偏微分方程—matlab
matlab求解最简单的一阶偏微分方程

matlab求解最简单的一阶偏微分方程一、引言在科学和工程领域,偏微分方程是非常重要的数学工具,用于描述各种现象和过程。
而MATLAB作为一种强大的数值计算软件,可以用来求解各种复杂的偏微分方程。
本文将以MATLAB求解最简单的一阶偏微分方程为主题,探讨其基本原理、数值求解方法以及具体实现过程。
二、一阶偏微分方程的基本原理一阶偏微分方程是指只含有一个未知函数的偏导数的微分方程。
最简单的一阶偏微分方程可以写成如下形式:\[ \frac{\partial u}{\partial t} = F(x, t, u, \frac{\partial u}{\partial x}) \]其中,\(u(x, t)\) 是未知函数,\(F(x, t, u, \frac{\partial u}{\partial x})\) 是给定的函数。
一阶偏微分方程可以描述很多实际问题,比如热传导、扩散等。
在MATLAB中,我们可以使用数值方法求解这类方程。
三、数值求解方法1. 有限差分法有限差分法是一种常用的数值求解偏微分方程的方法。
其基本思想是用离散的方式来逼近偏导数,然后将偏微分方程转化为代数方程组。
在MATLAB中,我们可以使用内置的求解器来求解离散化后的代数方程组。
2. 特征线法特征线法是另一种常用的数值求解方法,它利用特征线方程的特点来求解偏微分方程。
这种方法在求解一维情况下的偏微分方程时特别有效,可以提高求解的效率和精度。
四、MATLAB求解过程在MATLAB中,我们可以使用`pdepe`函数来求解一阶偏微分方程。
该函数可以针对特定的方程和边界条件,利用有限差分法进行离散化求解。
下面给出一个具体的例子来说明如何使用MATLAB求解最简单的一阶偏微分方程。
假设我们要求解如下的一维热传导方程:\[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \]其中,\(\alpha\) 是热传导系数。
(完整版)偏微分方程的MATLAB解法

引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
matlab偏微分方程

matlab偏微分方程Matlab可以用于求解偏微分方程(PDE)。
以下是一些示例:1. 热传导方程热传导方程描述了温度随时间和空间的变化,由以下方程给出:$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partialx^2}$在Matlab中,可以使用“pdepe”函数来求解这个问题。
具体来说,需要指定初始条件和边界条件,并设置物理参数。
2. 波动方程波动方程描述了波的传播,由以下方程给出:$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$在Matlab中,可以使用“pdepe”函数来求解这个问题。
需要指定初始条件和边界条件,并设置物理参数。
3. Navier-Stokes方程Navier-Stokes方程描述了流体的运动,由以下方程给出:$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{1}{\rho}\nabla p + \nu \nabla^2 u$在Matlab中,可以使用PDE工具箱进行求解。
需要指定初始条件、边界条件和物理参数。
4. Schrödinger方程Schrödinger方程描述了量子力学中的波函数演化,由以下方程给出:$i \hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \psi + V(x) \psi$在Matlab中,可以使用PDE工具箱或ODE工具箱进行求解。
需要指定初始条件、边界条件和物理参数。
以上仅是部分示例,Matlab还可以用于求解其他类型的偏微分方程。
matlab偏微分方程工具箱使用手册

MATLAB偏微分方程工具箱使用手册一、Matlab偏微分方程工具箱介绍Matlab偏微分方程工具箱是Matlab中用于求解偏微分方程(PDE)问题的工具。
它提供了一系列函数和工具,可以用于建立、求解和分析PDE问题。
PDE是许多科学和工程领域中的重要数学模型,包括热传导、扩散、波动等现象的数值模拟、分析和优化。
Matlab偏微分方程工具箱为用户提供了丰富的功能和灵活的接口,使得PDE问题的求解变得更加简单和高效。
二、使用手册1. 安装和启用在开始使用Matlab偏微分方程工具箱前,首先需要确保Matlab已经安装并且包含了PDE工具箱。
确认工具箱已经安装后,可以通过以下命令启用PDE工具箱:```pdetool```这将打开PDE工具箱的图形用户界面,用户可以通过该界面进行PDE 问题的建立、求解和分析。
2. PDE建模在PDE工具箱中,用户可以通过几何建模工具进行PDE问题的建立。
用户可以定义几何形状、边界条件、初值条件等,并选择适当的PDE方程进行描述。
PDE工具箱提供了各种几何建模和PDE方程描述的选项,用户可以根据实际问题进行相应的设置和定义。
3. 求解和分析一旦PDE问题建立完成,用户可以通过PDE工具箱提供的求解器进行求解。
PDE工具箱提供了各种数值求解方法,包括有限元法、有限差分法等。
用户可以选择适当的求解方法,并进行求解。
求解完成后,PDE工具箱还提供了丰富的分析功能,用户可以对结果进行后处理、可视化和分析。
4. 结果导出和应用用户可以将求解结果导出到Matlab环境中,并进行后续的数据处理、可视化和分析。
用户也可以将结果导出到其他软件环境中进行更进一步的处理和应用。
三、个人观点和理解Matlab偏微分方程工具箱是一个非常强大的工具,它为科学和工程领域中的PDE问题提供了简单、高效的解决方案。
通过使用PDE工具箱,用户可以快速建立、求解和分析复杂的PDE问题,从而加快科学研究和工程设计的进程。
matlab解偏微分方程

matlab解偏微分方程Matlab是一种非常强大的数学计算工具,它可以用于解决各种数学问题。
在本文中,我们将学习如何使用Matlab解偏微分方程。
偏微分方程是一类包含未知函数的偏导数的方程。
通常,解偏微分方程是困难的,需要使用复杂的数学方法。
然而,Matlab可以大大简化这个过程。
在Matlab中,我们可以使用pdepe函数来解偏微分方程。
pdepe函数采用一个偏微分方程的系统,并返回一个包含解的向量的矩阵。
下面是一个解二维扩散方程的示例程序:%定义二维扩散方程 function [c,f,s] = diffusionpde(x,t,u,DuDx)c = 1; %系数f = DuDx; %带有时间和空间导数的项s = 0; %不带导数的项end%定义边界条件(例)function [pl,ql,pr,qr] =diffusionbc(xl,ul,xr,ur,t)pl = 0; ql = 1; %左边界(u=0)pr = 0; qr = 1; %右边界(u=0)end%定义初始条件(例)function u0 = diffusionic(x)u0 = sin(pi*x); %sin(pi*x)是初始条件方程end%主程序x = linspace(0,1,50); %空间网格t = linspace(0,1,10); %时间网格sol =pdepe(0,@diffusionpde,@diffusionic,@diffusionbc,x,t );u = sol(:,:,1); %提取第一个解%绘制解surfc(x,t,u)xlabel('位置')ylabel('时间')title('二维扩散方程的解')从上述程序中,我们可以看到pdepe的使用方法。
在主程序中,我们选择了空间和时间网格,然后定义了偏微分方程、初始条件和边界条件的函数。
最后,我们调用pdepe函数,并将解存储在变量sol中。
MATLAB中的偏微分方程数值解法

MATLAB中的偏微分方程数值解法偏微分方程(Partial Differential Equations,PDEs)是数学中的重要概念,广泛应用于物理学、工程学、经济学等领域。
解决偏微分方程的精确解往往非常困难,因此数值方法成为求解这类问题的有效途径。
而在MATLAB中,有丰富的数值解法可供选择。
本文将介绍MATLAB中几种常见的偏微分方程数值解法,并通过具体案例加深对其应用的理解。
一、有限差分法(Finite Difference Method)有限差分法是最为经典和常用的偏微分方程数值解法之一。
它将偏微分方程的导数转化为差分方程,通过离散化空间和时间上的变量,将连续问题转化为离散问题。
在MATLAB中,使用有限差分法可以比较容易地实现对偏微分方程的数值求解。
例如,考虑一维热传导方程(Heat Equation):∂u/∂t = k * ∂²u/∂x²其中,u为温度分布随时间和空间的变化,k为热传导系数。
假设初始条件为一段长度为L的棒子上的温度分布,边界条件可以是固定温度、热交换等。
有限差分法可以将空间离散化为N个节点,时间离散化为M个时刻。
我们可以使用中心差分近似来计算二阶空间导数,从而得到以下差分方程:u(i,j+1) = u(i,j) + Δt * (k * (u(i+1,j) - 2 * u(i,j) + u(i-1,j))/Δx²)其中,i表示空间节点,j表示时间步。
Δt和Δx分别为时间和空间步长。
通过逐步迭代更新节点的温度值,我们可以得到整个时间范围内的温度分布。
而MATLAB提供的矩阵计算功能,可以大大简化有限差分法的实现过程。
二、有限元法(Finite Element Method)有限元法是另一种常用的偏微分方程数值解法,特点是适用于复杂的几何形状和边界条件。
它将求解区域离散化为多个小单元,通过构建并求解代数方程组来逼近连续问题。
在MATLAB中,我们可以使用Partial Differential Equation Toolbox提供的函数进行有限元法求解。
偏微分方程(PDEs)的MATLAB数值解法

偏微分方程的MATLAB求解精讲©MA TLAB求解微分/偏微分方程,一直是一个头大的问题,两个字,“难过”,由于MA TLAB对LaTeX的支持有限,所有方程必须化成MA TLAB可接受的标准形式,不支持像其他三个数学软件那样直接傻瓜式输入,这个真把人给累坏了!不抱怨了,还是言归正传,回归我们今天的主体吧!MA TLAB提供了两种方法解决PDE问题,一是pdepe()函数,它可以求解一般的PDEs,据用较大的通用性,但只支持命令行形式调用。
二是PDE工具箱,可以求解特殊PDE问题,PDEtool有较大的局限性,比如只能求解二阶PDE问题,并且不能解决偏微分方程组,但是它提供了GUI界面,从繁杂的编程中解脱出来了,同时还可以通过File->Save As直接生成M代码一、一般偏微分方程组(PDEs)的MA TLAB求解 (3)1、pdepe函数说明 (3)2、实例讲解 (4)二、PDEtool求解特殊PDE问题 (6)1、典型偏微分方程的描述 (6)(1)椭圆型 (6)(2)抛物线型 (6)(3)双曲线型 (6)(4)特征值型 (7)2、偏微分方程边界条件的描述 (8)(1)Dirichlet条件 (8)(2)Neumann条件 (8)3、求解实例 (9)一、一般偏微分方程组(PDEs)的MATLAB 求解1、pdepe 函数说明MA TLAB 语言提供了pdepe()函数,可以直接求解一般偏微分方程(组),它的调用格式为sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)【输入参数】@pdefun :是PDE 的问题描述函数,它必须换成下面的标准形式(,,)[(,,,)](,,,)()m m u u u uc x t x x f x t u s x t u x t x x x−∂∂∂∂∂=+∂∂∂∂∂式1 这样,PDE 就可以编写下面的入口函数 [c,f,s]=pdefun(x,t,u,du)m,x,t 就是对应于(式1)中相关参数,du 是u 的一阶导数,由给定的输入变量即可表示出出c,f,s 这三个函数@pdebc :是PDE 的边界条件描述函数,必须先化为下面的形式(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂+=∂ 于是边值条件可以编写下面函数描述为 [pa,qa,pb,qb]=pdebc(x,t,u,du)其中a 表示下边界,b 表示下边界@pdeic :是PDE 的初值条件,必须化为下面的形式00(,)u x t u =我们使用下面的简单的函数来描述为 u0=pdeic(x)m,x,t :就是对应于(式1)中相关参数【输出参数】sol :是一个三维数组,sol(:,:,i)表示u i 的解,换句话说u k 对应x(i)和t(j)时的解为sol(i,j,k)通过sol ,我们可以使用pdeval()直接计算某个点的函数值2、实例讲解试求解下面的偏微分2111222221220.024()0.17()u u F u u t xu u F u u tx ∂∂=−− ∂∂ ∂∂ =−− ∂∂ 其中, 5.7311.46()x x F x e e −=−,且满足初始条件12(,0)1,(,0)0u x u x ==及边界条件1221(0,)0,(0,)0,(1,)1,(1,)0u ut u t u t t x x∂∂====∂∂【解】(1)对照给出的偏微分方程,根据标注形式,则原方程可以改写为111222120.024()1.*1()0.17u u F u u x u u F u u t t x ∂−−∂∂∂=+ ∂−∂∂∂可见m=0,且1122120.024()1,,1()0.17u F u u x c f s u F u u x ∂−− ∂===∂−∂%% 目标PDE 函数function [c,f,s]=pdefun (x,t,u,du) c=[1;1];f=[0.024*du(1);0.17*du(2)]; temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp));(2)边界条件改写为12011010.*.*00000u f f u −+=+=下边界上边界%% 边界条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) %a 表示下边界,b 表示上边界 pa=[0;ua(2)];qa=[1;0]; pb=[ub(1)-1;0]; qb=[0;1];(3)初值条件改写为1210u u =%% 初值条件函数function u0=pdeic(x) u0=[1;0];(4)最后编写主调函数 clcx=0:0.05:1; t=0:0.05:2; m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t);figure('numbertitle','off','name','PDE Demo ——by Matlabsky') subplot(211)surf(x,t,sol(:,:,1)) title('The Solution of u_1') xlabel('X') ylabel('T') zlabel('U') subplot(212)surf(x,t,sol(:,:,2)) title('The Solution of u_2') xlabel('X') ylabel('T') zlabel('U')二、PDEtool 求解特殊PDE 问题MATLAB 的偏微分工具箱(PDE toolbox)可以比较规范的求解各种常见的二阶偏微分方程,但是惋惜的是只能求解特殊二阶的PDE 问题,并且不支持偏微分方程组!PDE toolbox 支持命令行形式求解PDE 问题,但是要记住那些命令以及调用形式真的很累人,还好MATLAB 提供了GUI 可视交互界面pdetool ,在pdetool 中可以很方便的求解一个PDE 问题,并且可以帮我们直接生成M 代码(File->Save As)。
matlab中求解偏微分方程

文章标题:深入探讨 Matlab 中求解偏微分方程的方法和应用一、引言在现代科学和工程中,偏微分方程是一种重要的数学工具,用于描述各种自然现象和物理过程,如热传导、流体力学、电磁场等。
Matlab 是一个用于科学计算和工程应用的强大工具,提供了丰富的数值计算和数据可视化功能,其中包括求解偏微分方程的工具箱,本文将深入探讨在Matlab中求解偏微分方程的方法和应用。
二、基本概念偏微分方程(Partial Differential Equation, PDE)是关于多个变量的函数及其偏导数的方程。
在物理学和工程学中,PDE广泛应用于描述空间变量和时间变量之间的关系。
在Matlab中,求解PDE通常涉及到确定PDE类型、边界条件、初始条件和求解方法等步骤。
三、求解方法1. 有限差分法(Finite Difference Method)有限差分法是求解PDE的常用数值方法之一,它将PDE转化为差分方程组,并通过迭代求解得到数值解。
在Matlab中,可以使用pdepe 函数来求解具有一维、二维或三维空间变量的PDE,该函数可以直接处理边界条件和初始条件。
2. 有限元法(Finite Element Method)有限元法是另一种常用的数值方法,它将求解区域离散化为有限数量的单元,并通过单元之间的插值来逼近PDE的解。
Matlab提供了pdenonlin函数来求解非线性PDE,该函数支持各种复杂的几何形状和非线性材料参数。
3. 特征线法(Method of Characteristics)特征线法适用于一维双曲型PDE的求解,该方法基于特征线方程的性质来构造数值解。
在Matlab中,可以使用pdegplot函数来展示特征线,并通过构造特征线网格来求解PDE。
四、实际应用1. 热传导方程的求解假设我们需要求解一个长条形的材料中的热传导方程,可以通过在Matlab中定义边界条件和初始条件,然后使用pdepe函数来求解得到温度分布和热流线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 。取 。
当 时,利用点(k, j),(k±1,j.1),(k±1,j +1)构造的差分格式
(16)
称为五点矩形格式,简记为
(17)
其中 。
2.2抛物型方程的差分解法
以一维热传导方程(5)
为基本模型讨论适用于抛物型方程定解问题的几种差分格式。
首先对xt平面进行网格剖分。分别取h,τ为x方向与t方向的步长,用两族平行直
第二类和第三类边界条件可统一表示成
(4)
其中n为边界Γ的外法线方向。当α=0时为第二类边界条件,α≠ 0时为第三类边界条件。
在研究热传导过程,气体扩散现象及电磁场的传播等随时间变化的非定常物理问题时,常常会遇到抛物型方程。其最简单的形式为一维热传导方程
(5)
方程(5)可以有两种不同类型的定解问题:
初值问题(也称为Cauchy问题)
考虑Poisson 方程的第一边值问题(3)
取h,τ分别为x方向和y方向的步长,以两族平行线 将定解区域剖分 成矩形网格。 节点的全体记为 为整数}。定解区域内部的节点称为内点,记内点集 为 。边界Γ与网格线的交点称为边界点,边界点全体记为Γhτ。与节点 沿x方向或y方向只差一个步长的点 和 称为节点 的相邻节点。如果一个内点的四个相邻节点均属于ΩUΓ,称为正则内点,正则内点的全体记为Ω(1),至少有一个相邻节点不属于ΩUΓ的内点称为非正则内点,非正则内点的全体记为Ω(2)。我们的问题是要求出问题(3)在全体内点上的数值解。
(i)选取网格;
(ii)对微分方程及定解条件选择差分近似,列出差分格式;
(iii)求解差分格式;
(iv)讨论差分格式解对于微分方程解的收敛性及误差估计。
下面我们只对偏微分方程的差分解法作一简要的介绍。
2.1椭圆型方程第一边值问题的差分解法
以Poisson方程(1)为基本模型讨论第一边值问题的差分方法。
(11)
边界条件一般也有三类,最简单的初边值问题为
如果偏微分方程定解问题的解存在,唯一且连续依赖于定解数据(即出现在方程和定解条件中的已知函数),则此定解问题是适定的。可以证明,上面所举各种定解问题都是适定的。
§2偏微分方程的差分解法
差分方法又称为有限差分方法或网格法,是求偏微分方程定解问题的数值解中应用最广泛的方法之一。它的基本思想是:先对求解区域作网格剖分,将自变量的连续变化区域用有限离散点(网格点)集代替;将问题中出现的连续变量的函数用定义在网格点上离散变量的函数代替;通过用网格点上函数的差商代替导数,将含连续变量的偏微分方程定解问题化成只含有限个未知数的代数方程组(称为差分格式)。如果差分格式有解,且当网格无限变小时其解收敛于原微分方程定解问题的解,则差分格式的解就作为原问题的近似解(数值解)。因此,用差分方法求偏微分方程定解问题一般需要解决以下问题:
为简便记,记 。对正则内点 ,由二阶中心差商公式
Poisson方程(1)在点 处可表示为
(12)
在式(12)中略去 ,即得与方程(1)相近似的差分方程
(13)
式(13)中方程的个数等于正则内点的个数,而未知数 ,则除了包含正则内点处解 的近似值,还包含一些非正则内点处 的近似值,因而方程个数少于未知数个数。在非正则内点处Poisson方程的差分近似不能按式(13)给出,需要利用边界条件得到。
偏微分方程—matlab
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
基础知识
偏微分方程的定解问题
各种物理性质的定常(即不随时间变化)过程,都可用椭圆型方程来描述。其最典型、最简单的形式是泊松(Poisson)方程
(1)
特别地,当f(x,y)≡ 0时,即为拉普拉斯(Laplace)方程,又称为调和方程
(2)
带有稳定热源或内部无热源的稳定温度场的温度分布,不可压缩流体的稳定无旋流动及静电场的电势等均满足这类方程。
Poisson方程的第一边值问题为
(3)
其 中Ω为以Γ为边界 的有 界区域, Γ为 分段光滑曲线, ΩU Γ称为定解区 域,f(x, y),ϕ(x,y)分别为Ω,Γ上的已知连续函数。
由此得到一维热传导方程的不同的差来自近似(18)(19)
(20)
2.2.2初、边值条件的处理
为用差分方程求解定解问题(6),(7)等,还需对定解条件进行离散化。
对初始条件及第一类边界条件,可直接得到
(21)
(22)
其中 。
对第二、三类边界条件则需用差商近似。下面介绍两种较简单的处理方法。
(i)在左边界(x =0)处用向前差商近似偏导数 ,在右边界( )处用向后差商近似偏导数 ,即
线 (k=0,±1,±2,…), k ( j=0,1,2,…),将xt平面剖分成矩形网格,节点为 (k=0,±1,±2,…, j = 0,1,2,…)。为简便起见,记
。
2.2.1微分方程的差分近似
在网格内点(k,j)处,对 分别采用向前、向后及中心差商公式,对 采用二
阶中心差商公式,一维热传导方程(5)可分别表示为
(6)
初边值问题
(7)
其中ϕ 为已知函数,且满足连接条件
问题(7)中的边界条件 称为第一类界条件。第二类和第三类边界条件为
(8)
其中 。当 时,为第二类边界条件,否则称为第三类边界条件。
双曲型方程的最简单形式为一阶双曲型方程
(9)
物理中常见的一维振动与波动问题可用二阶波动方程
(10)
描述,它是双曲型方程的典型形式。方程(10)的初值问题为
即得边界条件(8)的差分近似为
(ii)用中心差商近似 ,即
则得边界条件的差分近似为
这样处理边界条件,误差的阶数提高了,但式(24)中出现定解区域外的节点(-1,j)和
(n +1,j),这就需要将解拓展到定解区域外。可以通过用内节点上的u值插值求出
边界条件的处理可以有各种方案,下面介绍较简单的两种。
(i)直接转移
(ii)线性插值
由式(13)所给出的差分格式称为五点菱形格式,实际计算时经常取h=τ,此时
五点菱形格式可化为
(14)
简记为
(15)
其中 。
求解差分方程组最常用的方法是同步迭代法,同步迭代法是最简单的迭代方式。除
边界节点外,区域内节点的初始值是任意取定的。