8.8 氢原子的量子理论

合集下载

氢原子的量子力学理论讲义

氢原子的量子力学理论讲义
An integral multiple of wavelengths must fit in the length 2pr, otherwise destructive interference would occur.
DeBroglie Waves in Bohr's Model
(1)主量子数 n
En
mee42(4 0 )2 Nhomakorabea2
1 n2
,
n 1,
2,
3,
(2)角量子数 l
对于一个确定的 n 值,l = 0,1,2,…,n - 1,λ = l(l+1)
氢原子系统的轨道角动量 p l(l 1)
(3)磁量子数 m 对于一个确定的 l 值,m = l , l - 1,…,0, … ,- l ,
径向函数 球谐函数
• 电子波函数的径向分布和角分布
电子的能量本征函数为径向函数和球谐 函数的乘积:
nlm (r) Rnl (r)Ylm ( ,)
电子的径向分布
Wnl
(r)
R2 nl
(r)r2
电子的角分布
Wlm ( ,) | Ylm ( ,) |2
设在空间(r,θ,φ)处体积元 dV 处发现电 子的几率为 Wnlm (r, ,)dV
m2
0
1
sin
d
d
sin
d
d
m2
sin2
0
1
r 2
d dr
r
2
dR dr
2me
2
E
e2
4 0 r
r2
R
0
式中m, 是常数
在能量E < 0的情况下,可解出方程满足标准条件

大学物理学电子教案 氢原子的量子理论简介

大学物理学电子教案  氢原子的量子理论简介

可容纳的电子数为
n1
Nn22l12n2
21
l0
01 sp
2 d
3 f
4 g
5 h
6 i
Nn
1K 2
2
2L 2 6
8
3 M 2 6 10
18
4 N 2 6 10 14
32
5 O 2 6 10 14 18
50
6 P 2 6 10 14 18 22
72
7 Q 2 6 10 14 18 22 26 98
例题:试确定基态氦原子中电子的量子数。
2、角动量量子化及角量子数
求解氢原子波函数的经度方程,可得氢原子中电子的角动量 是量子化的
L ll 1 h ll 1 l 0 ,1 ,2 , ,n 1 2
其中l 叫做轨道角动量量子数或角量子数。
讨论:
•波耳理论的L=nh/2,最小值为h/2;而量子力学得出角
动量的最小值为0。实验证明,量子力学得结论是正确的;
Rnl2r2d r n 2lrdr| n0 |2
径向概率密度为:
pnl
(r)
2 nl
(r)
1s 2s 3s
| n1 |2
2p
| n2 |2
4s r
3p
4p
r
3d 4d
r
15
19-10 多电子原子中的电子分布
一、电子自旋 自旋磁量子数
1、斯特恩-盖拉赫实验
银原子通过狭缝,经 过不均匀磁场后,打
在照相底板上。s 态
23
小结
• 氢原子的量子理论简介 • 氢原子的定态薛定谔方程 • 三个量子数 • 氢原子在基态时的径向波函数和电子的分布概率
• 多电子原子中的电子分布 • 电子自旋 自旋磁量子数 • 四个量子数 • 多电子原子中的电子分布

氢原子量子理论

氢原子量子理论

d 2u 2µ Ze2 l(l + 1) − 2 u=0 + 2 E+ 2 dr ℏ r r
于是化成了一维问题, 于是化成了一维问题,势V(r) 称为等效势, 称为等效势,它由离心势和库 仑势两部分组成。 仑势两部分组成。
l(l + 1)ℏ2 Ze2 V(r) = − 2 2µr r
θ r
r
y
1 ∂ 1 ∂2 Ze2 ℏ2 1 ∂ 2 ∂ ∂ ( ) (r )+ (sinθ )+ − ψ− ψ = Eψ r 2µ r 2 ∂r ∂r sinθ ∂θ ∂θ sin2 θ ∂ϕ 2
x
ϕ 球 坐 标
ˆ ℏ2 L2 Ze ∂ 2 ∂ (r )+ − − 2 2µr 2 r ∂r 2µr ∂r
或: 1 ∂ 1 ∂2 ∂ (sinθ ) + 2 ]Y(θ ,ϕ) = λY(θ ,ϕ) −[ 2 sinθ ∂θ ∂θ sin θ ∂φ
为使 Y(θ,ϕ) 在θ 变化的整个区域(0, π)内都是有限的, Y(θ 变化的整个区域(0, π)内都是有限的 内都是有限的, 则必须满足: 则必须满足: λ = ℓ(ℓ + 1), 其中 ℓ = 0, 1, 2, ...
ρ →∞
αeρ / 2 ρ
→∞
ρ →∞

最高幂次项的 νmax = nr

注意 此时多项式最高项 的幂次为 nr+ ℓ + 1
bnr ≠ 0 所以
bnr ≠ 0 于是递推公式改写为 bnr +1 = 0
因为 分子
nr + l + 1− β = 0
量子数 取值

氢原子的量子力学理论

氢原子的量子力学理论
主量子数决定了电子的能级,是描述电子能量状态的量子数 之一。
角量子数
角量子数(l):描述电子在核周围的角动量,取值范围为0 到n-1的正整数。
角量子数决定了电子的角动量,进而影响电子云的形状和 方向。
磁量子数
磁量子数(m):描述电子在磁场中的取向,取值范围为-l到l的正整数。
磁量子数决定了电子在磁场中的自旋方向和状态,是描述电子自旋状态的量子数 之一。
波函数具有全同性,即对于任意实数a和b,若将波函数中的x替换为ax+b, 其概率幅不变。
波函数具有连续性,即它在整个空间中是连续的,没有跳跃或间断点。
波函数具有周期性,即对于某些特定的能级,波函数可能呈现出周期性振 动的模式。
03
氢原子的波函数
径向波函数
定义
径向波函数描述了电子在核周 围不同半径的分布概率。
氢原子光谱在实验室和天文观测中都有广泛应用。在实验室中,可以通过控制氢原子所处的环境,如 温度、压力等,来研究其光谱特性,进而了解物质的基本性质。在天文学领域,通过对氢原子光谱的 观测和分析,可以研究宇宙中氢气分布、星系演化等重要问题。
原子钟
原子钟是一种利用原子能级跃迁频率 作为计时基准的精密计时仪器。其中, 氢原子钟是其中一种较为精准的原子 钟。
自旋量子数
自旋量子数(s):描述电子的自旋状 态,取值范围为±1/2。
自旋量子数决定了电子的自旋方向, 是描述电子自旋状态的唯一量子数。
能级与能级间距
能级
由主量子数、角量子数、磁量子数和自旋量子数共同决定,不同能级对应不同的能量状 态。
能级间距
相邻能级之间的能量差值,与主量子数和角量子数有关,随着主量子数的增加而减小。
量子力学是描述微观粒子运动规律的 物理学分支。

氢原子中的量子力学

氢原子中的量子力学

氢原子中的量子力学量子力学是物理学中的基础理论之一,它在解释微观世界中的现象和规律方面发挥着重要作用。

氢原子作为量子力学研究的经典模型之一,对于理解量子力学的基本原理和应用具有重要意义。

本文将对氢原子中的量子力学进行探讨和分析。

1. 氢原子的结构在研究氢原子的量子力学前,我们需要了解氢原子的基本结构。

氢原子由一个质子和一个电子组成,其中质子带正电荷,电子带负电荷。

质子位于氢原子的中心,被一个电子绕着围绕。

氢原子的结构可以用量子力学的波函数来描述。

2. 薛定谔方程薛定谔方程是量子力学的核心方程,用于描述微观粒子的行为。

对于氢原子来说,薛定谔方程可以写为:HΨ = EΨ其中H是哈密顿算符,Ψ是波函数,E是能量。

通过求解薛定谔方程,可以得到氢原子各个能级的波函数和能量。

3. 氢原子的能级和波函数根据薛定谔方程的求解结果,氢原子具有一系列离散的能级。

每个能级对应着不同的能量和波函数。

能级的能量大小与主量子数n有关,主量子数n越大,能级越高。

波函数则用于描述电子在不同能级上的空间分布。

4. 轨道角动量和磁量子数与经典力学不同,量子力学引入了轨道角动量概念。

在氢原子中,电子围绕质子运动形成了各种可能的轨道。

轨道角动量的大小由量子数l决定,而轨道的形状由量子数l和磁量子数m决定。

具体来说,轨道角动量大小为√(l(l+1))ħ,其中ħ为普朗克常数除以2π。

5. 能级跃迁和光谱氢原子的能级之间存在跃迁现象,当电子从一个能级跃迁到另一个能级时,会吸收或辐射能量。

这种能级跃迁的现象在光谱研究中得到了广泛应用。

通过观察氢原子的光谱,我们可以了解到能级之间的能量差异和波长特性。

6. 精细结构与自旋在考虑相对论效应后,氢原子的能级结构发生了微小的变化,形成了精细结构。

精细结构与电子的自旋状态有关,自旋可以取两个值:向上和向下。

通过考虑自旋,我们可以得到更加精确的氢原子能级和波函数。

7. 氢原子的波函数叠加在量子力学中,波函数可以叠加,形成各种可能的状态。

量子力学中的氢原子结构分析

量子力学中的氢原子结构分析

量子力学中的氢原子结构分析量子力学是一个让人感到神秘的学科,从微观角度研究原子和分子的行为和相互作用。

氢原子是量子力学中最简单的单电子原子,其结构对于研究其他多电子原子和分子具有重要意义。

本文将介绍氢原子结构的量子力学理论和现实应用。

1. 氢原子的波函数和能级量子力学中,波函数是用来描述粒子在空间中波动和存在的函数。

氢原子中电子的波函数可以用Schrodinger方程求解,得到如下公式:$\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{l,m}(\theta,\phi)$其中,$n$为主量子数,$l$为角量子数,$m$为磁量子数,$r$为离子半径,$Y_{l,m}$为球谐函数。

氢原子的能级也可以根据波函数求得。

具体方法是计算氢原子中电子的哈密顿算符在波函数上的期望值,得到:$E_n=-\frac{me^4}{8\epsilon_0^2h^2n^2}$其中,$m$为电子质量,$e$为电子电荷,$\epsilon_0$为真空介电常数,$h$为普朗克常数。

这个公式称为Bohr模型,与实验值相比,精度较高,但仍会有误差。

2. 氢原子的谱线和光谱学氢原子发射光线的频率可以通过与氢原子内部能级的差值相对应。

这些频率形成了光谱线,分为巴尔末系(Balmer series)、洪特姆系(Lyman series)、帕舍尼亚系(Paschen series)等。

巴尔末系中电子从$n\geq3$的能级跃迁到$n=2$的电子能级,所产生的光谱线包括Bα、Bβ等。

这些线可以被用来确定物质的组成和温度等特征。

除了发光谱线,氢原子还可以吸收谱线。

在光谱学中,通过测量吸收谱线的强度和波长,可以确定物质的成分和性质。

而通过对氢原子谱线的研究和分析,可以深入了解物质和电磁辐射之间的相互作用。

3. 氢原子的电离和激发氢原子被电离(即,从基态跃迁到自由电子状态)所需要的能量称为氢原子的电离能。

氢原子的电离能是一个常见的物理量,被用来描述和比较物质的化学性质。

氢原子量子力学理论

氢原子量子力学理论

由此得到三个量子数 n、l、m
确定氢原子定态波函数的三个量子数n、l、m
(1)主量子数 n
me e4 1 En , n 1, 2, 3, 2 2 2 2(4 0 ) n
(2)角量子数 l 对于一个确定的 n 值,l = 0,1,2,…,n - 1,λ = l(l+1) 氢原子系统的轨道角动量 p l (l 1)
角量子数:
l 0,1, 2,3,..., n 1, 共n个值
氢原子的基态波函数:
1 r a0 100 (r ) e a03 2 三个量子数n, l, m:
n:主量子数; l:角量子数; l 0,1, 2,3,..., n 1, 共n个值 m:磁量子数; m 0, 1, 2,..., (l 1), 共2l 1个值
2 Wnl (r) Rnl (r)r 2
ቤተ መጻሕፍቲ ባይዱ
电子的角分布
Wlm ( , ) | Ylm ( , ) |2
设在空间(r,θ ,φ )处体积元 dV 处发现电 子的几率为 Wnlm (r, , )dV
Wnlm (r , , )r sin drd d | nlm (r , , ) | r sin drd d
氢原子的量子力学理论
1926年,Erwin Schrodinger给出了 一个微观粒子在势场U(r,t)低速时波函数满 足的方程,称为薛定谔方程
2 2 i (r , t ) U (r , t ) (r , t ) t 2m
玻恩给出了波函数的概率解释
氢原子是两体问题,可以通过坐标的选取化 为折合质量为m=memp/(me+mp)的单体问题, 从而给出其薛定谔方程。 氢原子中的电子在核电场中运动,其电势能为:

氢原子的量子理论

氢原子的量子理论

1)
R
0
(1) (2)
(3)
其中 m 和 l 是引入的常数。
解此三个方程,并考虑到波函数应满足的
标准化条件,即可得到波函数 (r, , )
并且可得到: 能量量子化 角动量量子化 角动量空间量子化
三个量子数
1.能量量子化和主量子数
求解方程(3) ,并使 R ( r ) 满足标准化条件,求得 E必等于
32 2022
1 n2
L l(l 1)
Lz m
对于给定的 n ,l 可以有n 个值
对于给定的 l ,m 可以有 2l+1 个值
对于给定的 n ,可能的波函数(状态)数量
n1
N (2l 1) n2 简并度
l 0
n 1, 2 , 3 ,
K, L, M, N, …… 壳层
l 0,1, 2 , , n 1
26.5.2.原子的壳层结构
原子中的电子 n , l , m , ms
壳层 n 1, 2,3, K, L, M, N, …… 壳层
次壳层 l 0, 1, 2 , , n 1 s, p, d, f, g, …… 次壳层
如:n = 3, l = 0, 1, 2 分别称为3s态,3p态,3d态
电子在原子内的分布 多电子原子系统中,核外电子在不同的壳层上
r 2 r r r 2 sin
r 2 (sin )2 2
同乘 r 2/RY,并且移项
1 R
d dr
(r 2
dR ) dr
K 2r2
Y
1 sin
(sin
Y
)
Y
1 (sin
)2
2Y
2
1 R
d dr
(r 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L
2
l 0 , 1, 2 , 3, , n 1
O
l : ( 轨道 )角(副)量子数
例如,n =3 时, l = 0,1,2
l 0, l 1, l 2,
L0 L 2 L 6
氢原子的量子理论
二、量子化条件和三个量子数
3、角动量空间量子化和磁量子数
当置于外磁场中,角动量L在空 间取向只能取一些特定的方向,L 在外磁场方向(Z 轴)的投影也 满足量子化条件:
氢原子的量子理论
一、氢原子的薛定谔方程
氢原子是自然界中最简单的原子系统,用薛定谔方
程求解氢原子中电子的能级和本征波函数,是量子力 学创立初期最令人信服的成就。
由于求解过程比较复杂,下面只介绍求解的思路和 步骤,列出结果并讨论物理意义。
原子核的质量比电子的质量大的多,在氢原子中
可近似认为原子核静止而电子运动,因此电子的能 量就代表整个氢原子的能量。
ml = 0
组量子数(n、l、m),有一确 1,
定的波函数描述一个确定的状态。 n = l = 1
2,
将概率密度的空间分布形象
ml = 0
ml =±1
化地作成象云一样的图象,空间 n = l = 2
任何一点上云的密度(图中表示 3,
为明亮程度)与概率密度成正比,
ml = 0
ml =±1
ml =±2
称为电子云图。
r2
1
2
1
sin 2
2 2
2m 2
(E
e2 4πε0
r
)
0
氢原子的量子理论
一、氢原子的薛定谔方程
分离变量法求解,设 : (r, , ) R (r ) Θ( )Φ( )
1 r2
d dr
(r 2
dR dr
)
2m 2
E
e2
4π 0r
r
2
R
0
1
sin
d sin θ dθ
z
LZ
L
q
O
L z m l , m l 0, 1, 2, , l
ml : ( 轨道 ) 磁量子数 ( 2l+1) 个 磁量子数其决定了电子角动量在空间的可能取向
氢原子的量子理论
三、氢原子中电子的概率分布(电子云)
在氢原子中,求解薛定谔方程
得到的电子的波函数,对应每一 n = l = 0
所谓 “电子云”,并非表示一个电子同时占据云图 的整个空间,它只是表示在某点发现电子的概率密度。
氢原子的量子理论
二、量子化条件和三个量子数
2、角动量量子化和角量子数
电子绕核运动的( 轨道 )角动量的大小是量子化的: z
L l (l 1) h l (l 1)
L
2
l 0 , 1, 2 , 3, , n 1
O
l : ( 轨道 )角(副)量子数
1)当主量子数 n 确定后 , 角量子数可取 l=0,1,…..(n-1) ,
1、能量量子化和主量子数
me4 1
En ( 8 0 2h 2 ) n 2 ,
n 1, 2, 3, n:主量子数
E1
me4
8
2 0
h
2
13.6eV,
En
1 n2
E1
1 n2
13.6eV,
1)主量子数决定着氢原子能量的取值;
2)n=1,称为基态;n=2.3.4…… 称之为激发态;
3)与玻尔理论的结果一致,但这里是量子力学的求解 结果,不是人为的假设,故这是一个自洽的理论体系。
电子受原子核的库仑力作用,势能函数为: (取无限远处为势能零点)
e
Ep
e2 4πε0r
r
e +
氢原子的量子理论
一、氢原子的薛定谔方程
一般定态薛定谔方程:
2
2m 2
(
E
E
p
)
0
Ep
e2 4πε0r
定态薛定谔方程:
2
2m 2
(
E
e2 )
4πε0r
0
采用球极坐标:
定态薛定谔方程:
1 r2
r
(r2
r
)
dΘ dθ
ml2
sin 2
Θ 0
d 2Φ
d 2
ml

0
式中:ml 和λ为引入的常数,解此三个方程,并考虑到 波函数应满足的条件,即可得到波函数 :
(r , , ) R (r )Θ( ) Φ ( )
氢原子的量子理论
二、量子化条件和三个量子数
(不深究繁琐的求解过程,着重讨论所得出的几点重要结论)
角动量共有n个分立的值
2)处于l = 0, 1, 2, 状态的电子分别称为s, p, d, 电子
3)与玻尔的假设
L
n h
2
有所区别,
实验证明,量子力学的结果更为准确。
氢原子的量子理论
二、量子化条件和三个量子数
2、角动量量子化和角量子数
电子绕核运动的( 轨道 )角动量的大小是量子化的: z
L l (l 1) h l (l 1)
相关文档
最新文档