九年级数学上册第二章知识点汇总北师大版
九年级数学上册第2章一元二次方程2.1认识一元二次方程课件新版北师大版

含有未知数;⑤含有两个未知数;⑥化简后未知数的最高次数是4;⑦⑧
符合一元二次方程的定义.
2.已知x=1是一元二次方程x2+ax+b=0 的一个根,则代数式a2+2ab+b2的值
为
.
答案 1 解析 把x=1代入一元二次方程x2+ax+b=0中,整理得a+b=-1,所以a2+2ab +b2=(a+b)2=(-1)2=1.
解析 (1)把该方程化为(x+2)(x-5)=-7,列表如下:
x
2
3
4
(x+2)(x-5) 与-7比较
-12 小于-7
-10 小于-7
-6 大于-7
由表格可知,方程的这个正数解在3和4两个整数之间. (2)列表如下:
x
3.6
3.7
3.8
(x+2)(x-5)
-7.84
-7.41
-6.96
与-7比较
小于-7
初中数学(北师大版)
九年级 上册
第二章 一元二次方程
第二章 一元二次方程
知识点一 一元二次方程的概念
概念
三个特征
举例
一元二 只含有一个未知数的整 (1)是整式方程,即等号 x2-3=0,
次方程 式方程,
两边都是
x2-x-5=0
并且都可以化成ax2+bx+c 关于未知数的整式的
=0(a,b,c为常数,a≠0)的 方程;
)
A.x2-2=0 B.2x2-2x+3=4+2x+2x2
C.2x2-3 x +1=0
D.2x2- 1-3=0
x
北师大版九年级数学上册 第二章 一元二次方程1--10

如果设花边的宽为x m,那么地毯中央长方形图案的长为(8-2x)m
(5-2x)m,根据题意,可得方程 (8-2x)(5-2x)=18
问题二:观察下面等式 102+112+122=132+142.你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?
方法一:如果设五个连续整数中的第一个数为x,那么后面的四个数该如
分析:墙与地面是垂直的,因而墙、地面和梯子构成了直角三角形.已知,梯子的顶端距地面的垂直距离为8 m,所以由勾股定理可知,滑动前梯子底端距墙有6 m.
设梯子底端滑动xm,那么滑动后梯子底端距墙(6+x)m,根据题意,利用勾股定理,可得方程.(x+6)2+(8-1)2=102,即(x+6)2+72=
由上面三个问题,我们可以得到三个方程:
(8-2x)(5-2x)=18,
Ⅱ.讲授新课
我们设花边的宽度为xm,那么地毯中央长方形图案的长为(8-2x)m
设梯子底端滑动的距离x(m)满足方程(x+6)2+72=102.
把这个方程化为一般形式为 x2+12x-15=0.
那么你知道梯子底端滑动的距离是多少吗?即你能求出.小明认为底端也滑动了1 m,他的说法正确吗?为什么.底端滑动的距离可能是2 m吗?可能是3 m吗?为什么?
.你能猜出滑动距离x(m)的大致范围吗?
的整数部分是几?十分位是几?
因为梯子滑动的距离是正值,所以我选取了一些值,列表如下:
、你还有其他设计方案吗?请设计出来与同伴交流。
3)花园为三角形?(4)花园为梯形、本节内容的设计方案不只一种,只要合符条件即可。
AB
AC
、作答。
九年级数学上册第二章知识点汇总北师大版

九年级数学上册第二章知识点汇总北师大版
配方法的应用
对全部一元二次方程都合用,但特别对于二次项系数为
1,一次项系数为偶数的一元二次方程用配方法会更加简单。
【配方法】
一般步骤:
第一步:使方程左侧为二次项和一次项,右侧为常数项;
第二步:方程两边同时除以二次项系数;
第三步:方程两边都加前一次项系数一半的平方,把原方程化为
的形式;
第四步:用直接开平方解变形后的方程.
古希腊数学家丢番图在?算术?中就提到了一元二次方
程的问题,可是当时古希腊人还没有追求到它的求根公式,
只好用图解等方法来求解.在欧几里得的?几何本来?中,
形如x2+ax=b2的方程的图解法是:以和b为两直角边作
Rt
△ABc,再在斜边上截取BD=,那么AD的长就是所求方程的解
.
注意:
.一元二次方程得一般形式特色为方程右侧是0,方程左
边是对于x的二次整式。
2.“a≠0〞是一元二次方程的一个重要构成局部,也是
它的一个判断标准之一,但b、c能够为0。
假定没有出现bx,
那么b=0;没有出现c,那么c=0。
能够经过“去分母,去括号,移项,归并同类项〞等步骤获得一元二次方程得一般形式。
【因式分解法】
一般步骤:
第一步:将方程化为一般形式,使方程右端为0;
第二步:将左端的二次三项式分解为两个一次因式的积;
第三步:方程左侧两个因式分别为0,获得两个一次方
程,它们的解就是原方程的解.。
北师大版九年级数学上册第二章一元二次方程知识点解析含习题练习

第01讲_一元二次方程及其解法知识图谱一元二次方程知识精讲一.一元二次方程的概念一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程一般形式:2=0(0)ax bx c a++≠a为二次项系数,b为一次项系数,c为常数项()2210xx+=⨯()20ax bx c++=⨯()223253x x x--=⨯()()()121x x-+=√判断标准(1)只含有一个未知数(2)未知数的最高次数是2(3)整式方程方程(2)310mm x mx+++=是关于x的一元二次方程,则满足条件||2m=20m+≠北师大版九年级数学上册第二章一元二次方程知识点解析系数(1)一元二次方程的系数一定要化为一般式之后再看(2)20ax bx c ++=,当0a ≠时,方程是一元二次方程;当0a =且0b ≠时,方程是一元一次方程方程()13242+=+x x 整理为一般式后为2630x x ++=∴二次项系数为1,一次项系数为6,常数项是3二.一元二次方程的解一元二次方程的解(1)使方程左、右两边相等的未知数的值叫做方程的解(2)一元二次方程的解也叫做一元二次方程的根关于x 的一元二次方程()22110a x x a -++-=的一个根是0,将0x =代入方程,()2210010a a -⋅++-=,得1a =±三点剖析一.考点:一元二次方程的概念,一元二次方程的解.二.重难点:一元二次方程的一般形式,一元二次方程的解.三.易错点:1.确定方程是否为一元二次方程只需要检验最高次项—--二次项的系数是否为零即可;2.注意对于关于x 的方程20ax bx c ++=,当0a ≠时,方程是一元二次方程;当0a =且0b ≠时,方程是一元一次方程;3.一元二次方程的系数一定要化为一般式之后再看.概念例题1、下列方程中是关于x 的一元二次方程的是()A.2210x x+= B.20ax bx c ++=C.223253x x x --= D.()()121x x -+=【答案】D 【解析】该题考查的是一元二次方程的定义.只有含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程.A :2210x x +=变形后为()4100x x +==,是关于x 的四次方程;B :20ax bx c ++=中当仅当0a ≠时才是关于x 的二次方程;C :223253x x x --=变形后为250x --=,是关于x 的一次方程;D :()()121x x -+=变形后为230x x +-=,是关于x 的二次方程;故本题选D .例题2、方程()2310m m x mx +++=是关于x 的一元二次方程,则m =______.【答案】2【解析】该题考查的是一元二次方程的定义.由题可知,||2m =且20m +≠,所以2m =例题3、若方程()211m x x -+=是关于x 的一元二次方程,则m 的取值范围是__________.【答案】0m ≥且1m ≠【解析】由题意可得,二次项系数10m -≠,即1m ≠0m ≥,所以m 的取值范围是0m ≥且1m ≠.例题4、方程()13242+=+x x 的二次项系数是______,一次项系数是_______,常数项是_______【答案】1,6,3【解析】先把原方程整理成一元二次方程的一般形式得2630x x ++=,所以二次项系数为1,一次项系数为6,常数项是3随练1、若03)2(22=-+--x x m m 是关于x 的一元二次方程,则m 的值为_________。
北师大版数学九年级上册知识点总结

九年级上册数学各章节知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一 判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形。
四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
北师大版九年级(上)数学知识点归纳总结

第一章 特殊平行四边形第1节 菱形的性质与判定一、菱形的性质1、菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
(1)菱形的对边平行且相等。
(2)菱形的对角相等,邻角互补。
(3)菱形的对角线互相平分。
2、菱形是特殊的平行四边形,它具有一般平行四边形不具有的特殊性质。
(1)菱形的四条边相等。
(2)菱形的对角线互相垂直且每一条对角线平分一组对角。
【说明】①菱形是轴对称图形,对角线所在的直线是它的对称轴,所以菱形有两条对称轴。
②菱形是中心对称图形,两条对角线的交点是它的对称中心。
③菱形的两条对角线把菱形分成四个全等的直角三角形,所以菱形的面积等于对角线乘积的一半。
不仅如此,凡是对角线互相垂直的四边形的面积都可以用两条对角线乘积的一半来计算。
④菱形的面积有两种求法,第一种是等于对角线乘积的一半,第二种是底乘以高。
⑤菱形中如果有一个角为60°倍。
二、菱形的判定1、有一组邻边相等的平行四边形叫做菱形。
(定义)2、对角线互相垂直的平行四边形是菱形。
3、四条边都相等的四边形是菱形。
第2节 矩形的性质与判定一、矩形的性质1、矩形是特殊的平行四边形,它具有一般平行四边形的所有性质。
(1)矩形的对边平行且相等。
(2)矩形的对角相等,邻角互补。
(3)矩形的对角线互相平分。
2、矩形是特殊的平行四边形,它具有一般平行四边形不具有的特殊性质。
(1)矩形的四个角都相等,都是直角。
(2)矩形的对角线相等。
【说明】①矩形是轴对称图形,经过每组对边中点的直线是它的两条对称轴。
②矩形是中心对称图形,两条对角线的交点是它的对称中心。
③直角三角形斜边上的中线等于斜边的一半。
④若一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形。
⑤矩形的周长等于长与宽的和的2倍,矩形的面积等于长与宽的积。
二、矩形的判定1、有一个角是直角的平行四边形叫做矩形。
(定义)2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
北师大版九年级上册各章知识点

九年级上册各章知识点姚明勇第一章证明二知识归纳1.等腰三角形的性质性质(1):等腰三角形的两个底角.性质(2):等腰三角形顶角的、底边上的、底边上的高互相重合.2.等腰三角形的判定(1)定义:有两条边的三角形是等腰三角形.(2)等角对等边:有两个角的三角形是等腰三角形.3.等边三角形的判定(1)有一个角等于60°的三角形是等边三角形;(2)三边相等的三角形叫做等边三角形;(3)三个角相等的三角形是等边三角形;(4)有两个角等于60°的三角形是等边三角形.4.用反证法证明的一般步骤(1)假设命题的结论不成立;(2)从这个假设出发,应用正确的推论方法,得出与定义、公理、已证定理或已知条件相矛盾的结果;(3)由矛盾的结果判定假设不正确,从而肯定命题的结论正确.5.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的.6.勾股定理及其逆定理勾股定理:直角三角形两条直角边的平方和等于斜边的.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是三角形.7.线段的垂直平分线的性质定理及判定定理性质定理:线段的垂直平分线上的点到这条线段两个端点的距离.判定定理:到一条线段两个端点距离相等的点,在这条线段的上.[点拨] 线段的垂直平分线可以看作和线段两个端点距离相等的所有点的集合.8.三线共点三角形三条边的垂直平分线相交于,并且这一点到三角形三个顶点的距离.9.角平分线的性质定理及判定定理性质定理:角平分线上的点到这个角两边的距离.判定定理:在一个角的内部,且到角的两边相等的点,在这个角的平分线上.[注意] 角的平分线是在角的内部的一条射线,所以它的逆定理必须加上“在角的内部”这个条件.10.三角形三条角平分线的性质三角形的三条角平分线相交于一点,并且这一点到三条边的距离 .第三章 证明三一、四边形1. 知识结构如下图(1)弄清定义及四边形之间关系图1:(2)四边形之间关系图2:2、几种特殊的四边形的性质和判定:四边形正方形 两腰相等有一个角是直角直角梯形平行四边形 矩形 菱形正方 形等腰梯形 直角梯形梯形四边形3、一些定理和推论:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。
北师大版九年级数学(上册)重点知识点归纳整理

九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册第二章知识点汇总北师
大版
配方法的应用
对所有一元二次方程都适用,但特别对于二次项系数为1,一次项系数为偶数的一元二次方程用配方法会更为简单。
【配方法】
一般步骤:
第一步:使方程左边为二次项和一次项,右边为常数项;
第二步:方程两边同时除以二次项系数;
第三步:方程两边都加上一次项系数一半的平方,把原方程化为
的形式;
第四步:用直接开平方解变形后的方程
古希腊数学家丢番图在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解在欧几里得的《几何原本》中,形如x2+ax=b2的方程的图解法是:以和b为两直角边作Rt△AB,再在斜边上截取BD=,则AD的长就是所求方程的解注意:
一元二次方程得一般形式特点为方程右边是0,方程左边是关于x的二次整式。
2“a≠0”是一元二次方程的一个重要组成部分,也是
它的一个判断标准之一,但b、可以为0。
若没有出现bx,则b=0;没有出现,则=0。
3可以通过“去分母,去括号,移项,合并同类项”等步骤得到一元二次方程得一般形式。
【因式分解法】
一般步骤:
第一步:将已知方程化为一般形式,使方程右端为0;
第二步:将左端的二次三项式分解为两个一次因式的积;
第三步:方程左边两个因式分别为0,得到两个一次方程,它们的解就是原方程的解。