在探地雷达勘探中电磁波在地下介质中的传播速度公式
地质雷达检测原理及应用

1.5 地质雷达探测系统的组成
从左到右从上到下依次为: SIR-20主机、电缆、400M 天线、电池和充电器、打标 器、测距轮
1.6 地质雷达天线分类
空气耦合天线:主要用于道 路路面检测(具有快速便捷 的特点,但受到的干扰较 大);
地面耦合天线:主要用于地 质构造检测,检测深度较深 (地面耦合天线能够减少天 线与地面间其他因素的干扰, 检测效果较为准确)
2.2 现场检测工作 2.2.1 仪器设备启动与参数设置 ① 连接主机与电源和天线 ② 打开主机电脑,进入采集软件 ③ 采集方式:时间模式time(也称为连续测量、自由测量)、距离模式
distance(也称为测距轮控制测量、距离测量)、点测模式point ④ 采集关键参数 (1)频率:发射天线的中心频率越高,则分辨率越高,
与探空雷达一样,探地雷达利用超高频电磁波的反射来探测目标体,根 据接收到的反射波的旅行时间、幅度与波形资料,推断地下介质的结构与分 布。
1.2 地质雷达的工作频段
1~100MHz, 低频,地质探测1-30米 100~1000MHz,中频,构造结构探测,2米 1000~5000MHz,高频, 浅表结构体探测, 50厘米
反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射 信号越强
(7世界中粒子呈无序排列的 状态,当外界电磁波穿透该 物质时,微观世界中的粒子 就会成定向排列状态,此时 会形成一个电容板,对外界 穿过的电磁波形成一定的阻 碍作用,而每种物质粒子的 排列规律不同,形成电容板 时阻碍外界电磁波穿过的能 力不同,因此各种物质的介 电常数也不同
(9)在“表格”窗口中点“剖面”选项,设置起始里程,如果里程向右减小,选中 “区域减量”。
三、地质雷达典型缺陷图形判定
城市地下空间探测及成像技术

(mS/m)
0 0.5 3104 0.01 0.1~1.0 0.5~2 1~100 1~100 2~1000 0.01~1 0.01~1 0.01
(m/ns)
0.3 0.033 0.01 0.15 0.06 0.12 0.09 0.07 0.06 0.13 0.13 0.16
与衰减系数
(dB/m)
23
IDS RIS系列
RIS-2K/0型 (单道)
RIS-2K/ME
型(多道)
24
中国电波传播研究所 LTD系列探地雷达
25
北京爱迪尔公司的CBS-9000型 地质雷达及天线
26
三、野外数据采集
27
1.电磁波在介质中的传播速度
探地雷达测量的是地下界面的反射波的走时,为了 获取地下界面的深度,必须要有介质的电磁波传播速度 v ,其值为
8
9
10
11
12
13
二、雷达仪器主要类型
14
• 加拿大Sensor & Software Inc., EKKO (Noggin) 系列
• 美国GSSI,SIR系列 • 瑞典Mala Geoscience Inc., RAMAC系列 • 意大利IDS, RIS系列
15
ቤተ መጻሕፍቲ ባይዱKKO 系 列
16
33
分辨率的问题 分辨率是方法分辨最小异常体的能力。分辨率
可分为垂向分辨率与横向分辨率。 1 垂向分辨率
λ/4作为垂直分辨率的下限。 2 横向分辨率
第一菲湿耳带的直径( rf h / 2)
34
1 剖面法(反射观测方式) 2 多次覆盖观测方式 3 透射法 4 宽角法(共深点法,CDP)
用于求取表层土的电磁波传播速度
分析隧道检测存在的问题

分析隧道检测存在的问题在当今对公路隧道一系列参数的检测主要方法是探地雷达,简称GPR,即Ground Penetrating Radar,探地雷达是一种光谱的电磁技术(频率是1MHz~1GHz),它的作用是用来确定地下的一些介质的分布情况。
从探地雷达的频率范围来看,它是利用电磁波的高频性能对地下介质进行探讨。
在对地下介质进行探讨时传播的速度快慢取决于介质的不同。
探地雷达利用电磁波的传播和反传播来确定地下介质的种类,因为不同的介质在相同频率电磁波情况下传播的速度是不一样。
1 检测参数研究1.1 传播速度常用介质中电磁波传播速度如表1所示:1.2 分辨率1.2.1 垂直分辨率。
假定发射天线发射出的脉冲宽度为t(单位:ns),一般可认为天线的中心频率fc=1/t。
若在同一垂直方向上有两个反射界面,反射界面的深度相距d,由上式可得,地质雷达要在空间上分辨出两个目标的回波信号,必须满足:即:电磁波的波速定义是按照脉冲信号频率相对的电磁波的介质波长,那么有关地质雷达的垂直分辨率为:由此可见,天线中心的不同频率地质雷达,有关它的垂直分辨率也是不一样的。
1.2.2 水平分辨率。
水平分辨率是指地质雷达在对地下介质进行检测时,它在水平方向能够分辨处的水平最小距离。
因为Fresnel带的不同,当两个有限异常体的间距小于Fresnel带直径的1/4时,则不易把这两个目标体区分开。
地质雷达的子波的波长表示的是地质雷达在水平方向的分辨率,也是地下不同物体的所在位置的深度,为第一Fresnel带直径。
从上面式子中的参数可以知道,影响地质雷达水平分辨率的关键因数有两个方面:一个是介质的不一样,还有一个就是所要检测的深度。
当深度一样的时候,电磁波在介质传播的速度越快,那么它的水平分辨率就越高。
1.3 频率选择根据隧道工程实际情况,隧道质量检测天线中心频率选择400~800MHz即可满足上述要求,假设为800MHz天线,εr =6.4,μr=1,根据上述内容可计算得:其垂直分辨率=0.074m,在不同目标深度处的水平分辨率如表2所示。
探地雷达在探测岩溶方面的应用

探地雷达在探测岩溶方面的应用地质雷达能够利用高频电波、脉冲技术对地下介质进行有效的探测。
由于我国各个地区地层分布存在一定的差异性,且岩溶地区分布广泛具有极大的不确定性,盲目的工程开展会威胁工作人员的生命安全和生产损失。
探地雷达作为地下异常情况的探测手段之一,在岩溶地区探测中有着重要的作用。
文章对探地雷达的工作原理进行了分析,并结合工程实例进行了分析,以对探地雷达在岩溶探测方面的应用进行论述。
标签:探地雷达;岩溶地区;技术应用一、地质雷达工作原理地质雷达是应用高频脉冲电磁波探测隐蔽介质的分布,向被測物发射高频宽带短脉冲电磁波,当电磁波遇到不同介电特性的介质就会有部分返回,接收反射波并记录反射的时间。
根据接收到波的旅行时间(双程走时)、幅度频率与波形变化资料,可以推断介质内部结构以及目标体的深度、形状等特征参数(图1)。
脉冲波走时:式中:x值在剖面探测中是固定的,v值(mns-1)可以利用现成数据或测定获得,由上式可得目标体的深度值Z(m)。
当发射和接收天线沿物体表面逐点同步移动时,就能得到其内部介质剖面图像。
图2是地质雷达检测混凝土质量的原理和记录示意图。
记录图像中呈弧状的同相轴为混凝土缺陷对电磁波的反射所引起。
地质雷达基本参数如下:(1)电磁脉冲波旅行时间式中:Z—勘查目标体的埋深;x—发射、接收天线的距离(式中因Z>x,故x可忽略);V—电磁波在介质中的传播速度。
(2)电磁波在介质中的传播速度式中:C—电磁波在真空中的传播速度(0.29979m/ns);—介质的相对介电常数,—介质的相对磁导率(一般)(3)电磁波的反射系数电磁波在介质传播过程中,当遇到相对介电常数明显变化的地质现象时,电磁波将产生反射及透射现象,其反射和透射能量的分配主要与异常变化界面的电磁波反射系数有关:式中:r —界面电磁波反射系数;—第一层介质的相对介电常数;—第二层介质的相对介电常数。
二、实例分析2.1 工程概况某单位拟在河堤旁新建一条城市道路,因该地区为岩溶发育地区,且临近河流,溶蚀作用较强,地质情况复杂。
电磁波在不同介质传播速度计算公式

电磁波在不同介质传播速度计算公式电磁波是一种由电场和磁场交替变化而产生的波动现象。
在不同介质中传播时,电磁波的速度会发生变化。
电磁波在真空中的速度为光速,即299792458 m/s。
而在介质中传播时,电磁波的速度通常会下降。
本文将介绍电磁波在不同介质中传播速度计算的公式。
1. 真空中传播的电磁波速度公式真空中传播的电磁波速度公式为:v=c其中,v为电磁波在真空中的速度,c为光速,即299792458 m/s。
2. 电磁波在折射率为n的物质中传播的速度公式当电磁波传播时遇到介质界面时,由于介质的折射率不同,其速度也会发生变化。
设电磁波在真空中的速度为v1,介质中的折射率为n,则电磁波在介质中的速度为:v2=v1/n其中,v2为电磁波在介质中的速度。
3. 电磁波在两层介质中传播的速度公式在两层介质中传播时,电磁波的速度可以通过介质的折射率计算。
设电磁波在介质1中的速度为v1,折射率为n1;在介质2中的速度为v2,折射率为n2,则两层介质中的电磁波速度为:v=v1n1/((n2-n1)v2+n1v1)其中,v为电磁波在两层介质中的速度。
4. 电磁波在导体中传播的速度公式导体是一种介质,其内部的电子运动会干扰电磁波的传播,导致电磁波速度下降。
导体中电磁波的速度可以通过介质的损耗和电导率计算。
设导体中电磁波的电导率为σ,损耗因子为α,则电磁波在导体中的速度为:v=c/(sqrt(1+(αλ)/(2πσ))^2)其中,v为电磁波在导体中的速度,c为光速,λ为电磁波的波长。
总之,在不同介质中传播的电磁波速度是由各种因素共同作用的结果。
不同类型的介质都具有不同的电磁波速度计算公式。
这些公式为我们理解电磁波在介质中的传播特性提供了重要的数学工具。
地质雷达

地质雷达的原理及其应用地质雷达是20 世纪70 年代发展起来的一种用于确定地下介质分布的广谱电磁法,具有探测效率高、对探测场地和目标无破坏性、有较高的分辨率及较强的抗干扰能力等特点, 在工程建设领域应用广泛,具体表现在以下几个方面:①工程选址、建设用地地质灾害危险性评估;②工程地质勘察;③地下管道、电缆、洞穴以及障碍物的探测;④地下建筑的无损检测地质雷达是一种用于确定地下介质分布的广谱电磁技术,雷达通过发射天线向介质中发射高频 10 ~ 10 H z、宽频带电磁波,经介质中的分层界面或目标的反射界面产生反射回波信号,由接收天线接收并数据化,电磁波行程需时t =4z 2 + x 2 v , 其中, x 为天线间距, 每次探测具有确定的数值,v 为电磁波在介质中的传播速度,可以用共中心点法现场实测,也可以查经验数值表获取,故可通过上式确定反射界面或目标的深度位置。
电磁波在介质中传播的路径、电磁场强度以及波形将随介质的电性特征及几何形态而变化,故可依据记录到的电磁波走时及波幅等波形资料,解译出目标的几何形态或结构异常。
探地雷达法有广泛的用途,在建筑结构、道路桥梁、地质勘探、市政管线甚至考古刑侦等方面都有用武之地。
1 .路面测厚路面厚度检测是公路检测的主要内容之一。
一般简易路面厚100 一200mm ,高等级公路路面厚200 一300mm ,机场跑道路面厚400mm ,这就要求公路路面厚度检测有较高的分辨率,误差小于10mm 。
雷达测厚是利用电磁波在不同介质界面处的反射一折射、其原理如图1 所示。
对于200mm 厚度以上的混凝土或沥青路面,检测精度达到10mm 以内,则探地雷达使用900MHz 以卜中心频率的天线。
2 .路面与路基缺陷检测公路在修筑过程中对路基进行处理,随着公路投人使用,路基介质经历压实或外来扰动的影响,使原来软弱地基发生变化,这类缺陷会引起公路陷落,造成事故。
监测这类软弱地基的变化,将有利于提高公路运输的安全性。
【浅谈探地雷达检测技术】探地雷达

【浅谈探地雷达检测技术】探地雷达【摘要】在实际工作中,探地雷达作为新型的无损检测设备,具有携带方便、非破坏性、检测快速、精度高等特点,受到广大技术人员越来越多的关注,并且已经在路面厚度检测和隧道衬砌厚度检测中得到推广和应用。
本文概要介绍了探地雷达检测路面结构层厚度和检测隧道二衬厚度的工作原理,并说明了在检测过程中注意的事项,最后探察进一步指出了使用探地雷达检测技术的优缺点。
【关键词】探地雷达;检测技术;路面;隧道一、引言探地雷达方法是通过发射向地下发射高频电磁波,通过接收天线接收反射回地面的电磁波,电磁波在中所地下介质中传播时察觉到存在电性差异的分界面时发生反射,根据接收到的电磁波电磁场的波形、振幅强度和时间的变化等差异特征推断地下介质的空间位置、结构、形态和埋藏深度。
探地雷达是一种广谱电磁技术,用于确定地下介质的分布异常情况。
近年来,由于探地雷达具有高采样率、无损检测等优点,它逐渐取代了原有的钻孔取芯法而在各种工程中得到极为广泛的须要用。
在进行检测的过程中,这种方法只要及少量的钻孔就能够了解公路的结构配合地层的各种变化情况,非常有效地克服了现行钻孔法的严重不足。
并且可以准确地提供关于基层和面层厚度变化的一些真实情况,为实际施工提供了极具参考价值的富有可靠参数。
二、探地雷达检测厚度的工作电磁场1、探地雷阵地雷达检测路面结构层厚度的工作原理在道路的可靠性控制工作中,最重要的一部分就是进行碎石结构层厚度的检测。
传统上所使用的钻心取样法已经远远不能满足精确检测的要求,因此通过对探地雷达测厚的工作原理进行厚认识论分析,可以看出探地雷达技术在公路工程质量检测中所具有独特的。
利用探地雷达检测公路面层厚度是一种反射波探测法。
在特定的介质中,电磁波的传播速度v是保持不变的,因此根据探地雷达所记录的地面反射波与地下反射波的时间差△t,即可依据公式h=v△t/2,量度出界面的厚度值h的大小,对于路面结构层厚度的检测而言,h即为面层的厚度,v表示电磁波在地下介质(面层)中传播时的速度。
雷达探测距离公式

雷达探测距离公式雷达是一种常用的无线电波探测技术,被广泛应用于军事、航空、导航、气象等领域。
它利用电磁波在空间中传播的特性,通过发送和接收信号来探测目标的位置和距离。
在雷达技术中,距离是一个重要的参数,而雷达探测距离公式则是计算目标与雷达之间距离的数学表达式。
雷达探测距离公式可以通过以下方式来推导,首先我们需要了解雷达的工作原理。
雷达系统通过发射脉冲信号并接收目标反射回来的信号来实现目标探测。
当脉冲信号发射后,它会以光速的速度在空间中传播,当遇到目标时,部分能量会被目标反射回来,形成回波信号。
雷达接收机会接收到这个回波信号,并进行信号处理,从而得到目标的信息。
在雷达探测过程中,距离是通过测量信号的往返时间来计算的。
假设目标与雷达之间的距离为R,发送信号的速度为c,则信号往返的时间为2R/c。
根据这个时间,我们可以计算出目标与雷达之间的距离。
雷达探测距离公式可以表示为:R = (c * Δt) / 2其中,R表示目标与雷达之间的距离,c表示信号的传播速度,Δt表示信号的往返时间。
公式中的除以2是因为往返时间是信号从雷达发射到目标反射回来的时间,而雷达探测的是往返距离。
在实际应用中,雷达探测距离公式需要考虑到许多因素的影响。
首先,信号的传播速度c通常取光速,因为雷达系统中使用的是无线电波,其传播速度非常接近光速。
其次,信号的往返时间Δt需要通过精确的时间测量来获取,因为微小的误差会导致测量结果的不准确。
此外,目标与雷达之间的距离R也会受到空气密度、反射系数等因素的影响。
在雷达探测中,除了距离,还有其他参数也需要考虑,如目标的速度、方向、角度等。
这些参数可以通过雷达系统的信号处理来获取。
雷达技术的发展使得我们能够更准确地探测目标,提高了雷达的应用领域和效果。
总结一下,雷达探测距离公式是计算目标与雷达之间距离的数学表达式。
它通过测量信号的往返时间来计算距离,公式中包含了信号的传播速度和往返时间两个参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁波在介质中的传播速度计算公式: εμ
υ1
=
(1-1)
其中ε为介质的介电常数,μ为介质的磁导率。
电磁波在真空中的传播速度: s m C /1098.21
80
0⨯==
με (1-2)
其中0ε为真空中的介电常数,0μ为真空中的磁导率。
电磁波在介质中的传播速度: r
r V μμεεεμ
001
1
=
=
(1-3)
其中r ε为介质的相对介电常数(0εεε=r ),r μ为介质的相对磁导率(0
μμμ=r )。
由(1-2)和(1-3)式得:
电磁波在介质中的传播速度 r
r C
V με=
(1-4)
在探地雷达利用电磁波进行勘探时通常认为,介质的磁导率变化可以忽略,即认为
1=r μ。
所以探地雷达中通常用一下公式计算电磁波在介质中的传播速度:
r
C
V ε=
(1-5)
其中:C 为电磁波在真空中的传播速度(s m C /1038
⨯=), r ε为介质的相对介电常数(0
εε
ε=
r )。
注意:上述公式不适用于导电性土壤(如粘土),或者土壤中含有导电性裂隙水时上述公式也不适用。
下表是常见介质的在电磁波频率为100MHz时的相对介电常数。