任意角三角函数定义的教学认识
任意角的三角函数教案

任意角的三角函数教案主题:任意角的三角函数目标:1.了解任意角的定义;2.掌握任意角的弧度制和角度制的互相转换;3.学习任意角的正弦、余弦和正切函数的定义和性质。
正文:一、任意角的定义任意角是指大于零度小于360度的角。
在平面直角坐标系中,我们可以根据终边在坐标面上的位置,求出任意角的正弦、余弦和正切函数值。
二、弧度制和角度制的互相转换弧度制是一种以弧长作为衡量角度大小的制度,它规定一个圆周的长度是这个圆的半径 r 的π倍,因此一个完整的圆周就是2πr。
1圆周角对应弧度是2π,1度对应弧度是π/180。
弧度制和角度制互相转换的公式如下:•弧度制转角度制:角度 = 弧度x (180/π)•角度制转弧度制:弧度 = 角度x (π/180)三、正弦、余弦和正切函数的定义和性质对于一个任意角θ,其正弦、余弦和正切函数分别定义如下:•正弦函数sinθ = 纵坐标/半径•余弦函数cosθ = 横坐标/半径•正切函数tanθ = 纵坐标/横坐标以下是正弦、余弦和正切函数的性质:•正弦函数是奇函数,即 sin(-θ) = -sinθ;•余弦函数是偶函数,即 cos(-θ) = cosθ;•正弦函数和余弦函数的最大值和最小值均为1和-1;•正切函数的值域为实数集 R。
四、练习题1.次半径为 3cm 的圆弧所对圆心角为60°,它的弧长是多少?2.弧长为π/2 的圆弧,对应的圆心角是多少度?3.求证:tanθ = sinθ/cosθ。
结语任意角是三角函数的基础,掌握任意角的相关概念和性质,对于数学学科的进一步学习和应用都具有重要的意义。
五、课堂实践以下是可以引导学生进行课堂探究的问题:1.如何用平面直角坐标系表示任意角?2.如何求一个任意角的正弦、余弦和正切函数值?3.什么情况下某个任意角的正弦函数等于1/2?4.如果一条直线的斜率为k,那么这条直线和横轴正的夹角是多少度?六、作业布置1.任意角的弧度制和角度制互相转换;2.计算下列问题:•sin(π/6),cos(π/3),tan π/2•sin210°,cos240°,tan(-135°)3.根据课堂所学,自己准备5道习题,进行练习。
任意角的三角函数教学设计

“任意角的三角函数”教学设计一、教学目标1.理解任意角三角函数(正弦、余弦、正切)的定义,经历“单位圆法”定义三角函数的过程;2.会用定义求特殊角的三角函数值,会求已知终边位置的角的三角函数值;3.会从函数三要素的角度认识三角函数的对应法则、自变量、函数值;4.体会定义三角函数过程中的数形结合、化归、数学模型等思想方法.二、教学重难点重点:理解任意角三角函数的定义。
难点:引导学生将任意角的三角函数的定义强化,帮助学生真正理解定义。
三、教学过程设计(一)教学情境复习锐角三角函数的定义问题1 对于三角函数我们并不陌生,初中学过锐角三角函数,你能说说它的自变量和对应关系各是什么吗?任意画一个锐角α,你能借助三角板,根据锐角三角函数的定义找出sinα的值吗?(设计意图:帮助学生回顾初中锐角三角函数的定义。
)(二) 认识任意角三角函数的定义问题2 你能借助象限角的概念,用直角坐标系中点的坐标表示锐角三角函数吗?即将三角函数值用终边上点的坐标表示出来。
,对于这些比值 ,我们以前称之为锐角α的正弦、余弦和正切,统称为锐角α的三角函数。
当角α确定后,比值xy r x r y ,,也是唯一确定的,而与P 点在角终边上的位置无关。
当α是锐角时,x y r x r y ,,(设计意图:比值“坐标化”,与点在终边上的位置无关。
)问题3 既然当角确定后,三角函数值与点P 在终边上的位置无关,那么你能否在终边上取适当的点,使三角函数的形式更简单?(设计意图:在求简意识的指引下,自然地引出单位圆,同时在对圆周运动寻求函数关系的求解的过程中体会它与锐角三角函数之间的内在联系。
)当α是锐角时,设P (x ,y )是α的终边与单位圆的交点,那么当r=1,则y 就称为锐角α的正弦,x 就称为锐角α的余弦, 就称为锐角α的正切. 记为:类似地,我们可以将锐角三角函数的定义推广到任意角的三角函数: 设α是一个任意角,它的终边与单位圆的交点为P (x ,y ),则y 叫做α的正弦,记作sin α= y . x 叫做α的余弦,记作c o s α=x ; 叫做α的正切,记作t a n α= 任意角α的正弦、余弦和正切,统称为任意角α的三角函数.x y xy x y ===αααtan ,cos ,sin xy问题4 你能说明上述定义符合函数定义的要求吗? (设计意图:让学生用函数的三要素说明定义的合理性,以此进一步明确三角函数的对应法则、定义域和值域。
任意角的三角函数教案

任意角的三角函数教案任意角的三角函数教案一、教学目标1、了解任意角的概念及其特点。
2、掌握任意角的三角函数的定义及其性质。
3、能够运用任意角的三角函数解决与实际问题相关的计算和应用题。
二、教学重点与难点1、任意角的概念及其特点。
2、任意角的三角函数的定义及其性质。
三、教学准备1、教材:《数学教材》2、教具:黑板、粉笔等。
四、教学过程(一)任意角的概念及其特点(10分钟)1、引入:同学们,我们之前学过的三角函数是在直角三角形中定义的,那么在直角以外的三角形中,是否可以定义三角函数呢?请看下面的图形。
2、呈现:通过黑板上画出一般三角形,告诉同学们这样的三角形中可以定义任意角。
3、引导:我们称这样的角为任意角,那么任意角有什么特点呢?4、总结:任意角的特点是:角度大小可以是任意的,不限于某个固定角度。
(二)任意角的三角函数的定义及其性质(20分钟)1、引入:同学们,我们知道在直角三角形中,三角函数是通过三角比来定义的。
那么在任意角中,我们应该如何定义三角函数呢?2、定义:通过黑板上画出一个一般的任意角,引导同学们回忆起直角三角形中的正弦、余弦、正切三角比的定义,告诉同学们这些三角比的定义可以推广到任意角中。
3、总结:定义任意角的三角函数如下:正弦函数sinθ、余弦函数cosθ、正切函数tanθ等。
4、性质:通过黑板上列举一些性质,告诉同学们这些性质与直角三角形中的三角函数性质相似,但是要根据勾股定理和正负分区来进行判断。
5、示例:通过黑板上画出一些示例题,引导同学们运用任意角的三角函数定义和性质进行计算。
(三)运用任意角的三角函数解决与实际问题相关的计算和应用题(40分钟)1、引入:同学们,任意角的三角函数不仅可以用来计算角度大小,还可以用来解决与实际问题相关的应用题。
请看下面的例子。
2、示例:通过黑板上列举一些实际问题相关的计算和应用题,引导同学们运用任意角的三角函数来解决这些问题。
3、练习:同学们进行课堂练习,通过黑板上列举一些练习题,让同学们在课堂上进行解答。
任意角的三角函数的定义教案

任意角的三角函数的定义教案.doc(教学目标):通过本课的学习,能够深入理解任意角的三角函数的定义,能够准确地掌握三角函数的基本性质和应用,提高数学思维能力,探索数学规律。
(教学重点):深入理解任意角的三角函数的定义,能够灵活运用三角函数的基本性质和应用。
(教学难点):任意角的三角函数的应用。
(教学方法):课前探究、教师讲解、学生自主学习、合作学习、综合应用。
(教学过程)一、课前探究(10分钟)1、学生自主思考,运用已经学习的知识,谈一谈对任意角的概念的理解。
2、教师带领学生讨论,任意角和普通角有何不同。
二、任意角的三角函数的定义(20分钟)1、幻灯片呈现,教师带领学生看图说一说,对反正切函数进行解释。
2、学生自主学习,掌握任意角的三角函数的定义。
3、通过教师演示和学生自主尝试,能够掌握任意角三角函数的性质和应用。
三、任意角三角函数的性质和应用(40分钟)1、教师讲解任意角三角函数的性质,强调其和角度符号的关系。
2、学生自主演练,掌握任意角三角函数的计算方法和应用技巧。
3、课堂练习,提高学生的综合应用能力。
四、达成共识(10分钟)1、教师总结本堂课所学的内容,强调认真对待数学学习,勤于思考、探究,并且在课余时间进行巩固复习。
2、学生回答问题,提出自己的观点和建议。
(教学反思):本节课旨在深入理解任意角的三角函数的定义,提高学生的数学思维能力和综合应用能力。
教师通过讲解和学生自主学习相结合,提高课堂效果,也鼓励学生自己去探究问题,积极思考,提高自己的学习效果。
在日后的数学学习中,希望学生们能够继续努力,不断提高自己的数学水平。
任意角的三角函数的定义-高中数学知识点讲解

任意角的三角函数的定义1.任意角的三角函数的定义
【知识点的认识】
任意角的三角函数
1 定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么 sin α=y,cos α=x,tan α=푦푥.
2.几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).
【命题方向】
已知角α的终边经过点(﹣4,3),则 cosα=()
43
A.5C.―5B.3
5D.―
4
5
【分析】由条件直接利用任意角的三角函数的定义求得 cosα的值.
解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r =푥2+푦2= 5.
∴cosα=푥
푟=
―4
5=―
4
5
,
故选:D.
【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.
【解题方法点拨】
利用三角函数的定义求三角函数值的方法
利用三角函数的定义,求一个角的三角函数值,需确定三个量:
(1)角的终边上任意一个异于原点的点的横坐标x;(2)纵坐标y;(3)该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).
1/ 1。
高一数学 任意角的三角函数(定义)教案

芯衣州星海市涌泉学校师范大学附属中学高一数学教案:任意角的三角函数〔定义〕 教材:任意角的三角函数〔定义〕 目的:要求学生掌握任意角的三角函数的定义,继而理解角与=2k +(kZ)的同名三角函数值相等的道理。
过程:一、提出课题:讲解定义:1. 设是一个任意角,在的终边上任取〔异于原点的〕一点P 〔x,y 〕那么P 与原点的间隔02222>+=+=y x y x r〔图示见P13略〕 2.比值r y 叫做的正弦记作:ry =αsin 比值rx 叫做的余弦记作:r x =αcos 比值x y 叫做的正切记作:x y =αtan 比值y x叫做的余切记作:yx =αcot 比值x r 叫做的正割记作:xr =αsec 比值y r 叫做的余割记作:yr =αcsc 注意突出几个问题:①角是“任意角〞,当=2k +(k Z)时,与的同名三角函数值应该是相等的,即但凡终边一样的角的三角函数值相等。
②实际上,假设终边在坐标轴上,上述定义同样适用。
〔下面有例子说明〕③三角函数是以“比值〞为函数值的函数④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定〔今后将专题研究〕 ⑤定义域:二、例一的终边经过点P(2,3),求的六个三角函数值解:13)3(2,3,222=-+=-==r y x∴sin =13133cos =13132 tan =23cot =32 sec =213csc =313 例二求以下各角的六个三角函数值⑴0⑵⑶23π⑷2π 解:⑴⑵⑶的解答见P16-17⑷当=2π时r y x ==,0 ∴sin 2π=1cos 2π=0tan 2π不存在cot 2π=0 sec 2π不存在csc 2π=1 例三教学与测试P103例一求函数x xx xy tan tan cos cos +=的值域解:定义域:cosx 0∴x 的终边不在x 轴上又∵tanx0∴x 的终边不在y 轴上 ∴当x 是第Ⅰ象限角时,0,0>>y xcosx=|cosx|tanx=|tanx|∴y=2 …………Ⅱ…………,0,0><y x |cosx|=cosx|tanx|=tanx∴y=2 …………ⅢⅣ………,0,00,0<><<y x y x |cosx|=cosx|tanx|=tanx∴y=0 例四教学与测试P103例二⑴角的终边经过P(4,3),求2sin +cos 的值⑵角的终边经过P(4a,3a),(a 0)求2sin +cos的值 xo y P(2,-3)解:⑴由定义:5=r sin =53cos =54∴2sin +cos =52 ⑵假设0>aa r 5=那么sin =53cos =54∴2sin +cos =52 假设0<a a r 5-=那么sin =53cos =54∴2sin +cos =52 三、小结:定义及有关注意内容四、作业:课本P19练习1P20习题3教学与测试P1044、5、6、7。
任意角的三角函数(教案)

任意角的三角函数(教案)一、教学内容本节课的教学内容来自于高中数学必修一的第四章第一节,主要内容包括任意角的三角函数的定义、正弦函数、余弦函数和正切函数的图像与性质。
二、教学目标1. 让学生理解任意角的三角函数的定义,掌握正弦函数、余弦函数和正切函数的图像与性质。
2. 培养学生运用三角函数解决实际问题的能力。
3. 培养学生合作学习、探究学习的能力。
三、教学难点与重点1. 教学难点:任意角的三角函数的定义,正弦函数、余弦函数和正切函数的图像与性质的理解和应用。
2. 教学重点:任意角的三角函数的定义,正弦函数、余弦函数和正切函数的图像与性质的掌握。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板。
五、教学过程1. 实践情景引入:让学生观察教室的布置,找出角的度量单位,引出角的概念。
2. 任意角的三角函数的定义:通过多媒体展示正弦函数、余弦函数和正切函数的定义,让学生理解并掌握它们的定义。
4. 例题讲解:出示例题,让学生独立解答,然后讲解答案,讲解过程中强调解题思路和方法。
5. 随堂练习:出示随堂练习题,让学生独立完成,然后批改并讲解答案。
8. 布置作业:布置相关的作业题目,让学生巩固所学知识。
六、板书设计1. 任意角的三角函数的定义2. 正弦函数、余弦函数和正切函数的图像与性质七、作业设计1. 题目:已知一个角的度数为30°,求它的正弦值、余弦值和正切值。
答案:正弦值:1/2余弦值:√3/2正切值:√3/32. 题目:画出角α的正弦函数、余弦函数和正切函数的图像。
答案:见附图。
八、课后反思及拓展延伸1. 课后反思:本节课的教学过程中,学生对任意角的三角函数的定义掌握较好,但在正弦函数、余弦函数和正切函数的图像与性质的理解上还有待加强。
2. 拓展延伸:让学生研究任意角的三角函数在实际问题中的应用,如测量大树的高度、计算物体在斜面上的速度等。
重点和难点解析一、任意角的三角函数的定义任意角的三角函数的定义是本节课的核心内容,学生需要理解并掌握正弦函数、余弦函数和正切函数的定义。
(完整版)任意角三角函数的概念解读

“任意角三角函数的概念”教学设计陶维林(江苏南京师范大学附属中学)一.内容和内容解析三角函数是一个重要的基本初等函数,它是描述周期现象的重要数学模型.它的基础主要是几何中的相似形和圆,研究方法主要是代数中的图象分析和式子变形,三角函数的研究已经初步把几何与代数联系起来.它在物理学、天文学、测量学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学中其他学科的基础.角的概念已经由锐角扩展到0°~360°内的角,再扩充到任意角,相应地,锐角三角函数概念也必须有所扩充.任意角三角函数概念的出现是角的概念扩充的必然结果.比较锐角三角函数与任意角三角函数这两个概念,共同点是,它们都是“比值”,不同点是锐角三角函数是“线段长度的比值”,而任意角三角函数是直角坐标系中“坐标与长度的比值,或者是坐标的比值”.正是由于“比值”这一与在角的终边上所取点的位置无关的特点,因此,可以用角的终边与单位圆的交点的坐标(或坐标的比值)来表示任意角的三角函数,这是概念的核心.这样定义,不仅简化了任意角三角函数的表示,也为后续研究它的性质带来了方便.从锐角三角函数到任意角三角函数类似于从自然数到整数扩充的过程,产生了“符号问题”.因此,学习任意角三角函数可以与锐角三角函数相类比,借助锐角三角函数的概念建立起任意角三角函数的概念.任意角三角函数概念的重点是任意角的正弦、余弦、正切的定义.它们是本节,乃至本章的基本概念,是学习其他与三角函数有关内容的基础,具有根本的重要的作用.解决这一重点的关键,是学会用直角坐标系中,角的终边上的点的坐标来表示三角函数.因为正切函数并不独立,最主要的是正弦函数与余弦函数.任意角三角函数自然具有函数的一切特征,有它的定义域,对应法则以及值域.任意角三角函数的定义域是实数集(或它的子集),这是因为,在建立弧度制以后,角的集合与实数集合间建立了一一对应关系,从这个意义上说,“角是实数”,三角函数是定义在实数集上的函数.各种不同的三角函数定义了不同的对应法则,因而可能有不同的定义域与值域.任意角三角函数概念是核心概念,它是解决一切三角函数问题的基点.无论是研究三角函数在各象限中的符号、特殊角的三角函数值,还是同角三角函数间的关系,以及三角函数的性质,等等,都具有基本的重要的意义.在建立任意角三角函数这个定义的过程中,学生可以感受到数与形结合,以及类比、运动、变化、对应等数学思想方法.二.目标和目标解析本节课的目标是,理解任意角三角函数(正弦、余弦、正切)的定义.学生已经学习过锐角三角函数sinα,cosα,tanα,了解三角函数是直角三角形中边长的比值,这个比值仅与锐角的大小有关,是随着锐角取值的变化而变化的,其值是惟一确定的,等函数的要素.这是任意角三角函数概念的“生长点”.理解任意角三角函数(正弦、余弦、正切)定义的关键是由锐角三角函数这个线段长度的比值扩展为点的坐标或坐标的比值.因此,对锐角三角函数理解得怎样,对理解任意角三角函数有决定意义,复习锐角三角函数,加深对锐角三角函数的理解是必要的.要实现让学生“理解”任意角三角函数定义的教学目标,莫过于让学生参与任意角三角函数定义的过程.让学生感受到因角的概念的扩展,锐角三角函数概念扩展的必要性,任意角三角函数是锐角三角函数概念的自然延伸.反过来,既然锐角集合是任意角集合的子集,那么,锐角三角函数也应该是任意角三角函数的特殊情况,是一个包含关系.让学生参与定义,可以感受到这样定义的合理性,感受到这个定义是自然的.三.教学问题诊断分析从锐角三角函数到任意角三角函数的学习,从认知结构发展的角度来说,是属于“下、上位关系学习”,是一个从特殊到一般的过程,“先行组织者”是锐角三角函数的概念.教学策略上先复习包容性小、抽象概括程度低的锐角三角函数的概念,然后让学生“再创造”抽象程度高的上位概念(参与定义),并形成新的认知结构,让原有的锐角三角函数的概念类属于抽象程度更高的任意角三角函数的概念之中.学生过去在直角三角形中研究过锐角三角函数,这对研究任意角三角函数在认识上会有一定的局限性,所以学生在用角的终边上的点的坐标来研究三角函数可能会有一定的困难.可以让学生在原有的对锐角三角函数的几何认识的基础上,尝试让学生建立用终边上的点的坐标定义任意角三角函数,或者尝试用终边上的点的坐标定义锐角三角函数,然后再定义任意角的三角函数.教学的另一个难点是,任意角三角函数的定义域是实数集(或它的子集).因为学生刚刚接触弧度制,未必能理解“把角的集合与实数集建立一一对应”到底是为了什么.可以在复习锐角三角函数时,把锐角说成区间(0,)内的角,以便分散这个难点.四.教学支持条件分析利用几何画板软件,可以动态改变角的终边位置,从而改变角的终边上点的坐标大小的特点,便于学生认识任意角的位置的改变,所对应的三角函数值也改变的特点,感受函数的本质;感受终边相同的角具有相同的三角函数值;也便于观察各三角函数在各象限中符号的变化情况,加深对任意角三角函数概念的理解,增强教学效果.五.教学过程设计1.理解锐角三角函数要理解任意角三角函数首先要理解锐角三角函数.锐角三角函数是任意角三角函数的先行组织者.问题1 任意画一个锐角α,借助三角板,找出sinα,cosα,tanα的近似值.教师用几何画板任意画一个锐角.要求学生自己任意也画一个锐角,利用手中的三角板画直角三角形,度量角α的对边长、斜边长,计算比值.意图:复习初中所学习过的锐角三角函数,加深对锐角三角函数概念的理解,它是学习任意角三角函数的基础.突出:(1)与点的位置的选取无关;(2)是直角三角形中线段长度的比值.问题2 能否把某条线段画成单位长,有些三角函数值不用计算就可以得到?意图:学生根据自己实际画图操作,以及计算比值的体验,会很快认为把斜边画成单位长比较方便,为后续任意角三角函数的“单位圆定义法”做铺垫.问题3 锐角三角函数sinα作为一个函数,自变量以及与之对应的函数值分别是什么?意图:以便与后面的任意角三角函数的自变量是角(的弧度,对应一个实数),对应的函数值是α的终边与单位圆交点的纵坐标比较.锐角三角函数sinα作为一个函数,自变量是锐角.由于角的弧度值与实数可以一一对应,所以,α是(0,)上的实数.而与之对应的函数值sinα是线段长度的比值,是区间(0,1)上的实数.问题4 你产生过这个疑问吗:“三角函数只有这三个?”意图:这个问题具有元认知提示的特点,引导学生勤于思考,逐步学会发现问题、提出问题、研究问题.三条边相互比,可以产生六个比.还有哪三个呢?再把已知的三个倒过来.2.任意角三角函数定义的“再创造”教师利用几何画板,把角α的顶点定义为原点,一边与x轴的正半轴重合,转动另一条边,表现任意角.问题5 现在,角的范围扩大了.在直角坐标系中,使得角的顶点在原点,始边与x轴的正半轴重合.在这样的环境下,你认为,对于任意角α,sinα,cosα,tanα怎样来定义好呢?意图:可以打破知识结构的平衡,感受到学习新知识的必要性——角的范围扩大了,锐角三角函数也应该“与时俱进”,并不显得突然.把定义的主动权交给学生,引导学生参与定义过程,发展思维.有两种可能的回答.可能一:在α的终边上任意画一点P(x,y),|OP|=r.可能二:设角α的终边与单位圆的交点为P(x,y).不论出现可能一还是可能二,都再问:“都是这样的吗?”引导学生议论,以确认两种定义方法的一致性、各自特点.再问“你赞成哪一种?”,统一认识,建立任意角三角函数的定义.(板书)因为前面已经有引导,学生可能很快接受“可能二”.3.任意角三角函数的认识(对定义的体验)问题6(1)求下列三角函数值:问题6(2)说出几个使得cosα=1的α的值.意图:通过定义的简单应用,把握定义的内涵.逐题给出,对于每一个答案,都要求学生说出“你是怎样得到的.”突出“画终边,找交点坐标,算比值(对正切函数)”的步骤.问题6(3)指出下列函数值:意图:角的终边位置决定了三角函数值的大小.终边位置相同的角同一三角函数值相等.于是有sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα.(其中k∈Z)问题6(4)①确定下列三角函数的符号:②θ在哪个象限?请说明理由.反过来呢?③角α的哪些三角函数值在第二、三象限都是负数?为什么?④tanα在哪些象限中取正数?为什么?意图:认识三角函数在各象限中的符号.问题7 做了这么多题,要反思.你是否发现了任意角三角函数的一些性质?还有些什么体会?意图:体验以后的概括,阶段小结.(1)抓住各三角函数的定义不放;(2)各象限中三角函数的符号特点,等.教师板书学生获得的成果、感受.4.任意角三角函数的定义域问题8 α是任意角,作为函数的sinα,cosα,tanα,它们的定义域分别是什么?意图:三角函数也是函数,自然应该关心它的定义域.建立了角的弧度制,角的集合与实数集合之间建立了一一对应关系,因此,sinα,cosα的定义域是R;tanα=中,x≠0,于是tanα的定义域是仍然紧扣定义,并引导以弧度制表示它的定义域.5.练习(1)确定下列三角函数值的符号,并借助计算器计算:(2)求下列三角函数值:6.小结问题9 下课后,你走出教室,如果有人问你:“过去你就学习过锐角三角函数,今天又学习了任意角的三角函数,它们的差别在哪里呢?”你怎么回答他?意图:通过问题小结.不追求面面俱到,突出锐角三角函数是三角形中,边长的比值,而任意角的三角函数是直角坐标系中角的终边与单位圆交点的坐标,或者是坐标的比值.若时间允许,再问:“还有其他收获吗?”比如,终边相同的角的同一三角函数相等;各象限三角函数的符号;任意角三角函数的定义域,等.六.目标检测设计(1),写出α的终边与单位圆交点的横坐标,并写出tanα的值.(2)求下列三角函数的值:(3)角α的终边与单位圆的交点是Q,点Q的纵坐标是1/2,说出几个满足条件的角α.(4)点P(3,-4)在角α终边上,说出sinα,cosα,tanα分别是多少?读书的好处1、行万里路,读万卷书。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三个比值分别是以锐角α为自变量、以比值为函数值的函数.
问题6:既然可在终边上任取一点,那有没有办法让所得的对应关系变得更简单一点?意图:
为引入单位圆进行铺垫.
教师给出单位圆定义之后,可引导学生进一步明确:
正弦、余弦、正切都是以锐角α为自变量、以单位圆上点的坐标(或比值)为函数值的函数.
在第三个环节中,首先是如何自然引入单位圆的问题.
用单位圆上点的坐标定义三角函数有许多优点,其中最主要的是使正弦函数、余弦函数从自变量(角的弧度数)到函数值(单位圆上点的横、纵坐标)之间的对应关系更清楚、简单,突出了三角函数的本质,有利于学生利用已有的函数概念来理解三角函数,其次是使三角函数反映的数形关系更直接,为后面讨论函数的性质奠定了基础.
1.
三角函数是以函数为主线,刻画周期现象的数学模型.高中学习的三角函数是在初中学习锐角三角函数的基础上,通过用旋转的观点将角的概念推广到任意角,并使角与实数建立一一对应关系,然后结合坐标系和单位圆重新定义任意角的三角函数.因此,三角函数是函数的下位概念,同时又是锐角三角函数的上位概念,教学要以函数思想为指导,以坐标系和单位圆为定义工具,以初中锐角三角函数概念为认知的起点,促进任意角三角函数定义的有效生成.教科书在完成任意角三角函数定义基础上衍生出:
(4)类比得出用单位圆定义任意角三角函数,并将它纳入到一般函数概念的范畴.
教科书这样设计改变了以往纯学术形态的形式,一定程度上具有了教育形态的特征,体现了数学知识的产生、发展过程,反映了数学的"来龙去脉",通过有效的铺垫,使之符合学生的认知规律,使从锐角三角函数到任意角三角函数过渡自然,有利于学生步步加深对三角函数定义本质的理解.因此,笔者认为,教学设计时无须"另起炉灶",只要在此基础上,依据学生的认知特点,进行教学法的深加工即可.
由于初中的锐角三角函数定义不能推广到任意角的情形,从而引发学生认知冲突,激发学生进一步探究的欲望.用什么定义、怎样定义、这样定义是否合理等,成为继续研究的自然问题.之前,在任意角内容的学习中,学生已经有了在直角坐标系内讨论角的经验,但教学实践表明,学生仍不能自然想到引入坐标系工具,利用坐标来定义任意角三角函数.笔者认为,从帮助学生理解定义的实质,体会坐标思想与数形结合思想的角度,教师可利用适当的语言,引导学生重点解决"如何用坐标表示锐角三角函数"的关键问题.需要提及的是,陶老师的问题设计具有启示性:
但单位圆的这些"优点"要在引入单位圆后才能逐步体会到.因此,引入单位圆的"理由"应该另辟蹊径,白老师在引导学生完成用角的终边上任意一点的坐标表示锐角三角函数之后,从求简的角度设置问题,不愧为"棋高一招":
大家有没有办法让所得到的定义式变得更简单一点?
在学生得出时定义式最简单后,白老师引入单位圆,引导学生利用单位圆定义锐角三角函数.至此,学生就有了第四环节中用单位圆定义任意角三角函数的认知准备.
由于三角函数的定义内涵丰富、外延广泛等原因,同时,用单位圆上点的坐标表示的任意角三角函数定义,与学生初中学习的锐角三角函数定义有一定的距离,一个侧重几何的边与边的比值表示,一个侧重代数的坐标(比值)表示.与学生熟悉的一般函数定义也有距离,一般函数是实数到实数的对应,而三角函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应.学生理解该定义很难一步到位,需要分成若干个层次,逐步加深提高.促进学生理解定义的关键是让学生经历定义的形成过程,增强学习活动的体验,在教师的引导下独立思考、自主探究,完成定义的意义建构.
意图:
明确研究方向与内容.
问题1:在初中,我们已经学习了锐角三角函数,它是怎样定义的?
意图:
从学生已有的数学经验出发,为用坐标定义三角函数作准备.
问题2:现在,角的概念已经推广到了任意角,上述定义方法能推广到任意角吗?意图:
引发学生的认知冲突,激发学生求知Байду номын сангаас望.
问题3:如何定义任意角的三角函数?
意图:
现在,角的范围扩大了,由锐角扩展到了0°~360°内的角,又扩展到了任意角,并且在直角坐标系中,使得角的顶点与原点重合,始边与x轴的正半轴重合.在这样的环境中,你认为,对于任意角α,sinα怎样定义好呢?
上述问题提得"大气",既能使学生的学习围绕关键问题展开,又突出正弦函数的概念分析.当然,若能依教材先作锐角情形的铺垫,教学更符合学生"最近发展区",提高效率.这里,需要引导学生从函数的观点认识用坐标表示的锐角三角函数,有助于从函数的本质特征来认识三角函数.
意图:
引导学生借助坐标系来定义任意角三角函数.
问题4:先考虑锐角的情形,如图1,在平面直角坐标系中,你能用点的坐标来表示锐角α的三角函数吗?
意图:
引导学生用坐标表示锐角三角函数.
问题5:各个比值与角之间有怎样的关系?比值是角的函数吗?
意图:
扣准函数概念的内涵,把三角函数知识纳入函数知识结构,突出变量之间的依赖关系或对应关系,增强函数观念.
2.抓住关键,使教学精炼、简约而高效
由于教科书自身特点的限制,教科书还不能成为教师教学用的教学设计,根据教材的内容、要求以及编写意图,教师还需要一个再加工、再创造的过程.具体的,就是将教材中得出任意角三角函数定义经历的四个环节进一步教学化,使之符合学生的认知特点和规律,包括内容研究的必要性,坐标系、单位圆引入的自然性,以及用单位圆定义的可行性、合理性等.把它变成适合学生认知特点的具体的教育形态,使学生感受"数学是自然的、清楚的、水到渠成的".当前,高中数学课标课程比大纲课程的内容有所增加,初中数学对高中数学支持减弱,新课程赋予数学教学更多的价值取向,要让课堂的所有环节都让学生有深度思考、自主探究并展示结果是不现实也是没必要的.事实上,学生在校以学习间接经验为主,学生的学习主要是"接受--建构"式的,因此,对教学起关键作用的内容,要留足时间让学生充分思考、交流与展示,其它内容教师可多讲授与引导,发挥先行组织者作用,使教与学达到平衡,让教学效益达到最大化.在引导学生回忆初中锐角三角函数定义之前,先解决"学习的必要性"问题,明确要研究的内容.教材将"三角函数"作为重要的基本初等函数,是周期现象的基本模型,教师可借助本章的章头语,完成课题的引入.
正弦、余弦、正切都是以任意角α为自变量、以单位圆上的坐标或坐标的比值(如果存在的话)为函数值的函数.接着给出任意角三角函数的定义域、值域.
引导学生探索任意角三角函数的定义.
先行组织者2:我们知道,直角坐标系是展示函数规律的载体,是构架"数形结合"的天然桥梁,上堂课我们把任意角放在平面直角坐标系内进行研究,借助坐标系,可以使角的讨论简化,也能有效地表现出角的终边位置"周而复始"的现象.坐标系也为我们从"数"的角度定义任意角三角函数提供有效载体.
问题7:类比上述做法,设任意角α的终边与单位圆交点为p(x,y),定义正弦函数为,余弦函数为,正切函数为.你认为这样定义符合函数定义要求吗?
意图:
给出任意角三角函数的定义,引导学生用函数三要素说明定义的合理性,明确任意角三角函数的对应法则、定义域、值域.
引导学生思考定义的合理性,先让学生作出主观判断,再用几何画板动画演示,同时作好解释说明,得出结论:
由于"定义"是一种"规定",因此,第四环节中,教师可类比用单位圆定义锐角三角函数情形,直接给出任意角三角函数定义,对学生而言,关键是理解这样"规定"的合理性,对定义合理性认知基础就是三角函数的"函数"本质--定义要符合一般函数的内涵(函数三要素).
3.精心设计问题,让课堂成为学生思维闪光的舞台
基于上述认识,对定义部分的教学,给出如下先行组织者和主干问题设计.
先行组织者1:周期现象是社会生活和科学实践中的基本现象,大到宇宙运动,小到粒子变化,这些现象的共同特点是具有周期性,另外,如潮汐现象、简谐振动、交流电等,也具有周期性,而"三角函数"正是刻画这些变化的基本函数模型.
三角函数到底是一种怎样的函数?它具有哪些特别的性质?在解决具有周期性变化规律的问题中到底能发挥哪些作用?本课从研究第一个问题入手.
(1)三角函数值在各个象限的符号;
(2)单位圆中的三角函数线;
(3)同角三角函数的基本关系;
(4)三角函数的诱导公式;
(5)三角函数的图象与性质等.可见,三角函数的定义在三角函数教学中可谓重中之重,是整个三角部分的奠基石,它贯穿于与三角有关的各部分内容并起着关键作用.
本节课的学习目标是理解任意角三角函数(正弦、余弦、正切)的定义,经历从锐角三角函数定义过渡到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程,领悟直角坐标系和单位圆的功能,丰富数形结合的经验.
教材中任意角三角函数定义的得出经历了以下四个循序渐进、不断深化的过程:
(1)回忆用直角三角形边长的比产生的锐角三角函数的定义;
(2)把锐角α放在直角坐标系中,用角的终边上点的坐标表示锐角α的三角函数;
(3)由相似三角形的知识可知,三角函数值只与α的大小有关,与点在终边上的位置无关,因此可用单位圆上点的坐标表示锐角α的三角函数;