大作业_银行家算法课程设计报告

合集下载

大作业 银行家算法课程设计报告

大作业    银行家算法课程设计报告

《操作系统》课程设计报告设计题目:银行家算法的实现姓名:梅济民学号: 2012015014 同组人姓名:赵宇昊学号: 2012012962班级: 2012级信息与计算科学完成日期: 2015年 11 月 12 日银行家算法分析、设计与实现一、理论描述银行家算法要求每个进程的最大资源需求,其基本思想是:始终保持系统处于安全状态,当设计进程提出资源请求时,系统先进行预分配,再判断系统分配后是否仍然处于安全状态。

如果仍然处于安全状态,就进行实际分配;如果处于不安全状态,则拒绝该进程的资源请求。

二、算法描述及数据结构模型#define False 0#define True 1int Max[100][100]={0};//各进程所需各类资源的最大需求int Avaliable[100]={0};//系统可用资源char name[100]={0};//资源的名称int Allocation[100][100]={0};//系统已分配资源int Need[100][100]={0};//还需要资源int Request[100]={0};//请求资源向量int temp[100]={0};//存放安全序列int Work[100]={0};//存放系统可提供资源int M=100;//作业的最大数为100int N=100;//资源的最大数为10三、源代码void showdata()//显示资源矩阵{int i,j;printf(”系统目前可用的资源[Avaliable]:\n”);for(i=0;i〈N;i++)printf("%c ”,name[i]);printf("\n”);for (j=0;j<N;j++)printf(”%d ",Avaliable[j]);//输出分配资源printf(”\n");printf(" Max Allocation Need \n"); printf("进程名”);for(j=0;j<3;j++){for(i=0;i〈N;i++)printf(”%c ”,name[i]);printf(” ");}printf(”\n”);for(i=0;i〈M;i++){printf(” %d ",i);for(j=0;j〈N;j++)printf("%d ",Max[i][j]);printf(” ”);for(j=0;j〈N;j++)printf(”%d ",Allocation[i][j]);printf(” ”);for(j=0;j〈N;j++)printf("%d ",Need[i][j]);printf(”\n");}}int changdata(int i)//进行资源分配{int j;for (j=0;j<M;j++){Avaliable[j]=Avaliable[j]—Request[j];Allocation[i][j]=Allocation[i][j]+Request[j];Need[i][j]=Need[i][j]—Request[j];}return 1;}int safe()//安全性算法{int i,k=0,m,apply,Finish[100]={0};int j;int flag=0;Work[0]=Avaliable[0];Work[1]=Avaliable[1];Work[2]=Avaliable[2];for(i=0;i<M;i++){apply=0;for(j=0;j<N;j++){if (Finish[i]==False&&Need[i][j]<=Work[j]){apply++;if(apply==N){for(m=0;m〈N;m++)Work[m]=Work[m]+Allocation[i][m];//变分配数Finish[i]=True;temp[k]=i;i=-1;k++;flag++;}}}}for(i=0;i〈M;i++){if(Finish[i]==False){printf("系统不安全\n");//不成功系统不安全return -1;}}printf(”系统是安全的!\n”);//如果安全,输出成功printf("分配的序列:”);for(i=0;i<M;i++){//输出运行进程数组printf(”%d",temp[i]);if(i<M-1)printf(”—〉");}printf(”\n");return 0;}void share()//利用银行家算法对申请资源对进行判定{char ch;int i=0,j=0;ch=’y';printf("请输入要求分配的资源进程号(0-%d):”,M—1);scanf(”%d”,&i);//输入须申请的资源号printf("请输入进程%d 申请的资源:\n",i);for(j=0;j〈N;j++){printf("%c:”,name[j]);scanf(”%d”,&Request[j]);//输入需要申请的资源}for (j=0;j<N;j++){if(Request[j]>Need[i][j])//判断申请是否大于需求,若大于则出错{printf(”进程%d申请的资源大于它需要的资源,分配不合理,不予分配!\n”,i);ch='n’;break;}else {if(Request[j]〉Avaliable[j])//判断申请是否大于当前资源,若大于则出错{printf("进程%d申请的资源大于系统现在可利用的资源\n",i);printf(”分配出错,不予分配!\n");ch='n’;break;}}}if(ch==’y’) {changdata(i);//根据进程需求量变换资源showdata();//根据进程需求量显示变换后的资源safe();//根据进程需求量进行银行家算法判断}}int main()//主函数{int i,j,q,choice,m,n,flag;char ming;printf("请首先输入系统可供资源种类的数量:");scanf(”%d”,&n);N=n;for(i=0;i〈n;i++){printf("资源%d的名称:",i+1);scanf(”%s",&ming);name[i]=ming;printf(”资源%d的数量:",i+1);scanf("%d",&q);Avaliable[i]=q;}// printf("\n");printf(”请输入作业的数量:”);scanf("%d",&m);M=m;printf(”请输入各进程的最大需求量%d*%d矩阵[Max]:\n",m,n);for(i=0;i〈m;i++){for(j=0;j〈n;j++)scanf("%d”,&Max[i][j]);//printf(”\n”);}do{flag=0;printf("请输入各进程已经申请的资源量(%d*%d矩阵)[Allocation]:\n”,m,n);for(i=0;i<m;i++)for(j=0;j〈n;j++){scanf("%d”,&Allocation[i][j]);if(Allocation[i][j]〉Max[i][j]) flag=1;Need[i][j]=Max[i][j]—Allocation[i][j];}if(flag)printf(”申请的资源大于最大需求量,请重新输入!\n”);}while(flag);showdata();//显示各种资源safe();//用银行家算法判定系统是否安全while(choice){printf(”\n");printf(”0:离开\n”);printf(”1:分配资源\n");printf(”请选择功能号:");scanf("%d”,&choice);switch(choice){case 1: share();break;case 0:break;default:printf("请正确选择功能号(0-1)!\n");break;}}return 1;四、程序运行结果及分析时刻的资源分配表(各种资源的数量分别为:10、5、7)T运行结果五、课程设计心得与体会通过这次实验,我了解了银行家算法的原理,在编写和调试程序过程中,我的算法和编程能力提高了很多六。

银行家算法课程设计

银行家算法课程设计

课程设计(大作业)报告课程名称:操作系统设计题目:银行家算法院系:信息技术学院班级:2011级1班设计者:111学号:201111010111111指导教师:11111设计时间:12.22——12.27昆明学院昆明学院课程设计(大作业)任务书一、题目分析银行家算法基本原理:操作系统在每一次分配之前都要进行以下操作,判断当前的资源请求是否安全,如果安全则实施分配,否则不予分配。

第1步:操作系统对提出资源请求的进程按所请求的资源数目实施预分配,修改剩余资源数组、资源分配矩阵和剩余资源请求矩阵;第2步:将剩余资源数组代入剩余需求矩阵中与各元素进行比较,找到可以满足其所有资源需求的某个进程将它加入到安全序列中;第3步:将该进程运行结束后释放的资源累加到剩余资源数组中;第4步:再重复第2、3两步。

若所有进程都能够进入安全序列<Pi,Pj,……>,则此次分配可以实施,否则系统将会处于不安全状态,因而不能实施分配。

如果不能实施分配,则将系统还原到预分配之前的状态。

2.设计步骤和方法(1)设计数据结构:剩余资源数组available,如available[j] = k表示资源Rj现有k个。

(2)设计数据结构:最大资源请求矩阵max,如max [i][j] = k表示进程Pi 最多可申请k个类型为Rj的资源。

(3)设计数据结构:资源分配矩阵allocation,定义每个进程现在所分配的各种资源类型的数量,如allocation [i][j] = k表示进程Pi现在分配了k个类型为Rj的资源。

(4)设计数据结构:剩余资源请求矩阵claim,定义每个进程还需要的剩余的资源数,如claim [i][j] = k表示进程Pi还需要申请k个类型Rj的资源。

其中,claim [i][j] = max[i][j] - allocation[i][j]。

(5)设计函数完成功能:系统内资源总数已知、各进程对各类资源最大需求数目已知、已分配资源数目已知的前提下,某进程提出各类资源的需求量时能判断状态是否安全,以决定是否予以分配。

银行家算法课程设计报告

银行家算法课程设计报告

中南大学软件技术课程设计报告课程名称:模拟银行家算法原理班级:学号:姓名:指导老师:2009年5月2日一设计目的模拟实现银行家算法,用银行家算法实现资源分配。

二问题描述在死锁的避免中,银行家算法把系统状态分为安全状态和不安全状态,只要能使系统始终处于安全状态,便可以避免发生死锁。

所谓安全状态,是指系统能按某种顺序为每个进程分配所需资源,直到最大需求,使每一个进程都可以顺利完成,即可找到一个安全资源分配序列。

模拟实现这个工作过程。

三设计思路我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。

操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。

当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。

若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。

四详细设计1、初始化由用户输入数据,分别对可利用资源向量矩阵AVAILABLE、最大需求矩阵MAX、分配矩阵ALLOCATION、需求矩阵NEED赋值。

2、银行家算法在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。

在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可以避免发生死锁。

银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。

设进程cusneed提出请求REQUEST [i],则银行家算法按如下规则进行判断。

(1)如果REQUEST [cusneed] [i]<= NEED[cusneed][i],则转(2);否则,出错。

(2)如果REQUEST [cusneed] [i]<= AVAILABLE[cusneed][i],则转(3);否则,出错。

操作系统课程设计报告 银行家算法

操作系统课程设计报告 银行家算法

操作系统课程设计报告题目:银行家算法操作系统课程设计报告题目:银行家算法摘要在多道操作系统中,可以利用多个进程并发执行来改善系统资源利用率,提高系统的吞吐量,但也可能发生人们不想看到的危险——死锁。

为了解决这个问题,人们引入了多种机制处理死锁问题。

本文主要介绍了操作系统如何运用银行家算法和安全性算法避免死锁的产生。

同时运用Java编程语言模拟计算机内部资源分配的过程。

让读者对银行家算法有更深刻的认识。

关键字:死锁银行家算法安全性算法资源分配IAbstractIn much road OS, improve the systematic handling capacity, but also may people happened not thinking of dangerous dead lock seeing that to come to improve system resource utilization ratio being able to make use of many course concurrency to carry out. Have led into various mechanism for problem , people resolving this handle lock fast problem. The main body of a book has been introduced mainly how to apply the banker algorithm and the security algorithm to avoid lock fast creation. Wield Java programming language analog computer inside resource assignment process at the same time. Let reader have deeper cognition to banker algorithm.Key words: Algorithmic algorithmic security of dead lock banker resource assignmentII目录中文摘要 (I)英文摘要 (II)1绪论 (1)2需求分析 (2)3概要设计 (3)4详细设计 (4)5测试与分析 (6)6总结 (11)7参考文献 (12)附录 (13)1绪论银行家算法诞生的背景:操作系统作为裸机上安装的第一层软件,起着控制和管理计算机内部软硬件资源,合理组织计算机工作流程,提高计算机工作效率,用户和计算机硬件接口的重要作用。

银行家算法课程设计实验报告

银行家算法课程设计实验报告

滁州学院课程设计报告课程名称:操作系统设计题目:银行家算法的设计与实现系别:计算机与信息工程学院专业:计算机科学与技术组别:第二组起止日期: 2012年5月14日~ 2012年6月19日指导教师:马丽生课程设计题目银行家算法的设计和实现组长张震学号2010211148 班级10计科2班系别计算机专业计算机科学与技术组员李梦 2010211102马岩 2010211109蒋路路 2010211095严路路 2010211132指导教师马丽生课程设计目的熟练掌握银行家算法课程设计所需环境Vc++,windows xp课程设计任务要求编写带有界面的银行家算法程序课程设计工作进度计划序号起止日期工作内容分工情况1 2012/5/14~2012/5/21 查询相关资料,了解银行家算法的主要目的及编写方式张震负责对银行家算法的整体思想过程以及了解函数总体编写李梦、严路路负责查找银行家算法的输出算法的实现编写过程马岩、蒋路路负责对安全性检测的方式的实现查找2 2011/5/22~2011/6/5 进行代码设计各个组员对各自部分的代码编写3 2011/6/6~2011/6/13 调试程序共同解决程序中的相应错误4 2011/6/13~2011/6/19 文档编写及最终修订编写word文档,仔细检查发现各类问题指导教师签字:年月日教研室审核意见:教研室主任签字:年月日目录1. 引言 (4)2. 设计要求 (4)2.1.问题描述 (4)2.2.基本要求 (4)3.设计分析 (5)3.1.安全性算法的算法思想 (5)3.1.1.设置向量 (5)3.1.2.安全性检测流程图 (6)3.2.银行家算法的算法思想 (7)3.2.1.银行家算法的思路 (7)3.2.2. 银行家算法 (7)3.2.3. 银行家算法流程图 (8)4.详细设计 (10)4.1.银行家算法中用到的主要数据结构设计 (10)4.2.算法整体设计与调用 (10)4.3.模块设计 (11)4.3.1.安全性算法 (11)4.3.2.输出算法 (13)4.3.3.整体函数设计 (14)5.调试与操作说明 (19)5.1运行程序 (19)6.课程设计的总结与体会 (21)6.1.总结 (21)6.2.体会 (21)1.引言银行家算法是一个用来预防系统进入死锁状态的算法,用它可以判断系统的安全性,如果系统当前处于安全状态,则可以为申请资源的进程分配资源,如果不是安全状态,则不能为申请资源的进程分配资源。

操作系统 银行家算法 课设报告

操作系统 银行家算法 课设报告

第一章设计内容1.1 设计目的通过银行家算法设计与实现,可以加深学生对死锁的理解,掌握死锁的预防、避免、检测和解除的基本原理,重点掌握死锁的避免方法—银行家算法。

使学生初步具有研究、设计、编制和调试操作系统模块的能力。

1.2 设计要求1.问题描述系统在进行资源分配的过程中,允许进程动态的申请资源,为了避免发生死锁,在分配资源前要进行安全性检查,若此次分配不会导致系统进入不安全状态,便将资源分配给进程,否则,进程等待。

2.基本要求设计一个进程动态请求资源的模拟系统,实现随机产生进程请求资源的数量;资源安全性检查算法;资源的分配算法;以及输出显示每次请求的结果和系统资源的状态。

1.3 程序设计思想首先输入进程的数目和系统中的资源数目,根据输入的进程数目创建相应数目的数据结构作为进程的PCB,然后初始化每个进程对每种资源的最大需求量、每种资源的已分配量、系统每种资源的可利用量,进行初始化安全性检查;如果是不安全状态,重新初始化系统;否则,从等待队列中提取一个等待进程,让该进程动态申请所需的各种资源,使用银行家算法进行检测,如果是安全状态,则输出系统的一个安全序列和系统当前资源的使用情况,如果是不安全状态则继续从等待队列中提取进程进行随机申请资源;一直循环到把等待队列清空为止,系统中申请资源的进程全部进入等待队列等候处理。

第二章数据结构、算法和程序流程图2.1 数据结构数据结构说明:本程序中所运用的数据结构主要为进程的说明信息,即进程控制块PCB,如下:struct PCB //进程控制块PCB的数据结构{int pid; //进程编号int Max[MaxResource]; //进程对资源的最大需求矩阵int Allocation[MaxResource]; //进程已分配的资源矩阵int Need[MaxResource]; //进程对资源的需求矩阵int Request[MaxResource]; //进程本次对资源的申请矩阵};2.2 银行家算法银行家算法的基本思想是在分配资源之前,判断系统是否是安全的;若安全,才分配。

银行家算法课程设计实验报告

银行家算法课程设计实验报告

银行家算法课程设计实验报告摘要:本文主要介绍了一种新的实验方法——银行家算法课程设计实验,针对算法教学的实验设计,特别是在银行家算法这一领域,运用Visual C++ 语言,给出了一种实验实现及其相应的实验报告。

实验的通过对 Visual C++ 的开发环境及语法的掌握,实验证明了银行家算法的可行性和实际应用的安全性。

关键词:银行家算法;Visual C++;实验设计;实验报告1. 绪论随着网络技术的不断发展和深化,如今网络系统的仿真实验,尤其是银行家算法的仿真实验的需求量日益增大,该实验将把网络系统设计中的概念、原理以及运用的方法用于系统的实际应用,更直观地表达出网络实验中的概念。

本实验希望通过对 Visual C++语言的开发环境及语法的掌握,实现银行家算法在计算机系统中的运用,实现这种算法的可行性和实际应用的安全性,从而使网络系统仿真实验更加简单有效的实现。

2. 实验目的(1)熟悉 Visual C++ 语言的开发环境及语法;(2)了解银行家算法基本原理及其实现;(3)验证银行家算法的可行性及实际应用的安全性;(4)为网络系统仿真实验提供一种新的实验方法。

3. 实验内容(1)Visual C++编程环境的熟悉;(2)实现银行家算法的仿真实验;(3)验证银行家算法的可行性和实际应用的安全性;(4)实验报告的编写。

4. 实验环境实验环境主要包括实验平台、操作系统、语言编程工具和文本编辑器。

实验平台:实验所使用的计算机硬件平台为:Intel 酷睿i5-8400 处理器、 DDR4 8G 内存及 GTX 1050TI 4G 显卡;操作系统:实验所使用的操作系统为 Windows 10 家庭版;语言编程工具:实验所使用的语言编程工具为 Visual Studio 2017;文本编辑器:实验所使用的文本编辑器为 Notepad。

5. 实验过程实验过程主要包括 Visual C++ 编程环境的熟悉、银行家算法的仿真实现及实验报告的编写。

银行家算法课程设计报告

银行家算法课程设计报告

银行家算法课程设计报告 Prepared on 24 November 2020中南大学软件技术课程设计报告课程名称:模拟银行家算法原理班级:学号:姓名:指导老师:2009年5月2日一设计目的模拟实现银行家算法,用银行家算法实现资源分配。

二问题描述在死锁的避免中,银行家算法把系统状态分为安全状态和不安全状态,只要能使系统始终处于安全状态,便可以避免发生死锁。

所谓安全状态,是指系统能按某种顺序为每个进程分配所需资源,直到最大需求,使每一个进程都可以顺利完成,即可找到一个安全资源分配序列。

模拟实现这个工作过程。

三设计思路我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。

操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。

当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。

若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。

四详细设计1、初始化由用户输入数据,分别对可利用资源向量矩阵AVAILABLE、最大需求矩阵MAX、分配矩阵ALLOCATION、需求矩阵NEED赋值。

2、银行家算法在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。

在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可以避免发生死锁。

银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。

设进程cusneed提出请求REQUEST [i],则银行家算法按如下规则进行判断。

(1)如果REQUEST [cusneed] [i]<= NEED[cusneed][i],则转(2);否则,出错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《操作系统》课程设计报告设计题目:银行家算法的实现:梅济民学号: 2012015014 同组人:宇昊学号: 2012012962班级: 2012级信息与计算科学完成日期: 2015年 11 月 12 日银行家算法分析、设计与实现一、理论描述银行家算法要求每个进程的最大资源需求,其基本思想是:始终保持系统处于安全状态,当设计进程提出资源请求时,系统先进行预分配,再判断系统分配后是否仍然处于安全状态。

如果仍然处于安全状态,就进行实际分配;如果处于不安全状态,则拒绝该进程的资源请求。

二、算法描述及数据结构模型#define False 0#define True 1int Max[100][100]={0};//各进程所需各类资源的最大需求int Avaliable[100]={0};//系统可用资源char name[100]={0};//资源的名称int Allocation[100][100]={0};//系统已分配资源int Need[100][100]={0};//还需要资源int Request[100]={0};//请求资源向量int temp[100]={0};//存放安全序列int Work[100]={0};//存放系统可提供资源int M=100;//作业的最大数为100int N=100;//资源的最大数为10三、源代码void showdata()//显示资源矩阵{int i,j;printf("系统目前可用的资源[Avaliable]:\n");for(i=0;i<N;i++)printf("%c ",name[i]);printf("\n");for (j=0;j<N;j++)printf("%d ",Avaliable[j]);//输出分配资源printf("\n");printf(" Max Allocation Need \n"); printf("进程名 ");for(j=0;j<3;j++){for(i=0;i<N;i++)printf("%c ",name[i]);printf(" ");}printf("\n");for(i=0;i<M;i++){printf(" %d ",i);for(j=0;j<N;j++)printf("%d ",Max[i][j]);printf(" ");for(j=0;j<N;j++)printf("%d ",Allocation[i][j]);printf(" ");for(j=0;j<N;j++)printf("%d ",Need[i][j]);printf("\n");}}int changdata(int i)//进行资源分配{int j;for (j=0;j<M;j++) {Avaliable[j]=Avaliable[j]-Request[j];Allocation[i][j]=Allocation[i][j]+Request[j]; Need[i][j]=Need[i][j]-Request[j];}return 1;}int safe()//安全性算法{int i,k=0,m,apply,Finish[100]={0};int j;int flag=0;Work[0]=Avaliable[0];Work[1]=Avaliable[1];Work[2]=Avaliable[2];for(i=0;i<M;i++){apply=0;for(j=0;j<N;j++){if (Finish[i]==False&&Need[i][j]<=Work[j]){ apply++;if(apply==N){for(m=0;m<N;m++)Work[m]=Work[m]+Allocation[i][m];//变分配数 Finish[i]=True;temp[k]=i;i=-1;k++;flag++;}}}}for(i=0;i<M;i++){if(Finish[i]==False){printf("系统不安全\n");//不成功系统不安全return -1;}}printf("系统是安全的!\n");//如果安全,输出成功 printf("分配的序列:");for(i=0;i<M;i++){//输出运行进程数组printf("%d",temp[i]);if(i<M-1) printf("->");}printf("\n");return 0;}void share()//利用银行家算法对申请资源对进行判定{char ch;int i=0,j=0;ch='y';printf("请输入要求分配的资源进程号(0-%d):",M-1);scanf("%d",&i);//输入须申请的资源号printf("请输入进程 %d 申请的资源:\n",i);for(j=0;j<N;j++){printf("%c:",name[j]);scanf("%d",&Request[j]);//输入需要申请的资源}for (j=0;j<N;j++){if(Request[j]>Need[i][j])//判断申请是否大于需求,若大于则出错{printf("进程 %d申请的资源大于它需要的资源, 分配不合理,不予分配!\n",i);ch='n';break;}else {if(Request[j]>Avaliable[j])//判断申请是否大于当前资源,若大于则出错{printf("进程%d申请的资源大于系统现在可利用的资源\n",i);printf(" 分配出错,不予分配!\n");ch='n';break;}}}if(ch=='y') {changdata(i);//根据进程需求量变换资源showdata();//根据进程需求量显示变换后的资源safe();//根据进程需求量进行银行家算法判断}}int main()//主函数{int i,j,q,choice,m,n,flag;char ming;printf("请首先输入系统可供资源种类的数量:");scanf("%d",&n);N=n;for(i=0;i<n;i++){printf("资源%d的名称:",i+1);scanf("%s",&ming);name[i]=ming;printf("资源%d的数量:",i+1);scanf("%d",&q);Avaliable[i]=q;}// printf("\n");printf("请输入作业的数量:");scanf("%d",&m);M=m;printf("请输入各进程的最大需求量%d*%d矩阵[Max]:\n",m,n);for(i=0;i<m;i++){for(j=0;j<n;j++)scanf("%d",&Max[i][j]);//printf("\n");}do{flag=0;printf("请输入各进程已经申请的资源量(%d*%d矩阵)[Allocation]:\n",m,n);for(i=0;i<m;i++)for(j=0;j<n;j++){scanf("%d",&Allocation[i][j]);if(Allocation[i][j]>Max[i][j]) flag=1;Need[i][j]=Max[i][j]-Allocation[i][j];}if(flag)printf("申请的资源大于最大需求量,请重新输入!\n");}while(flag);showdata();//显示各种资源safe();//用银行家算法判定系统是否安全while(choice){printf("\n");printf(" 0:离开 \n");printf(" 1:分配资源 \n");printf("请选择功能号:");scanf("%d",&choice);switch(choice){case 1: share();break;case 0: break;default: printf("请正确选择功能号(0-1)!\n");break;}}return 1;四、程序运行结果及分析时刻的资源分配表(各种资源的数量分别为:10、5、7) T运行结果五、课程设计心得与体会通过这次实验,我了解了银行家算法的原理,在编写和调试程序过程中,我的算法和编程能力提高了很多六.参考文献:《计算机操作系统》第四版,《C程序设计教程》谭浩强。

相关文档
最新文档