FLUENT培训教材04求解器设置
fluent教程

fluent教程Fluent是一款由Ansys开发的计算流体动力学(CFD)软件,广泛应用于工程领域,特别是在流体力学仿真方面。
本教程将介绍一些Fluent的基本操作,帮助初学者快速上手。
1. 启动Fluent首先,双击打开Fluent的图形用户界面(GUI)。
在启动页面上,选择“模拟”(Simulate)选项。
2. 创建几何模型在Fluent中,可以通过导入 CAD 几何模型或使用自带的几何建模工具来创建模型。
选择合适的方法,创建一个几何模型。
3. 定义网格在进入Fluent之前,必须生成一个网格。
选择合适的网格工具,如Ansys Meshing,并生成网格。
确保网格足够精细,以便准确地模拟流体力学现象。
4. 导入网格在Fluent的启动页面上,选择“导入”(Import)选项,并将所生成的网格文件导入到Fluent中。
5. 定义物理模型在Fluent中,需要定义所模拟流体的物理属性以及边界条件。
选择“物理模型”(Physics Models)选项,并根据实际情况设置不同的物理参数。
6. 设置边界条件在模型中,根据实际情况设置边界条件,如入口速度、出口压力等。
选择“边界条件”(Boundary Conditions)选项,并给出相应的数值或设置。
7. 定义求解器选项在Fluent中,可以选择不同的求解器来解决流体力学问题。
根据实际情况,在“求解器控制”(Solver Control)选项中选择一个合适的求解器,并设置相应的参数。
8. 运行仿真设置完所有的模型参数后,点击“计算”(Compute)选项,开始运行仿真。
等待仿真过程完成。
9. 后处理结果完成仿真后,可以进行结果的后处理,如流线图、压力分布图等。
选择“后处理”(Post-processing)选项,并根据需要选择相应的结果显示方式。
10. 分析结果在后处理过程中,可以进行结果的分析。
比较不同参数的变化,探索流体流动的特点等。
以上是使用Fluent进行流体力学仿真的基本流程。
ANSYSFLUENT培训教材之求解器设置

Calculate a solution
Modify solution parameters or grid
Check for convergence
Yes
No
Check for accuracy
No
Yes Stop
A Pera Global Company © PERA China
求解器选择
中有两种求解器 – 压力基和密 度基。
求解过程概览
求解参数 选择求解器 离散格式 初始条件 收敛 监测收敛过程 稳定性 设置松弛因子 设置 加速收敛 精度 网格无关性 自适应网格
Set the solution parameters
Initialize the solution
Enable the solution monitors of interest
启动 初始化 压力基求解器: 密度基求解器: 当选择密度基求解器后在 里可见
在粗网格上用多重网格求解 通过 命令来设置
A Pera Global Company © PERA China
培训教材 第四节:求解器设置
A Pera Global Company © PERA China
概要
使用求解器(求解过程概览) 设置求解器参数 收敛 定义 监测 稳定性 加速收敛 精度 网格无关性 网格自适应 非稳态流模拟(后续章节中介绍) 非稳态流问题设置 非稳态流模型选择 总结 附录
A Pera Global Company © PERA China
初始化
要求所有的求解变量有初始 值
更真实的初值能提高收敛稳 定性,加速收敛过程.
有些情况需要一个好的初值
在特定区域对特定变量单独 赋值
fluent求解器资料

压力基求解器在压力基求解器中,控制方程是依次求解的。
压力基求解器是从原来的分离式求解器发展来的,按顺序仪次求解动量方程、压力修正方程、能量方程和组分方程与其他标量方程,如湍流方程等,和之前不同的是,压力基求解器还增加了耦合算法,可以自由在分离求解和耦合求解之间转换,需要注意的是,在压力基求解器中提供的几个物理模型,在密度基求解器中是没有的。
这些物理模型包括:流体体积模型(VOF),多项混合模型,欧拉混合模型,PDF燃烧模型,预混合燃烧模型,部分预混合燃烧模型,烟灰和NOx模型,Rosseland辐射模型,熔化和凝固等相变模型,指定质量流量的周期流动模型,周期性热传导模型和壳传导模型等。
与密度基求解器的区别:区别1:压力基求解器主要用于低速不可压缩流动的求解,而密度基求解器则主要针对高速可压缩流动而设计,但是现在两种方法都已经拓展成为可以求解很大流动速度范围的求解方法。
两种求解方法的共同点是都使用有限容积的离散方法,但线性化和求解离散方程的方法不同。
区别2:密度基求解器从原来的耦合求解器发展来的,同时求解连续性方程、动量方程、能量方程和组分方程。
然后依次再求解标量方程。
(注:密度基求解器不求解压力修正方程,因为其压力是由状态方程得出的)。
密度基求解器收敛速度快,需要内存和计算量比压力基求解器要大!特点:适用于压力基但不适用于密度基的模型:(1)空化模型(2) VOF模型(3) Mixture多相流模型(4) Eulerian多相流模型(5)非预混燃烧模型(6)预混燃烧模型(7)部分预混燃烧模型(8)组合PDF传输模型密度基求解器(Coupled Sover)是同时fluent求解连续方程、动量方程、能量方程与组分输运方程的耦合方程组,然后逐一地求解湍流标量方程。
由于控制方程是非线性的,且相互之间是耦合的,因此,在得到收敛解之前,要经过多轮迭代:1)根据当前的解的结果,更新所有流动变量。
如果计算刚刚开始,则用初始值来更新。
ANSYS FLUENT培训教材之求解器设置

路漫漫其修远兮, 吾将上下而求索
压力速度耦合
压力基求解器通过连续性方程和动量方程导出压力方程或压力修 正方程
FLUENT中有四种耦合方式
– Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
• 默认算法,稳健性好
– SIMPLE-Consistent (SIMPLEC)
隐式方法一般优于显式,因为其对时间步有严格的限制 显式方法一般用于流动时间尺度和声学时间尺度相当的情况(如高马
赫激波的传播)
路漫漫其修远兮, 吾将上下而求索
离散化(插值方法)
存储在单元中心的流场变量必须插值到控制体面上
对流项的插值方法有: – First-Order Upwind – 易收敛,一阶精度。 – Power Law –对低雷诺数流动 ( Recell < 5 )比一阶格式更精确 – Second-Order Upwind – 尤其适用流动和网格方向不一致的四面体/三 角形网格,二阶精度,收敛慢 – Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) – 对非结构网格,局部三阶精度,对二次流、旋转涡、力等 预测的更精确 – Quadratic Upwind Interpolation (QUICK) – 适用于四边形/六面体以及 混合网格,对旋转流动有用,在均匀网格上能达到三阶精度
Initialize the solution
Enable the solution monitors of interest
Calculate a solution
Modify solution parameters or grid
fluent设置

FLUENT设置(1)读入网格,file→read→case;(2)检查网格,确保最小体积为正,grid→check;(3)缩放网格,grid→scale;(4)光顺/交换网格,grid→smooth/swap,直至number swapped为0;(5)求解器设置,define→models→solver,都是默认值(设置为分离求解器、隐式算法、三维空间、稳态流动、绝对速度、压力梯度为单元压力梯度计算);(6)设置计算模型,define→models→viscous,选用标准k-ε模型或RNG k-ε,其他保持默认设置;(7)设置运行环境,define→operating condition,参考压力选用默认值,不计重力,位置选在泵进口边;首先display→grid观察来流方向(对于叶轮要运用右手准则)然后将grid→scale中来流方向的值复制给define→operating condition(8)设置转速单位,define→units,改为rpm;(9)定义材料,define→materials,选择water-liquid即清水(若Fluent Fluid Materials中没有water-liquid,则点击Fluent Database在Fluent Fluid Materials中选择water-liquid);(10)设置交界面,define→grid interface;(11)定义边界条件,define→boundary conditions;如图部分典型边界条件设置蜗壳叶轮叶轮壁面蜗壳壁面进口出口(12)设置求解参数,solve→controls→solution,选择SIMPLE算法;(13)监视残差,solve→monitors→residual,修改收敛精度为10-5,并显示残差,solve→monitors→surface,同时监测进出口面上的总压;(14)初始化流场,solve→initialize→initialize,在Solution initialization选项中的reference frame中选择relative to cell zone,all zones;(15)保存case文件,file→write→case;(16)开始迭代计算,solve→iterate。
FLUENT中的求解器、算法和离散方法

FLUENT中的求解器、算法和离散方法作为一个非科班出身的CFD工程师,一开始常常被CFD软件里各种概念搞的晕头转向。
最近终于静下心来看了看CFD理论的书,理清了一些概念。
就此写一遍博文,顺便整理一下所学内容。
I 求解器:FLUENT中求解器的选择在如下图所示界面中设置:FLUENT中的求解器主要是按照是否联立求解各控制方程来区分的,详见下图:II 算法:算法是求解时的策略,即按照什么样的方式和步骤进行求解。
FLUENT中算法的选择在如下图所示的界面中设置:这里简单介绍一下SIMPLE、SIMPLEC、PISO等算法的基本思想和适用范围。
SIMPLE算法:基本思想如前面讲求解器的那张图中解释分离式求解器的例子所示的一样,这里再贴一遍:1.假设初始压力场分布。
2.利用压力场求解动量方程,得到速度场。
3.利用速度场求解连续性方程,使压力场得到修正。
4.根据需要,求解湍流方程及其他方程5.判断但前计算是否收敛。
若不收敛,返回第二步。
简单说来,SIMPLE算法就是分两步走:第一步预测,第二步修正,即预测-修正。
SIMPLC算法:是对SIMPLE算法的一种改进,其计算步骤与SIMPLE算法相同,只是压力修正项中的一些系数不同,可以加快迭代过程的收敛。
PISO算法:比SIMPLE算法增加了一个修正步,即分三步:第一步预测,第二步修正得到一个修正的场分布,第三步在第二步基础上在进行一侧修正。
即预测-修正-修正。
PISO算法在求解瞬态问题时有明显优势。
对于稳态问题可能SIMPLE 或SIMPLEC更合适。
如果你实在不知道该如何选择,就保持FLUENT的默认选项好了。
因为默认选项可以很好解决70%以上的问题,而且对于大部分出了问题的计算来说,也很少是因为算法选择不恰当所致。
III 离散方法:离散方法是指按照什么样的方式将控制方程在网格节点离散,即将偏微分格式的控制方程转化为各节点上的代数方程组。
FLUENT中离散方法的选择在如下图所示的界面中设置:简单介绍常用的几种离散方法:一阶迎风格式/ Fisrst order upwind:一阶迎风格式考虑了流动方向,可以得到物理上看起来合理的解。
学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
FLUENT培训教材04求解器设置

ANSYS FLUENT 培训教材 第四节:求解器设置安世亚太科技(北京)有限公司A Pera Global Company © PERA China概要使用求解器(求解过程概览) – 设置求解器参数 – 收敛 • 定义 • 监测 • 稳定性 • 加速收敛 – 精度 • 网格无关性 • 网格自适应 – 非稳态流模拟(后续章节中介绍) • 非稳态流问题设置 • 非稳态流模型选择 – 总结 – 附录A Pera Global Company © PERA China求解过程概览求解参数 – 选择求解器 – 离散格式 初始条件 收敛 – 监测收敛过程 – 稳定性 • 设置松弛因子 • 设置 Courant number – 加速收敛 精度 – 网格无关性 – 自适应网格A Pera Global Company © PERA ChinaSet the solution parametersInitialize the solutionEnable the solution monitors of interestCalculate a solutionModify solution parameters or gridCheck for convergence Yes NoCheck for accuracy Yes StopNo求解器选择FLUENT中有两种求解器 – 压 力基和密度基。
压力基求解器以动量和压力为 基本变量 – 通过连续性方程导出压力和 速度的耦合算法 压力基求解器有两种算法 – 分离求解器 – 压力修正和动 量方程顺序求解。
– 耦合求解器 (PBCS) –压力和 压力和 动量方程同时求解Pressure-Based ( g g (segregated) )Solve U-Momentum Solve V-Momentum Solve W-Momentum Solve Mass Continuity; Update Velocity Solve Mass & Momentum Solve Mass, , Momentum, Energy, SpeciesPressure-Based Density-Based ( (coupled) p ) ( (coupled) p )Solve Energy Solve Species Solve Turbulence Equation(s) Solve Other Transport Equations as requiredA Pera Global Company © PERA China求解器选择密度基耦合求解器– 以矢量方式求解连续性方程、动 量方程、能量方程和组分方程 – 通过状态方程得到压力 – 其他标量方程按照分离方式求解DBCS 可以显式或隐式方式求解– 隐式 – 使用高斯赛德尔方法求解 所有变量 – 显式: 用多步龙格库塔显式时间积 分法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面上的梯度用多级泰勒级数展开求得
A Pera Global Company © PERA China
压力的插值方法
使用分离算法时,计算面上压力的插值方法有:
– Standard – 默认格式,对于近边界的沿面法向存在大压力梯度流 动,精度下降(如果存在压力突变,建议改用 PRESTO! ) – PRESTO! – 用于高度旋流,包括压力梯度突变(多孔介质,风 扇模型等)或者计算域存在大曲率的面 – Linear – 当其他格式导致收敛问题或非物理解时使用 – Second-Order – 用于压缩流,不适用多孔介质、风扇、压力突 变以及VOF/Mixture 多相流 – Body Force Weighted – 用于大体积力的情况,如高瑞利数自然 对流或高旋流
ANSYS FLUENT 培训教材 第四节:求解器设置
安世亚太科技(北京)有限公司
A Pera Global Company © PERA China
概要
使用求解器(求解过程概览) – 设置求解器参数 – 收敛 • 定义 • 监测
• 稳定性
• 加速收敛 – 精度 • 网格无关性 • 网格自适应 – 非稳态流模拟(后续章节中介绍) • 非稳态流问题设置
Enabling pressurebased coupled solver (PBCS)
A Pera Global Company © PERA China
如何选择求解器
压力基求解器应用范围覆盖从低压不可压缩流到高速压缩流 – 需要的内存少 – 求解过程灵活 压力基耦合求解器 (PBCS) 适用于大多数单相流,比分离求解器性能更 好 – 不能用于多相流(欧拉)、周期质量流和 NITA – 比分离求解器多用1.5–2倍内存 密度基耦合求解器 (DBCS)适用于密度、能量、动量、组分间强耦合的 现象 – 例如: 伴有燃烧的高速可压缩流动,超高音速流动、激波干扰 隐式方法一般优于显式,因为其对时间步有严格的限制 显式方法一般用于流动时间尺度和声学时间尺度相当的情况(如高马 赫激波的传播)
使用残差历史曲线来监测收敛:
– 一般地,残差下降三个量级表示至少达到定性的收敛,流场的主 要特征已经形成。 – 压力基求解器的能量残差应下降到10-6 – 组分残差应下降到10-5
监测定量的收敛:
– 监测其他关键的物理量 – 确保全局的质量、能量、组分守恒。
A Pera Global Company © PERA China
– Second-Order Upwind – 尤其适用流动和网格方向不一致的四面体/三 角形网格,二阶精度,收敛慢
– Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) – 对非结构网格,局部三阶精度,对二次流、旋转涡、力等 预测的更精确
Solve Mass & Momentum
Solve Mass, Momentum, Energy, Species
Solve Energy Solve Species Solve Turbulence Equation(s) Solve Other Transport Equations as required
– 表现为残差曲线上扬(发散)或不下降 – 发散意味守恒方程的不平衡增加 – 没收敛的结果会误导使用者
解决方法 – 确保问题是物理合理的 – 用一阶离散格式计算一个初场 – 对压力基求解器,减少发散方程的 松弛因子 – 对密度基求解器,减少Courant 数 – 重新生成网格或加密质量差的网格
• 注意网格自适应不能提高扭曲度大 的网格质量
A Pera Global Company © PERA China
ห้องสมุดไป่ตู้MG 初始化
Full MultiGrid (FMG) 能用来创建更好的初场。
– FMG 初始化对包括大的压力梯度和速度梯度的复杂流动有用 – 在粗级别网格上求解一阶欧拉方程 – 可用于压力基或密度基求解器,但限于稳态问题
启动 FMG 初始化
监测收敛-残差
残差图显示何时收敛达到指定标准
All equations converged. 10-3
10-6
A Pera Global Company © PERA China
监测收敛-力和面上的变量
除了残差外,也可以监测升力、阻力和 力矩系数 边界或其他定义的面上的导出变量或函 数(如面积分)
• 非稳态流模型选择
– 总结 – 附录
A Pera Global Company © PERA China
求解过程概览
求解参数 – 选择求解器 – 离散格式
Initialize the solution Set the solution parameters
初始条件
收敛 – 监测收敛过程
Enable the solution monitors of interest
检查Case
Case Check 功能发现一些常 见的错误设置和不一致性
– 提供选择参数和模型的指导
用于可以直接应用或忽略这 些建议
A Pera Global Company © PERA China
收敛性
计算收敛时应该满足:
– 所有离散的守恒方程(动量、能量等)在所有的单元中满足指定 的误差或者结果随计算不再改变 – 全局的质量、动量、能量和标量达到平衡
– 缺省值对大多数问题都适用, 需要时你可以改变这些值
– 合适的设置最好通过经验获得
对密度基求解器,对耦合方程组 外的方程,松弛因子同样有用
A Pera Global Company © PERA China
修改 Courant 数
对密度基求解器,即使稳态问题, 也存在瞬态项
– 用Courant 定义时间步长
– 压力基求解器: /solve/init/fmg-initialization – 密度基求解器: 当选择密度基求解器后在 GUI里可见
FMG 在粗网格上用多重网格求解
– 通过 TUI 命令来设置
/solve/init/set-fmg-initialization
A Pera Global Company © PERA China
No
Stop
A Pera Global Company © PERA China
求解器选择
FLUENT中有两种求解器 – 压 力基和密度基。 压力基求解器以动量和压力为 基本变量 – 通过连续性方程导出压力和 速度的耦合算法 压力基求解器有两种算法 – 分离求解器 – 压力修正和动 量方程顺序求解。 – 耦合求解器 (PBCS) –压力和 动量方程同时求解
A Pera Global Company © PERA China
检查全局通量守恒
除了监测残差和变量历史外,也可以检查全局热和质量平衡 净通量差值(Net Results)应该小于通过边界最小通量的1%
A Pera Global Company © PERA China
残差与收敛
如果监测到求解已经收敛,但计算结果还在改变,或还有大的质 量/热量不平衡,这表示求解还未收敛 此时,你应该:
Calculate a solution
Modify solution parameters or grid
– 稳定性
• 设置松弛因子 • 设置 Courant number
Yes
Check for convergence No
– 加速收敛
精度 – 网格无关性 – 自适应网格
Yes
Check for accuracy
Pressure-Based (segregated)
Solve U-Momentum Solve V-Momentum Solve W-Momentum Solve Mass Continuity; Update Velocity
Pressure-Based Density-Based (coupled) (coupled)
• 默认算法,稳健性好
– SIMPLE-Consistent (SIMPLEC)
• 对简单问题,收敛更快,如层流
– Pressure-Implicit with Splitting of Operators (PISO)
• 对非稳态流动或者高扭曲度网格有用
– Fractional Step Method (FSM) 对非稳态问题
– Quadratic Upwind Interpolation (QUICK) – 适用于四边形/六面体以及 混合网格,对旋转流动有用,在均匀网格上能达到三阶精度
A Pera Global Company © PERA China
插值方法(梯度)
为了得到扩散通量、速度导数,以及高阶离散格式,都需要求解 变量的梯度
A Pera Global Company © PERA China
离散化(插值方法)
存储在单元中心的流场变量必须插值到控制体面上
对流项的插值方法有:
– First-Order Upwind – 易收敛,一阶精度。
– Power Law –对低雷诺数流动 ( Recell < 5 )比一阶格式更精确
对显式求解器:
– 稳定性约束限制了最大Courant 数
• 不能超过 2 (缺省为1) • 有收敛困难时减少 Courant 数
对隐式求解器:
– Courant 没有稳定性约束限制
• 缺省值为 5.
A Pera Global Company © PERA China
加速收敛
可以通过以下方法加速收敛:
A Pera Global Company © PERA China
求解器选择
密度基耦合求解器
– 以矢量方式求解连续性方程、动 量方程、能量方程和组分方程