北理工5系微波技术基础实验报告

合集下载

微波技术实验报告

微波技术实验报告

微波技术实验报告一、实验目的1.了解微波技术的基本原理;2.掌握微波技术的实验操作方法;3.学习使用微波仪器对电磁波进行测量和分析。

二、实验器材与材料1.微波台;2.微波发射源;3.微波接收天线;4.微波功率计;5.微波衰减器;6.信号发生器;7.示波器。

三、实验原理微波技术是指在频率范围为3x10^9Hz至3x10^11Hz的电磁波中进行的技术应用。

在实验中,我们将使用微波发射源和接收天线来产生和接收微波信号,使用微波功率计来测量微波的功率,同时利用微波衰减器来调整微波的功率级别。

信号发生器用于产生不同频率的信号,并通过示波器来观察和记录波形。

四、实验步骤与结果1.首先接通微波台的电源,并调节微波发射源的频率和功率级别;2.将接收天线与发射源对准,调整天线角度,使得信号强度最大;3.使用微波功率计测量微波的功率,并记录结果;4.调整微波衰减器的衰减值,观察微波发射源输出功率的变化,并记录衰减值和功率值的对应关系;5.使用信号发生器产生不同频率的信号,并通过示波器观察和记录波形。

实验结果如下:1.频率为2.4GHz时,微波发射源的功率为6dBm;2.衰减值为20dB时,微波功率为0dBm;3.衰减值为30dB时,微波功率为-10dBm;4.信号发生器产生的频率为2.5GHz时,示波器上显示的波形为正弦波。

五、实验分析与讨论实验结果表明,微波功率与衰减值存在线性关系,当衰减值增大时,微波功率随之减小。

这是因为微波衰减器通过在传输线中引入衰减器元件,使微波信号的幅度减小。

当信号发生器产生的频率与微波发射源的频率接近时,示波器上观察到的波形为正弦波,说明微波信号正常传输。

六、实验结论通过本次实验,我们了解了微波技术的基本原理,掌握了微波技术的实验操作方法,并学会了使用微波仪器对电磁波进行测量和分析。

实验结果验证了微波功率与衰减值的线性关系,同时观察到了信号发生器产生的频率与微波发射源频率接近时的正弦波形。

微波技术基础实验报告

微波技术基础实验报告

微波技术基础实验报告实验一矢量网络分析仪的使用及传输线的测量班级:学号:姓名:华中科技大学电子信息与通信工程学院一实验目的学习矢量网络分析仪的基本工作原理;初步掌握A V365380矢量网络分析仪的操作使用方法;掌握使用矢量网络分析仪测量微带传输线不同工作状态下的S参数;通过测量认知1/4波长传输线阻抗变换特性。

二实验内容矢量网络分析仪操作实验A.初步运用矢量网络分析仪A V36580,熟悉各按键功能和使用方法B.以RF带通滤波器模块为例,学会使用矢量网络分析仪A V36580测量微波电路的S参数。

微带传输线测量实验A.使用网络分析仪观察和测量微带传输线的特性参数。

B.测量1/4波长传输线在开路、短路、匹配负载情况下的频率、输入阻抗、驻波比、反射系数。

C.观察1/4波长传输线的阻抗变换特性。

三系统简图矢量网络分析仪操作实验通过使用矢量网络分析仪A V36580测试RF带通滤波器的散射参数(S11、S12、S21、S22)来熟悉矢量网络分析仪的基本操作。

微带传输线测量实验通过使用矢量网络分析仪A V36580测量微带传输线的端接不同负载时的S 参数来了解微波传输线的工作特性。

连接图如图1-10所示,将网络分析仪的1端口接到微带传输线模块的输入端口,另一端口在实验时将接不同的负载。

四实验步骤矢量网络分析仪操作实验步骤一调用误差校准后的系统状态步骤二选择测量频率与功率参数(起始频率600 MHz、终止频率1800 MHz、功率电平设置为-10dBm)步骤三连接待测件并测量其S参数步骤四设置显示方式步骤五设置光标的使用微带传输线测量实验步骤一调用误差校准后的系统状态步骤二选择测量频率与功率参数(起始频率100 MHz、终止频率400 MHz、功率电平设置为-25dBm)步骤三连接待测件并测量其S参数1.按照装置图将微带传输线模块连接到网络分析仪上;2.将传输线模块接开路负载(找老师要或另一端空载),此时,传输线终端呈开路。

北京理工大学微波实验报告——无线通信系统

北京理工大学微波实验报告——无线通信系统

实验一无线通信系统(图像传输)实验一、实验目的1、掌握无线通信(图像传输)收发系统的工作原理;2、了解各电路模块在系统中的作用。

二、实验内容a)测试发射机的工作状态;b)测试接收机的工作状态;c)测试图像传输系统的工作状态;d)通过改变系统内部连接方式造成对图像信号质量的影响来了解各电路模块的作用。

三、无线图像传输系统的基本工作原理发射设备和接收设备是通信设备的重要组成部分。

其作用是将已调波经过某些处理(如放大、变频)之后,送给天馈系统,发向对方或转发中继站;接收系统再将空间传播的信号通过天线接收进来,经过某些处理(如放大、变频)之后,送到后级进行解调、编码等。

还原出基带信息送给用户终端。

为了使发射系统和接收系统同时工作,并且了解各电路模块在系统中的作用,通过实验箱中的天线模块和摄像头及显示器,使得发射和接收系统自闭环,通过图像质量来验证通信系统的工作状态,及各个电路模块的作用和连接变化时对通信或图像质量的影响。

以原理框图为例,简单介绍一下各部分的功能与作用。

摄像头采集的信号送入调制器进频率调制,再经过一次变频后、滤波(滤去变频产生的谐波、杂波等)、放大、通过天线发射出去。

经过空间传播,接收天线将信号接收进来,再经过低噪声放大、滤波(滤去空间同时接收到的其它杂波)、下变频到480MHz,再经中频滤波,滤去谐波和杂波、经视频解调器,解调后输出到显示器还原图像信号。

四、实验仪器信号源、频谱分析仪等。

五.测试方法与实验步骤(一)发射机测试图1原理框图基带信号送入调制器,进行调制(调幅或调频等调制),调制后根据频率要求进行上变频,变换到所需微波频率,并应有一定带宽,然后功率放大,通过天线发射或其它方式传播。

每次变频后,会相应产生谐波和杂波,一般变频后加响应频段的滤波器,以滤除谐波和杂波。

保证发射信号的质量或频率稳定度。

另外调制器或变频器本振信号的稳定度也直接影响发射信号的好坏,因而,对本振信号的质量也有严格的要求。

微波技术基础实验报告

微波技术基础实验报告

微波技术基础实验报告一、实验目的1.掌握微波信号的基本特性和参数的测量方法;2.了解微波器件的性能指标和测试方法;3.加深对微波传输线和网络理论的理解和实践。

二、实验设备和原理实验设备:微波信号源、功率计、波导固有模发生器、波间仪、反射器等。

实验原理:微波技术是指在高频范围内进行电磁波的传输、控制和处理的一套技术体系,其频率范围通常为0.3GHz至300GHz。

微波技术具有频率高、信息容量大和传输距离远等优点,广泛应用于通信、雷达、航空航天等领域。

三、实验步骤和内容1.根据实验要求,搭建实验电路;2.测量微波信号源输出功率,通过功率计测量微波信号源输出功率;3.测量波导波导的传输特性,通过波间仪测量微波信号通过波导时的传输特性;4.测量波导器件的特性,通过波间仪测量波导器件的特性;5.测量波导管中的固有模,通过固有模发生器和反射器测量波导管中的固有模。

四、实验结果和数据分析1.根据实验条件,测量到微波信号源输出功率为10dBm;2.根据测量结果,绘制出波导波导的传输特性曲线,分析其传输性能;3.根据实验条件,测量到波导器件的插入损耗为3dB;4.根据实验条件和测量数据,计算出波导管中的固有模的频率范围和衰减值,并进行数据分析。

五、实验结论1.微波信号源输出功率为10dBm;2.波导波导的传输特性曲线显示了其良好的传输性能;3.波导器件的插入损耗为3dB,插入损耗越小,器件性能越好;4.波导管中的固有模的频率范围为0.3GHz至3GHz,衰减值为-10dB。

六、实验总结通过本次实验,我深入理解了微波技术的基本特性和参数的测量方法,掌握了微波器件的性能指标和测试方法,并加深了对微波传输线和网络理论的理解和实践。

通过实验数据的测量和分析,我对微波技术的应用和性能有了更深入的认识,实验收获颇丰。

微波基本测量实验报告

微波基本测量实验报告

微波基本测量实验报告微波基本测量实验报告引言:微波技术是现代通信、雷达、天文学等领域的重要组成部分。

为了更好地了解微波的特性和应用,本实验旨在通过基本的测量实验,探索微波的传输、反射和干涉等现象,并对实验结果进行分析和讨论。

一、实验装置和原理本实验使用的实验装置包括微波发生器、微波导波管、微波检波器、微波衰减器等。

微波发生器产生微波信号,经由微波导波管传输到被测物体,再通过微波检波器接收并测量微波信号的强度。

微波衰减器用于调节微波信号的强度,以便进行不同强度的测量。

二、实验过程和结果1. 传输实验将微波发生器与微波检波器分别连接到微波导波管的两端,调节发生器的频率和功率,记录检波器的读数。

随着发生器功率的增加,检波器读数也相应增加,说明微波信号能够稳定传输。

2. 反射实验将微波发生器与微波检波器连接到微波导波管的同一端,将导波管的另一端暴露在空气中,调节发生器的功率,记录检波器的读数。

随着功率的增加,检波器读数也增加,表明微波信号在导波管与空气之间发生了反射。

3. 干涉实验将两根微波导波管分别连接到微波发生器和微波检波器上,将两根导波管的另一端合并在一起,调节发生器的功率,记录检波器的读数。

随着功率的增加,检波器读数呈现周期性的变化,表明微波信号在导波管之间发生了干涉。

三、实验结果分析1. 传输实验结果表明,微波信号能够稳定传输,说明微波导波管具有良好的传输特性。

传输实验中,微波信号的强度与发生器功率呈正相关关系,这与微波信号的传输损耗有关。

2. 反射实验结果表明,微波信号在导波管与空气之间发生了反射。

反射实验中,微波信号的强度与发生器功率呈正相关关系,说明反射信号的强度与输入信号的强度相关。

3. 干涉实验结果表明,微波信号在导波管之间发生了干涉。

干涉实验中,微波信号的强度呈现周期性的变化,这与导波管的长度和微波信号的频率有关。

当导波管的长度等于微波信号的波长的整数倍时,干涉现象最为明显。

四、实验总结通过本次微波基本测量实验,我们对微波的传输、反射和干涉等现象有了更深入的了解。

微波技术实验报告

微波技术实验报告

微波技术实验报告 Prepared on 22 November 2020微波技术实验指导书目录实验一微波测量仪器认识及功率测量实验目的(1)熟悉基本微波测量仪器;(2)了解各种常用微波元器件;(3)学会功率的测量。

实验内容一、基本微波测量仪器微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。

它主要包括微波信号特性测量和微波网络参数测量。

微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。

微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。

测量的方法有:点频测量、扫频测量和时域测量三大类。

所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。

图1-1 是典型的微波测量系统。

它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。

图 1-1 微波测量系统二、常用微波元器件简介微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件:(1)检波器(2)E-T接头(3)H-T接头(4)双T接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器三、功率测量在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。

微波元器件的认识螺钉调配器E-T分支与匹配双T波导扭转匹配负载波导扭转实验总结:在实验中我们认识了各种的微波元器件,让我们更好的理解课本上的知识,更是为了以后的实验做了准备。

实验二测量线的调整与晶体检波器校准实验目的(1)学会微波测量线的调整;(2)学会校准晶体检波器特性的方法;(3)学会测量微波波导波长和信号源频率。

微波技术基础实验指导书讲解

微波技术基础实验指导书讲解

微波技术基础实验报告所在学院:专业班级:学生姓名:学生学号:指导教师:2016年5月13日实验一微波测量系统的了解与使用实验性质:验证性实验级别:必做开课单位:学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。

2.学会测量设备的使用。

二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2.学习使用测量线四、基本原理:图1。

1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。

常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。

本实验采用DH1121A型3cm固态信号源。

2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。

它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。

它具有极高的灵敏度和极低的噪声电平。

表头一般具有等刻度及分贝刻度。

要求有良好的接地和屏蔽。

选频放大器也叫测量放大器。

3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。

开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。

4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。

衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。

实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。

一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。

微波技术实验报告

微波技术实验报告

一、实验目的1. 了解微波技术的原理和基本概念;2. 掌握微波元件的基本特性及测量方法;3. 学习微波网络分析仪的使用方法;4. 培养实际操作能力和团队协作精神。

二、实验原理微波技术是研究频率在300MHz至300GHz范围内电磁波的产生、传播、辐射、调制和接收等问题的学科。

本实验主要涉及微波元件、微波网络分析仪等设备的使用,以及微波参数的测量。

1. 微波元件:微波元件是微波技术中的基本组成部分,主要包括传输线、谐振器、滤波器、衰减器、隔离器、定向耦合器等。

这些元件在微波系统中起到传输、选择、匹配、隔离等作用。

2. 微波网络分析仪:微波网络分析仪是一种用于测量微波网络性能的仪器,可以测量网络的S参数、衰减、相位等参数。

三、实验内容1. 微波元件特性测量(1)实验目的:掌握微波元件的特性测量方法,了解其基本参数。

(2)实验原理:利用微波网络分析仪测量微波元件的S参数,通过S参数计算出微波元件的反射系数、传输系数、驻波比等参数。

(3)实验步骤:a. 将待测微波元件接入微波网络分析仪;b. 调整微波网络分析仪的频率,进行扫频测量;c. 记录微波元件的S参数;d. 分析S参数,计算反射系数、传输系数、驻波比等参数。

2. 微波网络分析仪的使用(1)实验目的:掌握微波网络分析仪的基本操作,了解其功能。

(2)实验原理:微波网络分析仪通过测量微波网络的S参数,可以分析微波网络的性能。

(3)实验步骤:a. 打开微波网络分析仪,进行自检;b. 设置测量参数,如频率、扫描范围等;c. 连接待测微波网络,进行测量;d. 分析测量结果,了解微波网络的性能。

3. 微波系统调试(1)实验目的:了解微波系统的调试方法,掌握调试技巧。

(2)实验原理:通过调整微波系统中的元件参数,使系统达到最佳性能。

(3)实验步骤:a. 连接微波系统,设置初始参数;b. 进行系统测试,观察性能指标;c. 根据测试结果,调整元件参数;d. 重复测试和调整,直至系统性能满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从实验数据可以看出, 增益压缩点在输入约为 2.5dBm 处, 1dB 则接收机的动态范围为: -75dBm~2.5dBm
六、 实验问题探讨
(1)详细描述图像传输系统中发射机/接受机的各个组成部分及其功能。 答:摄像头采集的信号送入调制器进行频率调制,在经过一次变频后,滤波,放大,通过天 线发射出去。经过空间传播,接受甜心将信号接收进来,在经过低噪放大,滤波,下变频到 480MHZ,再经中频滤波,滤去谐波和杂波,经视频解调器,解调后输出到显示器还原图像 信号。 (2)该发射机的输入功率、接收机增益与接受机灵敏度? 答:输入为中心频率为 2.2GHz 的微波信号,测量信号强度为-60dBm,测量仪器与测试点间 传输线损耗为-2.3dB,接收机中频放大后信号为中心频率 480MHz 的中频信号,测试信号强 度 为 -39dBm , 传 输 线 损 耗 为 -1dB( 用 了 另 一 个 传 输 线 ) 。 则 接 收 机 增 益 为 : -39-(-60)+2.3+1=23.3dB 。 测试接收机灵敏度为-88dBm,输入信号最小为-85dBm,此时传输线损耗为-3dB。 (3)若在接收机的低噪声放大器前加入衰减器,会明显改变图像质量,而在中频放大器前加
北京理工大学 5 系《微波技术基础》实验报告
入波导中, 听过没一根金属棒伸进波导内部长度的变化改变反射波的幅度和相位, 可以将传 输线从终端短路状态调整到终端匹配状态。
三、 实验步骤
1、首先按图 1 所示将测量系统安装好,然后接通电源和测量仪器的有关开关,观察微 波信号源有误输出只是。若有知识,当改变衰减量或移动测量闲谈整的位置是,测量放大器 的表头指示会有起伏的裱花, 这说明系统意在工作了。 但这并不一定是最佳工作状态。 例如, 若是反射式速调管信号源的话还应把它调到输出功率最大的震荡模式, 凭借和调节信号源处 的短路活塞,以使能量更有效地传向负载。若有必要,还可以调节测量线探头座内的短路活 塞,以获得较高地灵敏度,或者调节测量线探针深入波导的程度,以便较好地拾取信号的能 量(注意,深入太多会影响波导内的场分布) 。对于其他微波信号源也应根据说明书调到最 佳状态。有时信号源无输出,但测量放大器也有一定指示。这可能是热噪声或其他杂散场的 影响;弱信号原有输出,但测量放贷的指示不稳定或者当测量线探针移动式,岂止是不便, 均属不正常情况,应检查原因,使之正常工作。系统正常工作时,可调节测量放大器的有关 旋钮或可变衰减器的衰减量(衰减量不能为零,否则会烧坏晶体二极管,最低调到 5) ,是 测量放大器的指示便于读数。 2、 波导中横向场分布测量。 将图 1 中横向场分布测量线检波器输出连接至测量放大器, 将横向电场探针一直波导宽边中心位置, 调整测量放大器灵敏度和可变衰减器是测量放大器 表头读书处于 50~80 范围内(注意:切不要使表头满刻度,满刻度时会使指示针变形) 。 波导中 TE10 模横向场分布为预先函数,移动横向场分布测量线中电场探针从波导宽边 中心至边缘等间距都 5 个测量放大器读书 3、测量波导波长。将图 1 中纵向场分布测量线检波器输出连接至测量放贷,调整测量 放大器灵敏度和可变衰减器是测量放贷表头读书处于 50~80 范围内 (注意: 切不要使表头满 刻度,满刻度时会使指示针变形) 。 测量g 时应将系统终端短路(将终端三螺调配器的每一根金属棒推出波导,此时利用 三螺调配器的终端短路片实现终端短路) ,则系统呈纯驻波状态(理论上) ,其波导中场强的 纵向幅度如图 3 所示。当测量线的探针处于 Z1 和 Z2 位置时,测量放大器的指示为最小(理 论上为零) ,此时从测量线的刻度上即可求出波导波长g =2|Z2-Z1|。在实际测量中,由于受 设备的精度、灵敏度的限制,以及其他因素的影响,很难精确的确定 Z2 和 Z1 的位置。为提 高测试精度,可采用“平均法”测定它们的位置,如图 3 所示。为了确定 Z1,使在 Z1 两侧 (尽量地靠近 Z1)d1 和 d2 处测量放大器有相同的指示数,则 Z1=(d1+d2)/2,同理可得 Z2= (d3+d4)/2.这比直接去测 Z1 和 Z2 要精确些。
北京理工大学 5 系《微波技术基础》实验报告
实验一
一、 实验目的
1. 2.
无线通信系统(图像传输)实验
掌握无线通信(图像传输)收发系统的工作原理。 了解各电路模块在系统中的作用。
二、 实验内容
1. 2. 3. 4. 测试发射机的工作状态 测试接收机的工作状态 测试图像传输系统的工作状态 通过改变内部链接方式造成对图像信号质量的影响来了解各电路模块的作用。
北京理工大学 5 系《微波技术基础》实验报告
入衰减器,图像质量变差程度有限,为什么? 答:低噪声放大器位于放大链路输入端,针对给定的增益要求,引入尽可能小的内部噪声, 并在输出端获得最大可能的信噪比而设计的放大器。 而减小其前端输入功率会出现门限效应 使得信号被淹没在噪声中, 所以对图像质量影响较大。 而中频放大器前的图像信号已经经过 了射频、中频两级滤波,这时加入衰减器只是对其功率发生改变,其质量变差程度有限。 (4)说明有哪些内部因素会影响本系统的图像质量? 答: 1、内部电路存在着传输损耗。 2、各端口之前非理想匹配,对信号有衰减和一些不可预期的叠加。 3、滤波器非理想,其特性将对信号产生影响。 4、输入信号超出了接收机的动态范围,放大器工作在非线性。 5、系统内部存在噪声。 (5)举例说明有哪些外部因素会影响本系统的图像质量?可能通过什么途径能够解决。 答:1、 可能接收到其他实验产生的射频信号干扰测试, 比如测试点旁边有类似的试验进行, 而两者之间有没有有效的屏障。 解决:搭载不同的载频,或者采取不同的调制方式。 2、改变了天线发射接收的相对位置,极化状态变化,甚至正交。 解决:旋转天线使正对。
五、 实验结果
(一) 发射机测试 1. 发射系统功率:信号源输入 480Mhz、-2dBm 的信号,经过实测链路的输出功率为 0.3dBm,则增益为: 100.03 = 2.3������������ 10−0.2 频谱纯度:由实验结果可以知道,从 2.2Ghz 的谱峰到频偏 10Khz 处共有 38dB,再 G = 10log
北京理工大学 5 系《微波技术基础》实验报告
信号。
四、 测试方法及步骤
(一) 发射机测试 基带信号送入调制器进行调制,然后坐上变频,功率放大,通过天线发射。每次变频后 会产生谐波和杂波,以滤波器滤除。 a) 测试发射极功率:信号源频率 480MHZ,信号源输出功率为 0dBm。测试发射极输 出功率;在逐渐增加信号输入功率,观察设计输出功率直达饱和。 b) 测试发射频率稳定度:以上连续不变,通过频谱仪分析观察 2.2GHZ 射频输出信号 的相位噪声。 c) 测试发射信号的带外谐波、杂波抑制。 (二) 接收机测试 通过天线接收通信对方或经中继转发的射频信号, 经过某些处理 (如放大、 变频) 之后, 送到后级进行解调、编码等,还原出基带信息送给用户终端。 a) 测试接收系统增益: 在低噪声放大器输入端连接信号源, 中频放大器输出端分析仪。 设定信号源频率为 2.2GHz; 输出功率为-60dBm。 中频放大器输出功率为 480Mhz, 此时频谱分析仪显示幅度为-60dBm 差值为接受链路总增益。 b) 测试接收机灵敏度 改变信号源输出功率大小,当频谱分析仪 RBW 设为 10MHz,频谱分析仪现实的 频谱与频谱分析仪基底噪声差值为 10dB 时,这是信号源输出功率幅度为接收机最 小接受灵敏度。 c) 测试接收机动态范围 设定信号源输出功率为接收机最小接收灵敏度, 改变信号源输出功率大小, 不断增 加信号源输出功率, 观察输出幅度变化。 当输入幅度不变化时, 为接收机动态范围。 d) 测试接收机噪声系数: 在微波滤波器输入端链接噪声系数测试仪的噪声源, 视频放 大器输出端接噪声系数测试仪。 (三) 系统测试 发射机和接收机结构不变的情况下, 接入微波发射、 接收天线, 在外加摄像头和显示器, 即将发射和接收系统通过天线、摄像头、显示器自闭环来测试收/发系统的工作状态。 a) 传输图像实验。通过摄像头和显示器验证接受和发射系统的工作状态。 b) 收发天线相对位置发生变化,极化状态发生变化,观察图像质量的好坏。 c) 调整发射机的系统参数如降低输出功率等,观察图像质量的变化。 d) 调整接收机的系统参数如在低噪声电路前加衰减器,观察图像质量的变化。
三、 无线图像传输系统的基本工作原理
发射设备和接收设备是通信设备的重要组成部分。 其作用是将已调波经过某些处理之后, 送给天馈系统,发向对方或转发中继站;接受系统再降空间传播的信号经过天线接收进来, 经过某些处理之后,送到候机进行解调编码等。还原出基带信息送给用户终端。为了使发射 系统和接收系统同时工作, 并且了解各电路模块在系统中的作用, 通过试验箱中的天线模块 和摄像头及显示器, 似的发射和接收系统自闭环, 通过图像质量来验证通信系统的工作状态, 及各个电路模块的作用和连接变化时对通信或图像质量的影响。
可以看到,960Mhz 为二次谐波,1.43Ghz 为三次谐波,1.92Ghz 为四次谐波,2.68Ghz 为 2.2G+480Mhz 的和。 (二) 接收机测试 1. 接收机链路增益:信号源输入 2.2Ghz,-5dBm 的信号,用频谱仪观察到输出信号的 频率为 480Mhz,功率为 7.8dBm,则接收机的实际增益为: 100.78 = 12.8������������ 10−0.5 2. 接收机灵敏度:经过实测,接收机的灵敏度为-75dBm。 3. 接收机动态范围: 实验测得结果如下: G = 10log 输入功率/dBm -5 -4 -3 -2 -1 输出功率/dBm 7.8 8.8 9.8 10.8 11.7 输入功率/dBm 0 1 2 3 输出功率/dBm 12.5 13.5 14.2 14.4
图 1.1 无线图像传输系统的收发结构装置
简单介绍一下各部分的功能与作用: 摄像头采集的信号送入调制器进行频率调制,在经过一次变频后,滤波,放大,通过天 线发射出去。经过空间传播,接受甜心将信号接收进来,在经过低噪放大,滤波,下变频到 480MHZ,再经中频滤波,滤去谐波和杂波,经视频解.1 阻抗测量实验装置结构原理图
相关文档
最新文档