措施,提高变电站的运行效率。
四、智能变电站的应用现状⒈国内智能变电站的应用情况我国电力行业在智能变电站的建设方面取得了一定的成果,各地区相继建设了多个智能变电站。
目前,智能变电站在我国的应用逐渐普及,但与发达国家相比,仍有一定差距。
⒉国际智能变电站的发展情况国际上,智能变电站已经得到广泛应用,并取得了显著的成果。
智能变电站发展现状

智能变电站发展现状智能变电站在能源领域的发展备受关注。
随着能源技术的不断进步和智能化的推动,智能变电站作为能源系统的关键环节,面临着一系列的变革和发展。
目前,智能变电站的发展现状如下:首先,智能变电站的技术和设备不断升级。
传统的变电站主要依靠人工操作和控制,存在运行不够灵活和效率低下的问题。
而智能化的变电站引入了先进的自动化设备和智能化技术,可以实现对电力系统的实时监测和远程控制。
通过数字化、网络化和智能化的手段,智能变电站具备了更高效、更安全、更可靠的运行能力。
其次,智能变电站的运行管理得到了改善。
智能化的变电站可以实现对电网负荷的智能调控,通过预测和分析电力需求情况,提前做好电力调配工作,从而避免电网的过载和供电不足的问题。
同时,智能变电站还可以实现对电力故障的自动检测和智能切换,提高了电力系统的可靠性和安全性。
第三,智能变电站的可持续发展受到重视。
随着可再生能源的不断发展和推广应用,智能变电站需要适应并融合更多的可再生能源接入。
通过智能化的技术手段,智能变电站可以实现对可再生能源的优化调度和管理,提高可再生能源的利用效率和电力系统的稳定性。
最后,智能变电站的建设和改造正在加速推进。
政府和能源公司纷纷加大对智能变电站的投入和支持力度,推动智能变电站的建设和改造工作。
在新建变电站方面,智能化的设备和技术得到了广泛应用;在旧有变电站改造方面,智能化改造工作也取得了一定进展。
这些举措有助于提升智能变电站的整体水平和能源系统的发展。
综上所述,智能变电站在技术、运行管理、可持续发展和建设改造等方面都取得了积极的发展。
随着技术的进一步成熟和应用的推广,智能变电站的发展前景仍然十分广阔,将为能源领域的可持续发展提供强力支撑。
智能变电站发展与未来

智能变电站发展与未来智能变电站是指通过先进的传感器、监控系统和数据分析技术,实现对电网运行状态实时监测、分析和优化调度,从而提高电网安全性、可靠性和经济性的设施。
随着信息技术的发展和能源转型的加速推进,智能变电站已成为电力行业发展的一个重要趋势。
它不仅可以提高电力系统的运行效率,还能够促进可再生能源的大规模接入,实现清洁、低碳的能源转型。
本文将从智能变电站的发展现状、关键技术及未来发展趋势等方面展开讨论,以期为电力行业的未来发展提供一些思考和启示。
一、智能变电站的发展现状近年来,随着电网规模不断扩大和新能源的快速发展,电网运行形势变得更加复杂。
传统的变电站设施难以满足对电网运行状态实时监测和优化调度的需求,智能变电站应运而生。
智能变电站通过安装传感器和监控设备,实现对电网各个环节的数据采集和信息传输,再通过数据分析和智能控制系统进行运行状态的实时监测和优化调度,从而提高电网的安全性和可靠性。
目前,国内外智能变电站的建设已经取得了一些成果。
在国内,南方电网、华东电网、国网等电力公司纷纷投入智能变电站建设的试点项目,通过引入先进的监控设备和数据分析技术,取得了一些较为显著的效果。
国外如欧美等发达国家,智能变电站建设取得较为成熟的经验,能够较好地应对电网运行中的各种复杂情况。
二、智能变电站的关键技术智能变电站作为电网智能化建设的重要组成部分,其关键技术主要包括传感器技术、监控系统技术、数据分析技术、智能控制技术等。
这些技术的发展和应用将直接影响智能变电站的运行效果和发展前景。
1. 传感器技术:传感器是智能变电站的“眼睛”和“耳朵”,具有对电网运行状态进行实时监测和数据采集的功能。
目前,随着传感器技术的不断发展,各类传感器的性能和功能都得到了较大的提升,能够更好地满足智能变电站对数据采集的需求。
2. 监控系统技术:监控系统是智能变电站的“大脑”,能够对传感器采集到的数据进行实时处理和分析,从而实现对电网运行状态的实时监测和分析。
数字化变电站新技术的发展现状及其对行业影响浅探

第37卷第7期电力系统保护与控制Vol.37 No.7 2009年4月1日 Power System Protection and Control Apr.1, 2009 数字化变电站新技术的发展现状及其对行业影响浅探陈天香1,王若醒2,魏 勇2(1.江苏南通供电公司,江苏 南通 226006;2.许继电气技术中心,河南 许昌 461000)摘要:数字化变电站是变电站未来发展的方向,四大领域的技术创新是数字化变电站得以发展和突破的基石。
新技术的应用将给传统行业带来巨大的冲击和深远的影响,该文试对此做出分析和探讨,以图抛砖引玉。
关键词: 数字化变电站; 新技术; 行业影响New technology development status of digital substation and its effect to industryCHEN Tian-xiang1, WANG Ruo-xing2, WEI Yong2(1. Nantong Power Company Co., Nantong 226006, China; 2.XJ Electric Technology Center,Xuchang 461000,China) Abstract: Digital substation is a developing direction in the future,the technology innovation of the four domain is the base of digital substation development.The application of new technology will make traditional industry large affection and impact.This paper try to analyze and discuss.Key words: digital substation; new technology; effect to industry中图分类号: TM76 文献标识码:A 文章编号: 1674-3415(2009)07-0086-050 引言变电站综合自动化系统技术经过10余年的发展,目前已经基本成熟,得到了广泛的工程应用,获得了巨大的成功。
变电站综合自动化技术的现状及发展

变电站综合自动化技术的现状及发展
变电站综合自动化技术是一种集成化的技术,通过自动化系统实现对变电站的监控、控制和管理。
随着现代化技术的发展,变电站综合自动化技术也在不断发展。
目前,变电站综合自动化技术已经广泛应用于电力系统中,成为现代电力系统中不可或缺的一部分。
在技术方面,变电站综合自动化技术已经实现了数字化、智能化和网络化的发展。
数字化技术使得变电站中的数据可以被数字化处理和存储,提高了数据的可靠性和安全性。
智能化技术通过引入人工智能和机器学习技术,可以实现对变电站的自适应和预测性管理。
网络化技术则使得变电站可以连接到大型电力系统中心,并实现可视化监控和远程控制。
在应用方面,变电站综合自动化技术主要应用于电力生产、输送、配送和交易等各个环节。
通过自动化系统,可以实现对电力系统中的各个节点进行监控和控制,提高电力生产和输送的效率和可靠性。
同时,还可以实现对电力供需的快速调节和交易,为用户提供高效的电力服务。
未来,随着新能源和智能电网的快速发展,变电站综合自动化技术还将面临更大的发展机遇和挑战。
变电站综合自动化技术需要进一步发展数字化、智能化和网络化技术,实现对新能源的集成和智能电网的管理。
同时,还需要加强对安全性和稳定性的保障,确保电力系统的可靠性和安全性。
- 1 -。
我国数字化变电站发展现状及趋势

我国数字化变电站发展现状及趋势作者:全国电力系统管理及其信息交换标准化技术委员会何卫来源:赛尔电力自动化总第80期数字化变电站技术是变电站自动化技术发展中具有里程碑意义的一次变革,对变电站自动化系统的各方面将产生深远的影响。
数字化变电站三个主要的特征就是“一次设备智能化,二次设备网络化,符合IEC61850标准”,即数字化变电站内的信息全部做到数字化,信息传递实现网络化,通信模型达到标准化,使各种设备和功能共享统一的信息平台。
这使得数字化变电站在系统可靠性、经济性、维护简便性方面均比常规变电站有大幅度提升。
数字化变电站在我国发展迅速,从1995年德国提出制定IEC61850的设想开始,中国就一直关注IEC61850的发展。
全国电力系统管理及其信息交换标准化技术委员会自2 000年起,将对IEC61850的转化作为工作重点之一。
从CD(委员会草案)到CDV,从F DIS到正式出版物,标委会及其工作组专家密切跟踪IEC标准的进展,用近5年的时间,二十多位专家的辛勤工作,完成了IEC61850到行业标准DL/T860的转化。
标准转化的同时,国内顶级设备制造商如南瑞集团、北京四方、国电南自、许继电器等同步开展了标准研究和软硬件开发。
2006年以来,相继有采用IEC61850标准的变电站投入运行,从110kV到500kV,从单一厂家到多家集成,国内对数字化变电站工程实践的探索正在向纵深发展。
在国调中心的领导下,从2004底开始,标委会成功组织了6次大规模互操作试验,极大地推动了基于IEC61850标准的设备研制和工程化。
为规范IEC61850在国内的有效有序应用,2007年,标委会将DL/T860标准工程实施技术规范纳入工作计划,并迅速组织有关专家进行起草,经广泛征求意见,2008年该规范通过标委会审查报批。
成为指导DL/T860标准国内工程实施的重要配套文件。
目前,国内各网省公司都进行了数字化变电站试点,对DL/T860标准的应用程度和技术水平各不相同,有单在变电站层应用DL/T860的,也有在过程层试验的,还有结合电子式互感器应用的;有单一厂家实现的,也有多达十多加设备制造商参与的。
变电站自动化技术的现状与未来

变电站自动化技术的现状与未来在现代电力系统中,变电站作为电力传输和分配的关键节点,其自动化技术的发展对于提高电力系统的可靠性、稳定性和运行效率具有至关重要的意义。
随着科技的不断进步,变电站自动化技术也在不断革新和完善,为电力行业带来了诸多变革。
一、变电站自动化技术的现状(一)智能化的一次设备如今,智能化的一次设备在变电站中得到了广泛应用。
例如,智能变压器能够实时监测自身的运行状态,包括油温、油位、绕组温度等参数,并通过智能传感器将这些数据传输至控制系统,实现对变压器的智能化控制和保护。
此外,智能断路器具备自动检测故障电流、快速切断故障等功能,大大提高了电力系统的故障处理能力。
(二)先进的二次设备二次设备是变电站自动化系统的核心组成部分。
目前,微机保护装置、测控装置等二次设备的性能不断提升。
这些设备具有高精度的测量、快速的运算处理能力和强大的通信功能,能够实现对变电站内各种电气量的精确测量和控制。
同时,基于数字信号处理技术的继电保护装置,能够更准确地识别故障类型和位置,提高保护动作的可靠性。
(三)通信技术的发展通信技术是实现变电站自动化的关键。
当前,以太网、光纤通信等高速通信技术在变电站中得到了广泛应用。
通过这些通信技术,变电站内的各种设备能够实现高速、可靠的数据传输,为实现变电站的智能化控制和管理提供了有力支持。
此外,IEC 61850 标准的推广应用,使得不同厂家的设备之间能够实现无缝通信和互操作,进一步提高了变电站自动化系统的开放性和兼容性。
(四)监控与管理系统变电站的监控与管理系统也日益完善。
通过计算机监控系统,运行人员可以实时掌握变电站内设备的运行状态、电气参数和告警信息,并能够远程控制设备的操作。
同时,管理系统能够对变电站的运行数据进行分析和处理,为设备的维护检修、运行管理提供决策依据。
二、变电站自动化技术面临的挑战(一)数据安全与隐私保护随着变电站自动化程度的提高,大量的敏感数据在网络中传输和存储,数据安全和隐私保护成为了一个重要问题。
智能变电站的发展及现状分析

智能变电站的发展及现状分析首先,智能变电站的发展受到电力系统智能化的推动。
随着电力系统规模的不断扩大和电力负荷的增加,传统变电站已经无法满足对电能质量、供电可靠性和故障处理能力的要求。
智能变电站的出现,为电力系统的智能化提供了重要支撑。
智能变电站通过引入先进的通信技术和自动化控制系统,实现了对电力设备的在线监测和维护,提高了变电站的运行效率和可靠性。
其次,智能变电站的发展受到新能源发电的影响。
随着清洁能源的快速发展,越来越多的分布式和可再生能源接入到电网中,对电力系统的运行和管理提出了新的要求。
智能变电站通过灵活运行模式的切换和对新能源发电进行综合管理,为电力系统的安全稳定运行提供了保障。
再次,智能变电站的发展受到智能电网建设的支持。
智能电网是指基于信息技术、通信技术和自动化技术等手段,实现电网的智能化运行和管理。
智能变电站作为智能电网的重要组成部分,承担了智能电网与传统电网之间的衔接任务,并为智能电网的发展提供了技术支持和保障。
目前,智能变电站在我国的发展现状较为滞后。
虽然我国电力系统的规模庞大,但智能变电站的普及程度相对较低。
这主要是由于以下几个原因。
首先,智能变电站的建设和改造成本较高。
智能变电站涉及到大量的设备更新和技术改造,需要投入大量的资金和人力资源。
由于我国电力系统的规模较大,对智能变电站的需求也很庞大,但受制于资金和技术等方面的限制,智能变电站的普及进程较慢。
其次,智能变电站的标准和技术体系尚未完善。
智能变电站的建设和运营涉及到多个方面的技术和标准,需要进行统一和规范。
目前,我国对智能变电站的标准和技术体系的研究仍处于起步阶段,缺乏统一的标准和规范,使得智能变电站的建设和运营存在一定的困难。
最后,智能变电站的运营和管理模式尚需完善。
智能变电站的运营和管理需要借助先进的信息技术和通信技术等手段,但目前我国电网的运营管理模式还主要采用传统的人工运维方式,缺乏自动化和智能化的支持。
这导致智能变电站的运行效率和可靠性无法得到充分的发挥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第37卷第7期电力系统保护与控制Vol.37 No.7 2009年4月1日 Power System Protection and Control Apr.1, 2009 数字化变电站新技术的发展现状及其对行业影响浅探陈天香1,王若醒2,魏勇2(1.江苏南通供电公司,江苏南通 226006;2.许继电气技术中心,河南许昌 461000摘要:数字化变电站是变电站未来发展的方向,四大领域的技术创新是数字化变电站得以发展和突破的基石。
新技术的应用将给传统行业带来巨大的冲击和深远的影响,该文试对此做出分析和探讨,以图抛砖引玉。
关键词: 数字化变电站; 新技术; 行业影响New technology development status of digital substation and its effect to industryCHEN Tian-xiang1, WANG Ruo-xing2, WEI Yong2(1. Nantong Power Company Co., Nantong 226006, China; 2.XJ Electric Technology Center,Xuchang 461000,China Abstract: Digital substation is a developing direction in the future,the technology innovation of the four domain is the base of digital substation development.The application of new technology will make traditional industry large affection and impact.This paper try to analyze and discuss.Key words: digital substation; new technology; effect to industry中图分类号: TM76 文献标识码:A 文章编号: 1674-3415(200907-0086-050 引言变电站综合自动化系统技术经过10余年的发展,目前已经基本成熟,得到了广泛的工程应用,获得了巨大的成功。
但是综自系统采用传统的互感器及开关设备,需要铺设大量的采集和控制、信号等二次电缆,数据采集环节冗余,各子系统的功能重复配置,不仅造成浪费,而且与一次设备的电缆接线复杂,系统可靠性受二次电缆影响比较大,二次回路的检修工作量很大,装置间缺乏整体协调和优化,信息对象未统一建模导致信息共享难,系统扩展复杂。
为了解决以上问题,数字化变电站各项新技术得到了飞速发展和应用。
数字化变电站是以IEC61850系列标准为先导牵引,以OCVT/ECVT等非常规互感器、智能断路器技术发展为突破口,以网络技术发展为支撑的系统化工程。
与传统变电站相比,具有八大主要技术特征[1],引入了过程层的概念,信息应用模式发生了根本变化,基于网络的信息交互更加广泛,更加智能化的一次设备与二次设备的界限变得模糊,一次和二次设备实现了初步的融合,这也符合未来的技术发展趋势。
IEC61850系列标准、非常规互感器、智能断路器、高速工业以太网这四大新技术领域的创新就像四个有力的引擎推动着传统的变电站自动化系统进入到全新的数字化变电站发展阶段。
由于历史的原因,四大技术领域的发展也是不均衡的,是有先后顺序的;国内和国外的侧重点也有差异。
另外,根据历史的经验,新技术领域的发展也必将对传统行业(如电网生产运营管理、电力装备制造的管理模式或市场格局带来巨大冲击和深远的影响,本文试对几大技术领域的发展现状及其对行业的影响进行分析和探讨,以图抛砖引玉。
1 四大新技术的发展现状1.1 IEC61850通信及建模标准[2]IEC61850通信及建模体系不同于以往的传统规约,是一套完整的体系,包含了10个标准文本;自2004年第一版颁布后,我国电力标委会积极跟踪研究并转化为国内DL/T 860系列行业标准,并与2007年11月提出了《DL/T860系列标准工程化实施技术规范》,以规范在我国的实际工程应用。
IEC TC57工作组也在不断地补充和完善IEC61850系列标准,推出的IEC61850-9-2 / LE版是 IEC61850-9-2 的更为明确定义的限定性、实例化的配套规范; IEC61850的第二版即将于2009年发布,这一新版陈天香,等数字化变电站新技术的发展现状及其对行业影响浅探- 87 -本主要是解决第一版存在的问题,如标准内容本身前后不一致的、表述模糊导致各厂家理解不一致的、被厂家在开发产品的过程中发现且TC57工作组确认是需要解决的问题等,针对SCL的应用情况还拓展出了SED、IID等相关标准,还规范了变电站与变电站间,变电站与控制中心间的IEC61850-90标准,此外还会增加一些新的逻辑节点类。
未来的第三版将重点关注通信的安全性,在其它领域如风电,水电,新能源发电等领域的扩展应用。
由于制定该系列标准时采用了先进的面向对象建模理念和分层、映射的策略,使该系列标准与传统的其他规约标准相比具有突出的优势。
对变电站自动化及其相近系统通过统一建模的方式规范信息内容,这部分标准采用了通信服务和通信映射相分离的策略,确保了其内容的长期稳定性,通过分层和映射的策略使得标准能够适应网络通信等技术的快速发展,内核是稳定的,外部的大多数变化只影响系列标准的一小部分,使该系列标准获得更好的稳定性与适应性。
目前,已有越来越多的新建变电站监控系统要求支持IEC61850 MMS协议,对间隔层的逻辑互锁功能要求用GOOSE机制来实现。
IEC 61850系列标准适用的业务领域也在拓展,比如风电等新能源领域、低压智能配电、工业自动化等领域,相关的探索和研究应用也在快速开展。
可以预见IEC 61850未来会扩展到更广泛的工业领域,真正实现“一个世界,一个标准,一个技术”的伟大构想。
1.2 光电互感器传统电磁感应式电流和电压互感器除了固有的磁饱和、铁磁谐振、动态范围小、暂态特性差等缺点外,随着现代电力系统逐渐向大容量、高电压等级方向发展,传统互感器的绝缘、体积、重量和安装等问题也越来越突出[3]。
对非常规互感器的需求更加迫切,这也是国内外关注的热点之一。
IEC 60044-7/8是电子式互感器的国际标准,定义了设计要求、接口标准和测试要求等。
光效应的电流/电压互感器(OCT/OVT和罗氏线圈电流互感器是两大主流技术。
由于成本的原因,OCT/OVT应用于110 kV及以上有优势,OCT 在高压系统中获得突破的可能性最大;罗氏线圈电流互感器应用于中低压为宜,国内也有厂家研制出了组合式小信号互感器,直接安装在紧凑型开关柜中。
有关传感器的几个关键问题如其电子部分的寿命问题、与二次保护测量等设备接口问题已解决,工艺问题和环境适应性问题上也已有突破,已从实验室阶段逐渐走上工程应用。
国外公司在123 kV、170 kV、345 kV、420 kV、525 kV系统中进行了大范围的工程试验,积累了一定的运行经验。
我国有厂家解决了法拉第磁旋光效应光学电流互感器精度温漂问题和运行稳定性问题,通过了武汉高压研究院的型式试验,并在多个电压等级(最高500 kV上已挂网运行。
但由于运行经验少,要得到用户广泛认可还需要假以时日,在有些科研项目中采用了新型光电式互感器,输出的是数字量,集中到合并单元再通过IEC61850-9-1/2上送到间隔层的保护测控装置去,同时基于GOOSE通信机制实现网络跳合闸及信号传输。
但是也有不少地方采取保守的策略,还采用传统的互感器,只在站控层规约上采用IEC61850,在过程层用智能接口通过GOOSE报文实现网络跳合闸及信号传输。
1.3 智能断路器技术IEC 62603标准中定义了智能断路器:“具有较高性能的断路器和控制设备,配有电子设备、传感器和执行器,不仅具有断路器的基本功能,还具有附加功能,尤其在监测和诊断方面。
”随着电力电子技术的应用使得操作能量大幅减少,开闭断路器可由电力电子和微机型智能接口来完成,代替常规机械结构的辅助开关和辅助继电器,并可按电压波形控制跳合闸角度,精确控制过程时间,减少瞬时过电压幅值,保障电网安全,也能大大延长开关设备寿命,经济效益可观;再配上可监测设备缺陷和故障并告警的独立的新型传感器,实现在线状态检修,将上述功能集成在一起实现的断路器就是智能断路器。
近年来国外制造商陆续推出智能断路器相关技术,基于ECT/EVT的组合电器未来的前景看好。
由于电力系统断路器发生故障后造成的破坏和影响巨大,所以对断路器的动作速度和可靠性要求都极高,在实际的应用过程非常慎重,因而该领域的进展相对缓慢。
利用IEC61850 GOOSE通信机制实现网络化的跳闸功能和设备本体状态信息的网络化传输,这一块的应用进展还比较快。
1.4 网络通信技术从早期的串行通信到现场总线,从现场总线再到工业以太网通信,近年来工业以太网技术取得了飞速的发展,带宽的提高和交换技术等新技术的发展,使通信实时性得到了保障:IEEE802.3x全双工技术减少通信冲突。
IEEE802.1p优先级队列保障重要信息准时到达。
IEEE802.1QVLAN分区隔离提高通信效率。
- 88 - 电力系统保护与控制IEEE802.1w快速生成树协议构建网络冗余结构,提供快速恢复的能力。
IGMPSnooping/组播过滤保证数据只被需要的设备接收,降低网络带宽占用,提高了设备的响应性能。
在网络化的IEC61850数字化变电站系统中,基于上述技术的交换式以太网,解决了基于HUB 的共享式以太网冲突检测机制造成的丢包问题和交换式以太网的实时性不确定问题,以太网交换机除了用于构建各种网络架构和传输各种控制命令和监测数据以外,还通过网络传输间隔设备之间的跳闸命令和闭锁信号。
因此,对工业以太网交换机在IEC61850系统中的应用提出更高的要求,它已经成为组成变电站综自系统其中极为重要的设备。
但是在目前已有的实际工程应用中,这些交换机还存在着部分问题,如电源损坏率高,部分严酷情况下会出现丢包现象等,在设计中必须考虑采用符合IEC61850-3标准的产品,应满足与安装在变电站间隔层就地的保护测控装置一样的环境、机械以及电磁兼容的要求。
通信容量更大、实时性更高、可靠性更高的需求影响着未来通信技术的发展方向。
1.5 对应用中若干问题的探讨争议较大的是光学互感器的精度稳定性问题、间隔层功能下放后依赖于网络通信的可靠性和实时性问题、数据同步问题。
由于对OCT的精度稳定性的担心,法拉第效应光学互感器的应用在谨慎地推进。