求直导线中的感应电动势解

合集下载

大学物理课本答案习题 第十三章习题解答

大学物理课本答案习题 第十三章习题解答

习题十三13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。

已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。

导线框长为a ,宽为b ,求导线框中的感应电动势。

解:无限长直电流激发的磁感应强度为02IB rμ=π。

取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。

取回路的绕行正方向为顺时针。

由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。

通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭ 012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。

13-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中(B =0.5T )。

圆形线圈可绕通过圆心的轴O 1O 2转动,转速1600r min n -=⋅。

求圆线圈自图示的初始位置转过题图13-1题图13-2解图13-1/2π时,(1) 线圈中的瞬时电流值(线圈的电阻为R =100Ω,不计自感); (2) 圆心处磁感应强度。

大学物理竞赛电磁感应部分必做习题

大学物理竞赛电磁感应部分必做习题

电磁感应部分基本要求:1、掌握法拉第电磁感应定律,会用法拉第电磁感应定律求电动势;2、掌握动生电动势计算公式并会用该公式求相关习题;3、掌握感生电动势计算公式,会求两种类型的感生电动势;4、掌握自感、互感的定义,会求自感、互感系数以及自感、互感电动势;5、掌握通电线圈的储能公式,磁场能量计算公式,会计算无限长载流圆柱面、体限定区域内的能量;6、了解真空中麦克斯韦方程组中每个方程的物理意义;7、掌握平面电磁波的性质、能量密度及能流密度公式。

相关习题:一、计算题1.如图所示,一根很长的直导线载有交变电流0i I sin t ω=,它旁边有一长方形线圈ABCD ,长为l ,宽为b a -,线圈和导线在同一平面内,求:(1)穿过回路ABCD 的磁通量m Φ;(2)互感系数;(3)回路ABCD 中的感应电动势。

2.一长直载充导线,电流强度I=10A ,有另一变长L=0.2m 金属棒AB ,在载流导线的平面内以2m ·5-1的速度平行于导线运动。

如图所示:棒的一端离导线a=0.1m ,求运动导线中的电动势εAB ,哪点电势高?ACDlbia3.如图,长度为R 的均匀导体棒OA 绕O 点以角速度ω转动,均匀磁场B 的方向与转动平面垂直。

试求棒中动生电动势的大小并说明方向。

⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯A O ωB4.长直导线与矩形单匝线圈共面放置,导线与线圈的长边平行,矩形线圈的边长分别为a 、b ,它到直导线的距离为c (如图所示),当矩形线圈中通有电流t I I ωsin 0=时,求直导线中的感应电动势。

5.一圆环形线圈a 由1N 匝细线绕成,截面积半径为r ,放在另一个匝数为2N ,半径为R 的圆环形线圈b的中心,其中R r >>,两线圈同轴,求(1)两线圈的互感系数M ;(2)当线圈a 中的电流以dI dt变化时,求线圈b 中的感生电动势(习题16.13)。

6.一无限长直导线,截面各处的电流密度相等,电流为I 。

电磁感应解题技巧及练习

电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。

③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。

)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。

再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。

然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。

按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。

最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。

【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ϖ的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ϖ向右滑动,v ϖ与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ϖ不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=⋅=⋅,θtg x y ⋅=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg εϕθθ=-=-=⋅,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。

已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。

若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。

解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。

当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBϖv ϖ02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=⨯⋅v v v其方向沿BA 方向。

感应电动势的计算公式

感应电动势的计算公式

高中物理中关于感应电动势的计算公式有两个:E=△φ/△t和E= BLvsinθ。

对于这两个公式的真正物理含义及适用范围,有些学生模糊不清。

现就这一知识点做如下阐述。

(一)关于E=△φ/△t严格地说,E=△φ/△t不能确切反映法拉第电磁感应定律的物理含义。

教材中关于法拉第电磁感应定律是这样阐述的:电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。

而表达式△φ/△t所表示的物理意义应为:磁通变化量与发生此变化所用时间的比值,这与磁通变化率是不能等同的,只有在△t →0时,△φ/△t的物理意义才是磁通量的变化率。

由于中学阶段没有涉及微积分,故教材用E=△φ/△t 来表示法拉第电磁感应定律是完全可以的。

但必须清楚:用公式E=△φ/△t求得的感应电动势只能是一个平均值,而不是瞬时值。

因为△和△t 都是某一时间段内的对应量而不是某一时刻的对应量,所以直接用此公式求得的E为△t时间内产生的感应电动势的平均值。

(二)关于E=BLvsinθ公式E=BLvsinθ是由公式E=Δφ/Δt推导而来。

此公式适用于导体在匀强磁场中切割磁力线而产生感应电动势的情况,实质是由于导体的相对磁力线运动(切割磁力线),使回路所围面积发生变化,使得通过回路的磁通量发生变化从而产生感应电动势。

可以认为公式E=BLvsinθ 所表示的物理意义是法拉第电磁感应定律的一种特殊情况。

用此公式求得的E可为平均值也可为瞬时值:若v为某时间段内的平均速度,则求得的E为相应时间段内的平均感应电动势;若v为某时刻的瞬时速度,则求得的E为相应时刻的瞬时感应电动势。

一般用此公式来计算瞬时感应电动势。

(三)例题分析如图1,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r, 导轨的端点P、Q用电阻可忽略的导线相连,两道轨间距为L。

有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt ( k为常数,且k>0),一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直。

电磁学(赵凯华,陈熙谋第三版)第三章 习题解答

电磁学(赵凯华,陈熙谋第三版)第三章 习题解答
习题 ! ! "
" ’ , # ) !* ) !* ! (! ( ) +*) () "% ’ , # & !% $! % ・ ・ ・ $ ・ ・( & (& ! ) +* ( ) !*) (&! %&
" ! . ’% !( . ’%%% . $ " % . % " &% . % " ’% . ! " % ) $ ! " % . ’% !! ) $ ! " % #) " & ! . % " ’% . % " &%
(
!
!
)
习题 ! ! ""
新概念物理教程・电磁学$ 第三章 电磁感应 电磁场的相对论变换$ 习题解答
$ $ ! ! "# " 如本题图,一金属棒长为 % " &% ! 水平放置,以长度的 " # & 处为轴, 在水平面内 旋转, 每秒转两转。 已知该处地磁场在竖直方 向上的分量 $ " % % " &% "#, 求 &、 ’ 两端的电势 差。 解:在图中棒上轴的右边取一点 &(,使 它到轴的距离等于 & 点到轴的距离。 这两段导 相互抵消, 因此 ) & ’ %! ! &(’ %! ( ! * ") ・$# %! " " ! $ ( +,’ # ! +,&($# ) # # " !& !’ # %! * # ! * # * % " &% * "% * ( % " ’% ! % " "% # ) % %!’ " ( * "% % " #

第六章 电磁感应与暂态过程习题及答案

第六章  电磁感应与暂态过程习题及答案

第六章 电磁感应与暂态过程一、判断题1、若感应电流的方向与楞次定律所确定的方向相反,将违反能量守恒定律。

√2、楞次定律实质上是能量守恒定律的反映。

√3、涡电流的电流线与感应电场的电场线重合。

×4、设想在无限大区域内存在均匀的磁场,想象在这磁场中作一闭合路径,使路径的平面与磁场垂直,当磁场随时间变化时,由于通过这闭合路径所围面积的磁感通量发生变化,则此闭合路径存在感生电动势。

×5、如果电子感应加速器的激励电流是正弦交流电,只能在第一个四分之一周期才能加速电子。

√6、自感系数I L ψ=,说明通过线圈的电流强度越小,自感系数越大。

×7、自感磁能和互感磁能可以有负值。

×8、存在位移电流,必存在位移电流的磁场。

×9、对一定的点,电磁波中的电能密度和磁能密度总相等。

√ 10、在电子感应加速器中,轨道平面上的磁场的平均磁感强度必须是轨道上的磁感强度的两倍。

√11、一根长直导线载有电流I ,I 均匀分布在它的横截面上,导线内部单位长度的磁场能量为:πμ1620I 。

√12、在真空中,只有当电荷作加速运动时,它才可能发射电磁波。

√13、振动偶极子辐射的电磁波,具有一定方向性,在沿振动偶极子轴线方向辐射最强,而与偶极子轴线垂直的方向没有辐射。

×14、一个正在充电的圆形平板电容器,若不计边缘效应,电磁场输入的功率是⎪⎪⎭⎫⎝⎛=∙=⎰⎰C q dt d A d S P 22 。

(式中C 是电容,q 是极板上的电量,dA 是柱例面上取的面元)。

√二、选择题1、一导体棒AB 在均匀磁场中绕中点O 作切割磁感线的转动AB 两点间的电势差为: (A )0(B )1/2OA ωB (C )-1/2AB ωB (D )OA ωB A2、如图所示,a 和b 是两块金属板,用绝缘物隔开,仅有一点C 是导通的,金属板两端接在一电流计上,整个回路处于均匀磁场中,磁场垂直板面,现设想用某种方法让C 点绝缘,而同时让C 点导通,在此过程中(A )电路周围的面积有变化。

13 电磁学:第20、21章 习题课及部分习题解答

13 电磁学:第20、21章 习题课及部分习题解答

Zhang Shihui
2) dΨmA = M dI = 6.28×10−4 × (−50) = −3.14×10−6 (Wb/s)
dt
dt
3) ε = − dΨmA = 3.14 ×10−4 (V)
dt
题.一螺绕环单位长度上的线圈匝数为n =10匝/cm。环
心材料的磁导率μ =μ0。求在电流强度I为多大时,线圈 中磁场的能量密度w =1J/m3? (μ0 =4π×10-7 T·m/A)
正方向如箭头所示,求直导线中的感生电动势。
解:设直导线中通电流i,计算直导
线在线圈中产生的磁通量ϕ ;通过 y
计算互感系数M=ϕ/i,进而求感生电
A yDI
动势。
O
x E Cx
建立如图所示的坐标系,y沿直导线。 b
取如图所示的窄带作为微元 dS = 2 ydx
B
h
其中 y = tan 30ο = 3
解: ε ac = ε ab + εbc

εab
=

d Φ扇形Oab dt
=

d dt
⎛ ⎜⎜⎝

3 4
R2B
⎞ ⎟⎟⎠
=
3R2 d B 4 dt
第20、21章 电磁感应 电磁波
练习册·第20章 电磁感应·第8题
εbc
=

d ΦΔObc dt
= − d [− π R2
dt 12
B] =
π R2
12
解:根据充电方向知Æ极板间场 强竖直向下。
由于充电电流 i 的增加 dD向下且
变大。
dt
+i
P⊗H E

由方向成右手螺 旋定则。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

框的磁通量(由长直电流所提供)为 d

xl2 B d S
x

xl2 x
0I (t 2 r
) l1
d
r

0I (t) 2
l1
ln
x
x
l2
l1 v
a
其中x随时间变化的,而且 d x v d t xa
l2
x
设 t 时,二者相距为x.
d dt
xa

0l1 2
d I (t) d t
ln
x
l2 x

I (t)
d d
ln
x
l2 x

xa

0l1I (t) 2


ln
a
l2 a

a
v (a
l2
l2) ຫໍສະໝຸດ 6d dt
0l1I (t) 2


ln
a
l2 a

v a(a
l2
l2
)

5
2. 如图所示,真空中一长直导线通有电流 I(t) = I0 e -t ,式中为t 时间,
I0 、为正常量;另一长为l1、宽为l2的矩形导线框与长直导线平行共
面。设时刻 t 二者相距为a,矩形框正以速率v向右运动,求此时刻线
框内的感应电动势。
参考:习题16.10
I (t) I0et
解:取线框面积的正法向垂直纸面向里,则通过线
解:由各种原因在回路中所引起的感应电
动势,均可由法拉第电磁感应定律求解,




d dt


d dt

SB

d
S
但在求解时应注意下列几个问题:
1.回路必须是闭合的,所求得的电动势为回 路的总电动势。
2.应该是回路在任意时刻或任意位置处的 磁通量。它由

SB d S 计算。对于均匀磁场则有
迎着B的方向,取逆时针为线圈回路的正 向。由法拉第电磁感应定律,有



d dt


d dt
(BS1
cos1

BS2
cos2 )


dB dt
(S1
co
s1

S2
co
s2
)


B t
(S1
cos1

S2
cos2
)

4.91104V
0 ,说明感应电动势方向与回路正向一致。
et
通常用法拉第电磁感应定律来计算闭合路径中的感应电动势,得出的是整
个回路的总感应电动势,它可能是动生与感生电动势的总和。

(v B)dl
v B1l1
v B2l1
vl1(B1

B2 )

0 I 0 2
l1l2v a(l2 a)
et
B1

B2

I(t) 0 2
8 电磁波
变化的电场、变化 的磁场相互激发, 相互转化;以一定 的速度由近及远地 向周围空间传播 电磁波。
天线


E
E
H
H
H
i
CL
L’
能源
天线
3
1.如图所示,在磁感应强度B=7.610-4T 的均匀磁场中,放置一个 线圈。此线圈由两个半径均为3.7cm且相互垂直的半圆构成,磁感应 强度的方向与两半圆平面的夹角分别为620和280。若在 4.510-3S 的 时间内磁场突然减至零,试问在此线圈内的感应电动势为多少?

SB d S BS cos
其中 S cos S 为闭会回路在垂直于磁场的平面内的投影面积。
4
对于本题, Φ BS1 cos1 BS2 cos 2
1和2为两半圆形平面法线与B之间的夹角。
3.感应电动势的方向可由-d/dt来判定,
为方便起见,所取回路的正向(顺时针或 逆时针)应与穿过回路的B的方向满足右 螺旋关系,此时恒为正值,这对符号确 定较为有利。
(1 a

l2
1
) a
0I0 l2 et 2 a(l2 a)
在中固定a,仅对 t求导数得感生电动势
感生

0I0l1 2
ln a
l2 a
7
3. 在垂直图面的圆柱形空间内有一随 时间变化的匀强磁场,磁感应强度的 方向垂直图面向里。在图面内有两条 相交于O点的夹角为600的直导线Oa和 Ob,而O点则是圆柱形空间与图面的 交点。此外,在图面内另有一半径为r 半圆环形导线在上述两条直线上以速 度匀速滑动。的方向与∠aOb的平分 线一致,并指向O点(如图)。

L (v


B)

dl
L
Ek d l
3 感生电动势
L
Er

d
l


S
B t

d
S
1
4 自感和互感
电流强度变化率为一个单位时,在这个线圈中产生的 感应电动势等于该线圈的自感系数L。
互感系数M 表示两线圈之间产生互感能力的物理量.
互感取决于两个回路的几何形状,相对位置、两线圈 的匝数以及它们周围的磁介质的分布。
教学基本内容、基本公式
1 法拉第电磁感应定律
导体回路中的感应电动势 的大小 与穿过导体回路的磁通量的变化率成正比。
d
dt
导体运动切割磁力线,将产生动生电动势;而仅由磁场随时间变化产生
的电动势则称为感生电动势。这是感应电动势的两种类型。
电动势
2 动生电动势
Ek
i
dl
由法拉第电磁感应定律得



d dt

0l1I0 2


ln
a
l2 a

vl2 a(a
l2
)

e
t
I (t) I0et
l1 v a
l2
显然,它是大于零的,表明感应电动势在线框内 取顺时针方向,可以通过楞次定律进行验证。


0 I 0 2
l1
ln
a
l2 a
第16章 电磁场
基本要求
掌握法拉第电磁感应定律,楞次定律,电磁感应现象与能量守恒定律的关 系。动生电动势,用电子理论解释动生电动势。理解感生电动势,涡旋电 场,涡电流。理解自感与互感。能进行有关计算。理解位移电流,麦克斯 韦电磁场理论,麦克斯韦方程组织分形式及其物理意义。了解振荡电路。 电磁振荡。电磁波的产生和传播。了解电磁波的基本性质,电磁波的能流 密度,电磁波谱。
(1) D

d
S


q



dV
S

(3) E
L

d
l


S
V B t
d
S
(2) B

d
S

0
S
(4) H
L

d
l


S



d
S


S
D t

d
S
麦克斯韦电磁理论的基本思想有两点:
除静止电荷产生无旋电场外,变化的磁场产生涡旋电场; 除传导电流激发磁场外,变化的电场(位移电流)也激发涡旋磁场。
L

L
di dt
M di
dt
5 磁场的能量
自感磁能:
Wm

1 2
LI 2
磁场能量的一般公式
互感磁能 W12 M12I1I2
W

dV

V
1 2
BH
dV
6 位移电流
磁场能量密度: 1 BH
2
为了使安培环路定理具有更普遍的意义,麦克斯韦提 出位移电流假设。
2
7 麦克斯韦方程组
相关文档
最新文档