1二次函数与一元二次方程的关系

合集下载

九年级二次函数与一元二次方程的联系和区别

九年级二次函数与一元二次方程的联系和区别

二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。

当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。

⑤常数项c 决定抛物线与y 轴交点。

抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。

对称轴为直线 x =2ab-,。

对称轴与抛物线唯一的交点为抛物线的顶点P 。

特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。

当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。

2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。

Δ= b2-4ac=0时,抛物线与x 轴有1个交点。

Δ= b 2-4ac <0时,抛物线与x 轴没有交点。

二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。

④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系

(5)a+b+c的符号:因为x=1时,y=a+b+c,所以 a+b+c的符号由x=1时,对应的y值决定。 当x=1时,y>0,则a+b+c>0 当x=1时,y<0,则a+b+c<0 当x=1时,y=0,则a+b+c=0 (6)a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c 的符号由x=-1时,对应的y值决定。 当x=-1,y>0,则a-b+c>0 当x=-1,y<0,则a-b+c<0 当x=-1,y=0,则a-b+c=0
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
x
b 2、>0 2a
3、△=b² -4ac=0 4、C>0
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
b 2、=0 2a
x
3、△=b² -4ac=0 4、C=0
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
例(1)如果关于x的一元二次方程 x2-2x+m=0有两个 1 相等的实数根,则m=____ ,此时抛物线 y=x21 2x+m与x轴有 8x +c的顶点在 x轴 16 上,则c=____ .
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系

(2)取3和4的中间数3.5代入表达式 中试值.
当x=3.5时,y=3.52-2×3.5- 6=-0.75<0;
当x=4时,y>0,在3.5<x<4 范围内,
y随x的增大而增大,∴3.5<x2 <4.
• (3)取3.5和4的中间数3.75代入表达式 中试值.
• 当x=3.75时,y=3.752-2×3.75-6 =0.562 5>0; • 当x=3.5时,y<0.在3.5<x<3.75范 围内,
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
二次函数y=ax2+bx+c与x轴交点的横坐标就是 方程ax2+bx+c=0的根。
1 (中考·柳州)小兰画了一个函数y=x2+ax+b的图象 如图,则关于x的方程x2+ax+b=0的解是( D ) A.无解 B.x=1 C.x=-4 D.x=-1或x=4
• 2.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A (﹣1,p),B(4,q)两点,则关于x的不等式mx+n >ax2+bx+c的解集是 x<-1或x>4 .
• 3.二次函数y=x2+bx的图象如图,对称轴为直 线x=1,若关于x的一元二次方程x2+bx﹣t=0 (t为实数)在﹣1<x<4的范围内有解,则t的取
知识点 1 二次函数与一元二次方程的关系
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?

21.3.1二次函数与一元二次方程的关系

21.3.1二次函数与一元二次方程的关系
X1,0

), B( X2,0 )
思考:函数y=x2-6x+9和y=x2-2x+3与x轴的交点坐 标是什么?试试看!
想一想: 观察下列图象,分别说出一元二次方程x2-6x+9=0和x22x+3=0的根的情况.
y x2 6x 9 y 4 3 2 1 -3 -2 -1 0 1 2 3 x -1 -2 -3
那么,二次函数和一元二次方程又有什么关 系呢?
想一想:
如何求二次函数y=x2-2x-3的图象与x轴的交点坐标 呢?
设y=0, 得到一个一元二次方程 x2-2x-3=0,
解得 x1=3,x2=-1,
所以与x轴的交点坐标是(3,0),(-1,0).
观察y=x2-2x-3的图象与x轴的交点坐标
y 4 3 2
利用下列条件估计一元二次方程x2+2x-10=0的 根(精确到0.1)
x y=x2+2x-10 -4.1 -1.39 -4.2 -0.76 -4.3 -0.11 -4.4 0.56
x y=x2+2x-10
2.1 -1.39
2.2 -0.76
2.3 -0.11
2.4 0.56
例题精讲 2. 判断下列二次函数图象与x轴的交点情况 (1)y=x2-1; (2)y=-2x2+3x-9; (3)y=x2-4x+4; (4)y=-ax2+(a+b)x-b(a、b为常数, a≠0)
抛物线与X 轴的交点个数能不能用一元二次方 程的知识来说明呢? Y
b2-4ac<0
b2-4ac=0
b2-4ac>0
O
X
归纳: 二次函数y=ax2+bx+c的图象和x轴交点的坐标与一

二次函数与一元二次方程的联系

二次函数与一元二次方程的联系

二次函数与一元二次方程的联系二次函数和一元二次方程是高中数学中的重要概念,它们之间存在着密切的联系。

本文将从几何关系和代数关系两个方面来探讨二次函数与一元二次方程之间的联系。

一、几何关系1. 二次函数的几何意义:二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

它的图像是一条开口向上或向下的抛物线。

对称轴为x = -b/2a,顶点的纵坐标为c - b^2/4a。

抛物线在对称轴上下方呈现关于对称轴对称的特点。

2. 一元二次方程的几何意义:一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为常数且a ≠ 0。

它表示抛物线与x轴的交点位置,也就是方程的解。

如果方程有两个不相等的实数根,则抛物线与x 轴有两个交点;如果方程有一个实数根,则抛物线与x轴有一个切点;如果方程没有实数根,则抛物线与x轴没有交点。

3. 二次函数与一元二次方程的联系:二次函数的图像与一元二次方程的解之间存在着密切的联系。

通过解一元二次方程可以确定二次函数的图像与x轴的交点位置,而通过分析二次函数的图像可以得到一元二次方程的解的情况。

二次函数与一元二次方程的解是一一对应的关系。

二、代数关系1. 二次函数的表达式与一元二次方程:已知二次函数f(x) = ax^2 + bx + c,将其与y = f(x)进行等价转化,可以得到一元二次方程ax^2 + bx + c = y。

这意味着,我们可以通过二次函数的表达式来推导出一元二次方程。

反过来,已知一元二次方程ax^2 + bx + c = 0,将其与y = 0进行等价转化,可以得到二次函数f(x) = ax^2 + bx + c。

这意味着,我们可以通过一元二次方程来确定二次函数的表达式。

2. 二次函数的性质与一元二次方程的解:二次函数的性质可以帮助我们判断一元二次方程的解的情况。

比如,当二次函数开口向上且顶点在x轴上方时,一元二次方程有两个不相等的实数根;当二次函数开口向下且顶点在x轴下方时,一元二次方程无实数根;当二次函数开口向上且顶点在x轴上时,一元二次方程有一个实数根。

22.2.1二次函数与一元二次方程的关系

22.2.1二次函数与一元二次方程的关系

主备:丁玉波审核:姜瑞凤时间: 编号:2209课题22.2.1二次函数与一元二次方程的关系课型自学互学展示课学习目标1、知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx+c与x轴的公共点的个数.重点二次函数与一元二次方程的关系难点二次函数与一元二次方程的关系一、前置作业问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要飞行______s;(2)球的飞行高度能否达到20m?如能,需要飞行______s;(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?二、学一学观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___个交点,则一元二次方程x2-6x+9=0的根的判别式△=____0;(3)二次函数y=x2-x+1的图象与x轴_______公共点,则一元二次方程x2-x+1=0的根的判别式△______0.三、理一理(1).已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程______________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数的函数值为3的自变量x的值.抛物线y=ax2+bx+c与x轴有两个交点;小结:一般地,已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y =ax2+bx+c的值为m的自变量x的值.(2).二次函数y=ax2+bx+c与x轴的位置关系:①当△=b2-4ac>0时________________;②当△=b2-4ac=0时________________;③当△=b2-4ac<0时________________;三、尝试应用1.二次函数y=x2-3x+2,当x=1时,y=____;当y=0时,x=_____.2.二次函数y=x2-4x+6,当x=_____时,y =3.3.如图,一元二次方程ax2+bx+c=0的解为________4.如图,一元二次方程ax2+bx+c=3的解为_________________。

二次函数与一元二次方程

二次函数与一元二次方程

二次函数与一元二次方程【知识梳理】(一)二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)即:一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。

(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即:为顶点(2b a -,0)一元二次方程ax 2+bx+c=0有两个相等实根,122bx x a ==-240b ac -=(3)抛物线y =ax 2+bx +c 与x 轴没有公共点一元二次方程ax 2+bx+c=0没有实数根△=b 2-4ac <0.(二)二次函数关系式的确定⑴设一般式:y =ax 2+bx +c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.⑵设顶点式:y =a(x -h)2+k(a≠0).若已知条件是图象顶点及另一点,则设顶点式y =a (x -h )2+k (a ≠0).,将已知条件代人,求解并化为一般形式.:⑶设交点式(或两点式):y =a(x -x 1)(x -x 2)(a ≠0).若已知条件是图象与x 轴的两个交点及另一点,则设交点式y =a (x -x 1)(x -x 2)(a ≠0).将已知条件代人,求解并化为一般形式.【考点剖析】考点一 二次函数与方程例1.小兰画了一个函数y=x 2+ax+b 的图象如图,则关于x 的方程x 2+ax+b=0的解是( )A . 无解B .x=1C .x=-4D .x=-1或x=4例2.已知抛物线y=x 2﹣4x +m ﹣1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y=2x ﹣m 只有一个交点,求m 的值.例3.如图,二次函数y=x 2﹣6x+5的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 .例3图 变1图【变式练习】1.已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为 。

一元二次函数与一元二次方程间的关系

一元二次函数与一元二次方程间的关系

前 言一元二次函数是初中数学的重要内容,是初中过渡到高中的衔接点,则它在高中数学中也具有一定地位。

那如何将知识之间的联系与认识上的转变结合起来呢?在学生理解一元二次函数与一元二次方程的联系基础上,能够运用二次函数及其图象、性质去解决实际生活中的一些问题,进一步培养学生综合解题的能力;初步了解运用二分法求一元二次函数与x 轴交点的近似值思想;认识一个新的自变量取值范围,复数域;培养读者自主学习能力和创新能力。

一 一元二次函数与一元二次方程一元二次函数是初中数学的重要内容 ,是初中、高中数学知识的衔接点,是中考中数学的重点考察内容之一,要全面掌握一元二次函数的基础知识和基本性质,并能分析和解决有关一元二次函数的综合问题,合理利用一元二次函数与一元二次方程的联系是十分必要的[1]。

首先,从其形式上来看:一元二次函数()02≠++=a c bx ax y 与一元二次方程()002≠++=a c bx ax (其中a 、b 、c 为常数):① 它们都是关于x 的二次式,从上面我们可以看出,0=y 时,便是一个一元二次方 程。

所以,我们可以认为一元二次方程是一元二次函数的特殊形式,这是用函数的观点看一元二次方程。

② 条件上,都是在保证0≠a 的情况下,去认识一元二次函数和一元二次方程。

如果 0=a 时,再谈便无意义。

③ 从其表达式上可知道,无论是一元二次函数y 的值,还是一元二次方程的解x 应该都与系数a 、b 、c 有关。

其次,我们还可以从其内涵上来看:① 一元二次方程是求02=++c bx ax 时x 的某确定值,即方程的根。

实质是用a 、b 、 c 来表示x ,如将x 反代入表达式,则c bx ax ++2值为0.② 一元二次函数c bx ax y ++=2是研究变量y 随自变量x 的变化情况,反应的是y 的变化规律。

当x 变化时,y 也随着x 以c bx ax ++2变化。

而当0=y 时,求出方程02=++c bx ax 的两根1x 、2x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档