钢轨打磨车运用
10PGM-48钢轨打磨车作业指导书

第一部份驾驶运行1.目的保证在驾驶作业中严格按照规程进行操作,确保行车.设备和人身安全。
2.合用范围合用于我段PGM—48钢轨打磨车。
3.运行驾驶的要求及分工4.驾驶运行程序运行前需要进行“三项设备”及ITCS检查:1、GYK自检,自检项目:信号自检、常用自检、紧急自检、键盘自检、提示音测试、并要检查GYK感应线圈安装是否牢固,车下紧急排风阀是否打开。
2、CIR出车前检查。
以上检查合格后才可检查以下项目。
4.1运行的检查工作:4.1.1检查一号车主发动机的机油油位,冷却水水位,走行和打磨液压箱油位,柴油箱油位。
4.1.2检查辅助发动机的机油油位.冷却水水位;检查安全行车备品是否齐全和完好。
4.1.3检查三号车主发动机的机油油位.冷却水水位.走行和打磨液压箱油位.柴油箱油位;检查三号车第5.6号打磨小车及工作装置的锁定是否坚固。
4.1.4检查二号车第3.4号打磨小车及工作装置锁定是否坚固,负责三号车车底铁鞋的取出;负责三号车与宿营车(或者其它车)的摘车和连接;负责拆除三号车与宿营车的电源连接线。
4.1.5检查一号车第1.2号打磨小车及工作装置锁定是否坚固,二号车的消防水系统的检查;一号车与宿营车(或者其它车)的摘车和连接;拆除一号车与宿营车的电源连接线。
4.1.6检查,验收全车。
4.2 辅助发动机的启动4.2.1 确认外接电源已拆除或者断开。
4.2.2 将发动机蓄电池开关置于接通位。
4.2.3 检查辅助发机电主控箱的开关打在“合位”。
(便于操作,已打在常“合位”)4.2.4 将起动开关打到启动位,辅助发动机启动后,观察辅助发动机控制面板上的显示是否正常。
4.2.5 确认正常后,将转换开关打到工作位(转换开关垂直向上为“工作位”,中间水平位是“隔离位”,垂直上下是“外接位”)。
4.3 一号车发动机的启动4.3.1 将发动机蓄电池开关置于接通位。
4.3.2 检查故障停机指示灯的显示是否正常。
4.3.3 怠速/运行开关置于RUN位,保持这一位置不动。
铁路线路施工中钢轨打磨技术的运用

铁路线路施工中钢轨打磨技术的运用内蒙古自治区乌兰察布市012000摘要:钢轨是铁路建设的关键设备,所以在铁路施工建设过程中需要合理利用相关技术确保钢轨的质量。
当前打磨技术在钢轨施工中得到普遍应用,并且作用明显。
本文从钢轨打磨的重要意义入手,讨论钢轨打磨主要技术与钢轨打磨要求,最后提出钢轨打磨技术发展趋势,希望对相关研究带来帮助。
关键词:铁路线路;施工;钢轨打磨技术铁路运输是交通运输的重要形式,能够满足大体积货物的远距离运输,并且相较于航空运输费用更低。
为例保障铁路运输安全,在铁路工程施工过程中需要采取技术性措施降低钢轨磨损,以下就钢轨打磨技术进行分析。
一、钢轨打磨的重要意义钢轨是铁路运输中不可或缺的设施,需要在铁路工程施工中采取技术性措施提升钢轨安全能力、钢轨利用率,延长铁路使用年限,降低后续的维护工作量,借助钢轨打磨技术可以达到以上目标,主要作用体现在如下方面:其一,利用钢轨打磨技术可以减少钢轨表面的裂纹、磨损和变形情况,提升列车运行性;其二,改善钢轨和车轮接触条件,之后可以降低二者的接触应力以及车轮滚动期间的阻力,由此节约维修成本;其三,将钢轨打磨技术与涂油技术相结合能够增强钢轨性能,延长其使用年限;其四,利用打磨技术可以提升钢轨表面平顺度,让列车在轨道行驶过程中更加稳定,并且能够减少轮轨噪声,进一步提升人们乘坐的舒适性[1]。
二、钢轨打磨主要技术与钢轨打磨要求(一)钢轨打磨主要技术钢轨打磨技术的应用类型不同使得在打磨方式上也存在差异,需要在施工中合理选择。
以预防性打磨技术的利用为例,主要是在钢轨缺陷出现前期进行处理,要求明确技术要点,进而保障钢轨运行安全。
要点如下:1加强打磨速度控制一般情况下预防性打磨过程中速度较快,而修理性打磨速度较慢,比如通预防性打磨施工技术的应用,假设96头打磨车每小时打磨12公里,深度为0.3毫米,钢轨打磨轮廓面角度为-60度-20度,再如钢轨预打磨施工过程中要求打磨作业铺设15天后进行,并且充分考虑是否影响正常施工进度。
钢轨在线打磨列车在城市轨道交通中的应用案例

钢轨在线打磨列车在城市轨道交通中的应用案例在城市轨道交通系统中,钢轨扮演着至关重要的角色。
然而,长时间使用后,钢轨表面常会出现磨损和损坏,这不仅会影响列车运行的平稳性和安全性,还会增加列车运行的噪音和能耗。
为了解决这一问题,钢轨在线打磨列车应运而生。
本文将根据任务要求,介绍钢轨在线打磨列车在城市轨道交通中的应用案例。
钢轨在线打磨列车简介钢轨在线打磨列车是一种特殊的列车,其主要功能是在运行过程中对钢轨进行打磨和修复。
它通常由一辆或多辆自走式车辆组成,每辆车上都安装有磨轮、磨组和其他必要的设备。
通过控制系统,这些设备能够实时监测钢轨的磨损情况,并进行自动或半自动地修复。
案例一:某市地铁钢轨在线打磨列车的应用某市地铁系统是全国最大的城市轨道交通网络之一,每天承载着大量的乘客出行。
然而,由于长期的使用,部分地铁线路上的钢轨表面出现了明显的磨损和破损,使得列车运行时噪音增加,乘客的乘坐体验也显著下降。
为解决这一问题,该市地铁公司引入了钢轨在线打磨列车。
这些列车通过每日运行、连续打磨的方式,对地铁路线上的钢轨进行维护和修复。
通过实时监测系统,列车能够自动检测和定位钢轨的磨损区域,并进行相应的打磨和修复。
经过一段时间的运行,乘客们发现列车运行的噪音明显降低,乘坐体验也得到了明显改善。
案例二:某市有轨电车线路的钢轨在线打磨列车方案某市有轨电车线路是该市重要的公共交通工具之一,每天承载着大量的市民出行。
然而,随着线路运营时间的不断增长,钢轨出现了各种各样的问题,例如磨损、损坏、铁屑积聚等。
这不仅影响了有轨电车的运行效率,还增加了列车运行的噪音,给市民带来了困扰。
为了解决这些问题,该市有轨电车公司引进了先进的钢轨在线打磨列车方案。
这些列车配备了高精度的传感器和先进的控制系统,能够实时监测钢轨的磨损情况,并对磨损严重的区域进行打磨和修复。
通过定期运行和针对性的维护,有轨电车线路上的钢轨得到了有效保护和修复。
经过一段时间的应用,市民们感受到列车运行的平稳性有所增加,噪音也明显降低,大大提升了市民的出行舒适度。
我国高速铁路钢轨和道岔打磨技术应用与实践

特别策划1 概述2017年前,我国高速铁路运行4种动车组,采用3种车轮廓面(2017年后,动车组类型增加了复兴号,其车轮增加了LMB-10廓面,该廓面考虑与高速铁路各种钢轨廓形匹配),其中CRH1和CRH2型动车组车轮廓面为LMA;CRH3型动车组车轮廓面为改进S1002,即S1002CN;CRH5型动车组车轮廓面为XP55。
后两者原型车车轮及廓面是针对1︰20轨底坡和1 360 mm轮背内侧距条件设计的,与我国采用1︰40轨底坡和1 353 mm 轮背内侧距的条件不同。
由于轨底坡变小,轮轨接触点偏向于轨距角侧,而轮背内侧距变小,不仅轮轨之间游间加大,同时,名义轮轨接触的平衡点也发生改变,这些因素均影响到轮轨关系。
60 kg/m钢轨按原始廓形进行钢轨预打磨也必然造成轮轨接触点偏向轨距角侧,甚至出现2条光带,早期石太客专、京津城际铁路按原始廓形均匀进行的钢轨预打磨后实际轮轨走行光带均证明了这一点[1]。
当车轮凹磨展到一定程度时(约0.6 mm),CRH3型动车组车轮廓面S1002CN与60 kg/m钢轨标准廓面匹配导致等效锥度加大[2],等效锥度加大造成临界速度下降,动车组高速运行时,极易引起横向失稳而产生振动,加快车轮失效。
2010年武广高铁动车组构架横向加速度报警正是在这种条件下发生的,在中国铁路总公司运输局组织下,提出通过钢轨打磨改变钢轨廓形,实现轮轨理想匹配,针对武广高铁运行动车组车轮廓面进行了钢轨打磨廓形设计,按设计廓形加强轨距角打磨。
钢轨打磨后动车组构架横向加速度由0.8g以上下降到0.5g以下,消除了动车组报警,通过钢轨打磨成功整治了动车组构架横向加速度报警现象。
2011年,在京沪高铁钢轨预打磨实践中,进一步完善了钢轨打磨设计廓形(简称设计廓形),并针对我国2种线路钢轨打磨车(GMC96X和GMC96B)进行了打磨我国高速铁路钢轨和道岔打磨技术应用与实践田常海(中国铁道科学研究院 金属及化学研究所,北京 100081)摘 要:针对我国高速铁路早期由于轮轨匹配不良出现的高铁动车组构架横向加速度报警、抖车、晃车和波磨等现象,提出用钢轨打磨方法解决轮轨匹配不良问题,进行廓形打磨技术研究与实践,改善和优化我国高速铁路轮轨型面匹配关系,从工务方面解决了高铁动车组构架横向加速度报警等问题。
钢轨打磨列车在高铁上的应用

身情况确定本国高速铁路的概念 , 在既有线上提速 改造 , 时速达 到 20 m以上 , 0k 也可称 为高速铁路。目前 我国所说的高铁 , 一般
是 指 新 建 的 时速 在 3 0公 里 以 上 的客 运 专 线 。 0
高速铁路 的运行维护如果还是依靠我 国传统的铁路养护手 段 , 已经完全不能满 足要求 了, 则 必须使用大型的专用检测和维 护设备 , 如检测车 , 打磨车等。
1 高速 铁路
高速铁 路是一个具 有 国际性 和时代 性 的概念 。1 8 9 5年 5
月 ,联合 国欧洲经济委员会将高速铁路的列车最高运行速度规
定为客运专线 3 0 m/h 客货混线 20 m/h 9 6年欧盟对 0k , 5k 。19 高速铁路 的最新定义 是 :在新建高速专用线上运行 时速至少达 到 2 0m 的铁路可称作高速铁路 。铁盟认为 , 5k 各国可 以根据 自
件;
() 8 减少车辆横向不稳定性 ( 蛇行运动 ) 。 依据钢轨打磨 的目的和所希望取得 的效果不 同 ,钢轨打磨 存 在多种类形 , 主要可划分 为矫正性打磨 、 维护性打磨 、 预防性 打磨 、 钢轨 预打磨与钢轨不对 称打磨 5种类 型 : 矫正性打磨 , 打 磨列 车以较低 的速度反复对钢轨进行打磨 ,磨削掉钢轨表面 的
3 预 览和打 印工 资条
工资条制作完成后 , 就可 以将其打印出来 , 发放到每一位员 工的手中 , 在领工资时员工需要核实并签 字。
参考文献: [1张辉.xe在财务 中的应用. 1 E cl 大连理工大学出版社( 1版) 第 . []李福顺.x e在教学 中的应用 科技信 息,2 0 (4 2 E cl 072) 【】王海红.xe 回归分析法在 作业成本法 中的应用. 3 E cl 中国管理信 息化
浅谈HSG-City型钢轨打磨车钢轨打磨技术的应用研究

浅谈HSG-City型钢轨打磨车钢轨打磨技术的应用研究摘要:随着中国高速铁路及各城市轨道交通建设的蓬勃发展,对钢轨全寿命维护理念的认识不断加深,钢轨打磨成为钢轨全寿命维护中不可替代的维修手段。
本文主要阐述了HSG-City型钢轨打磨车在钢轨打磨施工领域的优点及应用研究情况。
关键词:HSG-City、钢轨打磨、高速0 引言:国内外钢轨打磨车主要分为传统打磨车、高速打磨车、铣磨车三类。
钢轨打磨方式分为新线开通前的预打磨、已开通线路的预防性打磨和修复性打磨。
德国福斯罗(Vossloh)公司生产的HSG-city钢轨高速打磨车主要用于新线开通前的预打磨及已开通线路的预防性打磨。
1 HSG-city钢轨高速打磨车技术参数:1.1高速打磨车外形尺寸:长度:5.80 m;宽度:2.11m;高度:2.15m;重量:10 t1.2高速打磨车技术参数(1)工作速度8 km/h ~60km/h;(2)两个打磨架,每个有两排打磨石,一排有12个打磨石(共48个打磨石)(3)磨削量:30-40km无中断打磨,每遍通过约0.01~0.02mm(4)粗糙度<10μm图1 HSG-city钢轨高速打磨车2 HSG-city钢轨高速打磨车施工优点分析:2.1 打磨效率高HSG-city钢轨高速打磨车采用被动式打磨方式,整机不自带动力。
磨石无需电机驱动,依靠牵引动力被动旋转进行打磨,打磨速度最高可达60km/h,打磨效率高。
2.2 集尘效果好HSG-city打磨车采用封闭式集尘系统,打磨火花和灰尘能及时有效收集,收集率可达90%以上。
打磨后无需清扫轨道及绝缘接头,可有效提高作业天窗利用率。
2.3 限界小、转场方便HSG-city打磨车外形尺寸为:长 5.8m、宽2.11m、高2.15m,满足《地铁设计规范》GB50157-2013中关于城市轨道交通B2型车辆限界尺寸标准。
另外,打磨车配有标准2号车钩,可与地铁动力车进行联挂。
浅谈城市轨道交通钢轨打磨技术应用

浅谈城市轨道交通钢轨打磨技术应用徐可桢ꎬ许㊀程ꎬ周㊀晶摘㊀要:当前我国的城市轨道交通正如火如荼的建设着ꎬ此外ꎬ许多城市已经基本构建了相对科学和完善的地铁站操作系统软件ꎮ在特定的工作中ꎬ对打磨的预期效果进行全面的数据分析是非常重要的部分ꎮ在这个过程中ꎬ我们必须在两个层面上做好ꎮ一个是及时检查打磨的实际效果ꎬ另一个是根据其特定条件提供合理的解决方案ꎮ关键词:钢轨ꎻ打磨技术ꎻ钢轨打磨㊀㊀如今ꎬ在我国ꎬ社会经济发展水平已经大大提高ꎬ城市化的质量也发生了巨大变化ꎮ在此过程中ꎬ城市交通基础设施和发展趋势已经进入城市轨道交通快速发展时期ꎮ一方面ꎬ选择具有高性能和成本效益的铁路型材ꎬ一方面可以很好地确保安全性能本身得到充分利用ꎬ而且还可以减少大修过程中的资金分配ꎬ并减少性能和使用寿命ꎮ轨道本身也将获得很好保证ꎮ一㊁城市轨道钢轨打磨的必要性笔者将特定的工作经验整合到ˑˑ城市轨道交通工作中ꎬ以对城市轨道交通打磨技术进行简要分析ꎮ打磨新建地铁站路线的重要性ꎮ打磨新建的地铁站路线可以调整铁路生产的尺寸公差ꎬ并确定工程施工错误ꎬ并改善轮轨接触ꎮ«地下铁道工程施工与验收规范»要求确定钢轨底坡度的公差为1/50~1/30ꎬ与钢轨底坡度相匹配的偏斜角为1/50~1/30为1ʎ8ᶄ45ᵡ~1ʎ54ᶄ33ᵡꎬ根据车轮特定组胎面表面光洁度ꎬ选择合适的打磨方法ꎬ以及适当地选择砂轮ꎬ其罐的偏移角和输出功率在很大程度上消除这种工程构造的确定误差ꎬ使轨道表面获得相对性不变的轨道坡度ꎬ从而改善轮轨接触相关性ꎮ钢轨已经存在某些质量缺陷ꎬ则同样的疾病将在短时间内发展并蔓延ꎬ特别是在波纹地区ꎮ火车的不断晃动将导致更严重的隧道施工路基疾病和铁路脚手架紧固件ꎮ二㊁钢轨打磨技术的分类平稳的轨道是火车稳定安全运行的基础ꎮ铁路不规则分为长波不规则和短波不规则ꎮ长波不规则性通常是轨道结构在外力作用下的残余变形ꎬ例如规则ꎬ水平ꎬ高度和扭矩等几何图形的变化ꎮ导轨还将在原始制造工厂中发生几何变化ꎮ前者可以通过更改生产线来消除ꎬ而后者可以在原始铁路工厂之前消除ꎮ短波不规则分为周期性不规则和非周期性不规则:周期性不规则是波摩擦系数和波摩擦系数ꎮ轨道的研磨和打磨通常是指为消除轨道的周期性和非周期性短波不规则性而进行的工作ꎮ铁路的平整度对于能否完成高速行驶至关重要ꎬ并且铁路的打磨和打磨似乎至关重要ꎮ根据不同的维护目的和不同的时间进行分类: (一)准备磨抛它可以在很大程度上消除工程施工确定误差ꎬ从而改善轮轨接触相关性ꎮ可调节轨道制造尺寸公差和工程施工确定误差ꎬ减少轮轨磨合时间ꎬ延长轮轨使用寿命ꎮ它可以消除新的钢轨表面缺陷ꎬ例如在钢轨表面上的毛刺和锈蚀ꎬ可改善钢轨表面的光滑度并改善新的钢轨表面ꎮ(二)预防性打磨ˑˑ城市轨道的现有线上的轨道ꎬ经过长期运行后ꎬ部分路段会掉落ꎬ焊接的鞍座磨损ꎬ油脂边缘ꎬ划痕ꎬ以及轨道头的表面会被金属材料破坏ꎮ轨道表面由于冷硬底部而导致的其他缺点ꎬ特别是在图形区域将继续出现波纹ꎬ此处采用了这种打磨方法ꎮ定期打磨可以减轻波纹的发展趋势ꎮ通常情况下ꎬ预防性打磨更适合在0.2毫米范围内使用ꎮ预防性打磨也是防止和消除波浪状和波浪状磨损的合理方法ꎮ磨光周期短ꎬ发芽时去除了轨道表面的裂纹ꎮ与预防性打磨和修复性打磨相比ꎬ打磨的频率高ꎬ但轨道打磨的总产量小ꎬ可以增加轨道的使用寿命ꎮ(三)修理性打磨客观打磨是为了打磨钢轨的表面疾病和害虫ꎮ重型铁路专注于打磨和去除铁路表面的各种损伤以延长铁路寿命ꎮ所有正常的地铁路线都着重于使用保护性打磨和打磨ꎬ以去除不平坦的铁路表面并提高旅客列车的稳定性ꎮ三㊁应用分析(一)ˑˑ轨道交通线网内波磨形式现在ˑˑ轨道交通线网内1㊁2㊁3㊁4号线的钢轨波磨主要体现为三种形式ꎬ一是1号线以及4号线中的波磨形式ꎬ即曲线上股存在剥落掉块ꎬ曲线下股存在波磨ꎬ波长在35mm至100mm之间ꎬ光带的表现形式为曲线上股光带位置偏向内侧ꎬ曲线下股的光带位置偏向外侧ꎬ上股光带宽度25mm左右ꎬ下股光带宽度为30mm至35mm左右ꎮ以现场实际调查结果ꎬ1号线㊁4号线共计四条曲线的钢轨表面的磨耗分布情况来看ꎬ钢轨磨耗上股钢轨普遍轨角处磨耗较为严重ꎬ内侧30度至内侧15度磨耗基本达到1.5mm至2mm不等ꎬ下股钢轨0度至-15度基本达到0.5mm至0.8mm不等ꎬ具体情况如下ꎮ二是2号线普遍存在的波磨形式ꎬ上股钢轨基本无波磨以及剥落掉块情况ꎬ下股钢轨波磨较为严重ꎬ波磨深度基本达到0.2mm以上ꎬ光带宽度50mm左右ꎮ三是3号线全线存在的波磨形式ꎬ上股钢轨基本无波磨以及剥落掉块情况ꎬ下股钢轨存在轻微波磨波磨ꎬ波长在35mm至60mm之间ꎬ短波引起的噪声较大ꎮ(二)钢轨的廓形变化情况ˑˑ轨道交通线网经过多年的运营情况来看ꎬ钢轨表面的廓形随着线路的运行逐年变化ꎬ趋向于上股钢轨内侧磨耗偏大ꎬ下股钢轨外侧磨耗偏大ꎬ钢轨表面的廓形发生了改变ꎬ导致光带位置内移ꎬ波磨产生较为频繁ꎮ(三)钢轨打磨方式通过近两年的打磨调查分析以及查阅资料ꎬ我们发现钢轨廓形的变化情况对于延缓侧磨发展及波磨产生周期有着密切联系ꎬ所以目前我们打磨的方向是将现有的钢轨廓形与现阶段铁路中使用较多的60N廓形相匹配ꎮ将控制钢轨与车轮的接触位置ꎬ尽量将钢轨光带调整为上股光带位置于钢轨上方偏内侧5度ꎬ下股钢轨为偏外侧5度ꎬ光带宽度约25mm左右ꎮ三号线钢轨打磨后上股光带的宽度控制在25mm左右ꎬ下股钢轨光带宽度控制在30mm左右ꎬ基本达到调整光带位置的目的ꎮ㊀㊀㊀(下转第175页)可靠ꎮ基于此ꎬ必须对化工安全风险识别评价内容进行完善ꎬ优化评价体系ꎮ首先ꎬ需对化工设备安全评价内容进行优化ꎬ将其作为主要评价内容ꎬ有效评价化工设备化工材料的稳定性ꎬ一旦发生问题ꎬ第一时间予以解决ꎮ其次ꎬ将反应较为激烈的环节纳入评价体系中ꎬ尽可能选择反应较小的工艺ꎬ同时评价该反应参数是否正常范围值ꎬ一旦发现该反应超出正常范围ꎬ需找出问题存在的原因ꎬ并有效控制各类原料的投放量ꎮ最后ꎬ应将工作人员防护工具的安全性ꎬ纳入评价体系中ꎬ有效评价各类防护工具的安全性以及磨损度ꎬ避免人员在使用过程中出现安全事故ꎮ(三)提升风险与安全评价技术随着我国科技水平的快速提高ꎬ众多新型管理设备出现在化工行业中ꎮ化工领导者亟须重视生产工艺的革新ꎬ有效利用信息化评价技术ꎮ首先ꎬ利用信息化安全评价对化工工艺安全性进行量化分析ꎬ通过信息化设备有效计算出各类工艺的具体安全参数ꎬ从而保障操作人员直观了解该工艺的安全性ꎮ其次ꎬ利用计算机设备ꎬ模拟该工艺流程ꎬ将工艺参数输入其中ꎬ通过观察模拟结果来预测工艺流程中可能出现的安全风险ꎬ并对具有较强危险性的环节进行控制ꎬ进而提升化工工艺的安全性ꎮ五㊁结论随着我国社会快速发展ꎬ政府部门对我国化工行业发展的重视程度日益提升ꎬ在当前社会发展前提下ꎬ我国政府部门出台多项关于推动化工行业发展进程的政策性意见ꎬ其最终目的是保障我国能够有效实施工业强国这一目标ꎮ但经过实践证明ꎬ在化工行业发展过程中ꎬ因化工工艺问题导致的安全事故频发ꎬ这些事故发生的主要原因在于化工风险识别工作质量差ꎬ并未全面对化工流程以及工业设备进行评价ꎮ因此若想保障现在化工工艺快速发展ꎬ必须对化工工艺进行风险识别与安全评价ꎬ将风险识别与安全评价作为日常工作重心ꎬ提升化工生产的安全性ꎬ降低事故发生率ꎬ推动我国化工行业安全稳定发展ꎮ参考文献:[1]赵梁燕.化工工艺的风险识别与安全评价[J].化工管理ꎬ2019(28):65-66.[2]张洪武.化工工艺的风险识别及安全评价初探[J].化工设计通讯ꎬ2019ꎬ46(4):132+152.[3]焦聪ꎬ郭鹏韡.化工工艺的风险识别与安全评价[J].化工设计通讯ꎬ2019ꎬ45(9):62-63.作者简介:杨倩ꎬ中安广源检测评价技术服务股份有限公司江苏分公司ꎻ薛云龙ꎬ王睿智ꎬ中国船级社质量认证公司南京分公司ꎮ(上接第173页)(四)钢轨打磨的噪声变化情况以ˑˑ地铁4号线红庄-蠡墅区间为例ꎮ通过前期调查ꎬ解决了该区段存在的钢弹簧浮置板道床ꎬ部分调高垫片存在的空吊情况ꎬ提高了钢弹簧浮置板道床对预期铺设线路时的减震㊁降噪效果ꎮ改善了道床的受力情况着手ꎬ改善了钢弹簧浮置板道床的受力ꎮ再针对线路质量状况ꎬ以钢轨打磨的方式ꎬ对4号线支线红庄-蠡墅的上行区间共打磨四次ꎬ下行区间共打磨两次ꎮ持续监测区间产生的噪声下降明显ꎬ基本降低至80dB左右ꎬ提高乘客乘车的舒适度ꎮ从3号线波磨表现形式来看ꎬ钢轨表面的光带位置均处于行车一侧ꎮ而光带位置的成因主要在于两个方面:第一个方面ꎬ通过对3号线网轨动态检测数据分析ꎬ发现普遍存在的轨距超限(轨距偏大)问题ꎬ轨距超限导致上下股轮轨接触位置始终处于钢轨工作边一侧ꎻ第二个方面ꎬ新线路钢轨线路铺设时ꎬ轨底坡未按照钢轨预铺设的1ʒ40进行铺设ꎮ从5月份以来ꎬˑˑ地铁相关车间在3号线共计完成21次ꎬ通过采用60N这样的廓形处理方式产生的廓形变化数据如图所示ꎬ钢轨打磨后的光带位置处于较为良好的位置ꎬ噪声数据下降明显ꎮ(五)打磨案例分析1.2020年ꎬˑˑ轨道交通2号线盘蠡-新家桥下行k22+132-k22+530曲线下股存在较为严重的波磨ꎬ曲线上股存在侧磨ꎬ该曲线半径R=700mꎬ超高为75mmꎬ缓和曲线长60/60米ꎬ道床类型为混凝土整体道床ꎬ扣件类型为Ⅲ型减震扣件ꎮ2.整治过程:使用RGH-20C型钢轨打磨车进行打磨ꎮ3.打磨流程:打磨前上股钢轨存在侧磨ꎬ轻微波磨ꎬ下股存在较为严重的波磨ꎬ光带位置欠佳ꎬ方案设计考虑消除既有病害的同时修正钢轨廓形ꎮ上股钢轨遍数为2遍ꎬ修正廓形遍数为6遍ꎬ下股钢轨打磨遍数为3遍ꎬ修正廓形遍数为6遍ꎮ4.整治效果:打磨前曲线上股存在轻微波磨ꎬ如图1所示ꎬ波磨深度在0.05mm左右ꎬ下股钢轨存在较为严重的波磨ꎬ如图2所示ꎬ波磨深度在0.2mm左右ꎮ打磨后波磨得到了有效消除ꎬ接触光带在15~33mm之间ꎬ使用至今钢轨状态及廓形保持良好ꎮ图1㊀曲线下股打磨前㊀图2㊀曲线下股打磨后四㊁结论当前ꎬˑˑ地铁已经从以往的修理打磨向计划性打磨㊁预防性打磨方向转变ꎮ在这一过程中相关车间已按照既有经验做好打磨前的维修和打磨后的检查ꎬ将线路动态数据㊁钢轨廓形数据ꎬ噪声㊁轨底坡综合考虑ꎬ降低线路波磨对噪声产生的影响ꎮ也证明了通过钢轨打磨确实可有效降低区间噪声(在噪声区段90dB至100dB区间内最为明显)ꎬ其中预防性打磨更能有效减缓钢轨侧磨㊁疲劳和波磨的发展速度ꎬ从而改善轮轨接触状况ꎬ降低轮轨噪声ꎬ提高乘坐舒适度ꎮ参考文献:[1]国家质量技术监督局.地下铁道工程施工及验收规范[Z].2004-04-01.作者简介:徐可桢ꎬ许程ꎬ周晶ꎬ苏州市轨道交通集团有限公司运营一分公司ꎮ。
钢轨打磨技术及其应用

图12 工作中打磨电机角度调整
2、钢轨打磨技术分类及其作用
2.1 钢轨打磨分类方法有很多,按照采用的方法和 欲达到的目的可分为:(1)表面打磨,也叫修复性打磨 ;
(2)外形打磨,也叫预防性打磨。
2.2 表面打磨(修复性打磨)
表面打磨是控制和清除钢轨表面已有的缺陷。表 面打磨通常是在钢轨表面形成缺陷以后才进行。传 统的表面打磨只是简单地将轨头磨平,如图13 (a) 所 示。轨面缺陷直接与轮轨竖向动力作用有关,表面 打磨可以控制表面缺陷,从而起到减小垂向振动、 垂向冲击力和噪声、提高旅客舒适性的作用。
要求的外形轮廓、质量标准方面形成了一系列的规 范的制度和施工措施。而且能够达成的共识是钢轨 打磨是实现最佳轮轨相互作用的关键,几乎所有的
铁路公司都把钢轨打磨看作解决钢轨波形磨耗、 剥落、开裂问题的有效方法。俄罗斯、日本、法 国和德国的国家铁路上,钢轨打磨也被认为是延 长钢轨使用寿命和降低噪声的最有效手段之一。
图14 直线区段轮轨接触光带
图15 打磨后车轮走行光带居中
图16 打磨与未打磨钢轨磨耗比较
表1 两类打磨方法简况
3、钢轨打磨技术应用中注意的问题
一种特定的打磨外形只适合一类问题, 即不同的 问题需要不同的打磨外形, 不存在一种适合所有问题 的打磨外形。实际应用中要针对线路的钢轨病害发 展规律及运营条件,针对具体的现场环境,结合对 打磨车工作性能的分析,初步确定打磨类型。要注 意的问题有:
图17 打磨机
图18 RGH20C型钢轨打磨车
图19 中国 北车研制的 首列国产 GMC96B 型钢轨打磨 列车
Thank you !
(4)打磨量的控制,钢轨打磨是控制磨损而且通 过精心调整可以恢复到理想形状,在最小的打磨量 和钢轨损失下达到要求的去除量,即自然和人工作 用而形成的钢轨磨耗量组合起来要求正好能够消除 仅在金属表面出现的裂纹;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PGM96c型钢轨打磨车运用与保养目录目录 (2)第一章PGM96c型钢轨打磨列车的功能与参数 (3)第一节PGM96c型钢轨打磨列车的功能 (3)第二节PGM96c型钢轨打磨列车的基本参数 (4)第二章PGM96c型钢轨打磨列车的运用 (6)第一节作业准备 (6)第二节运行与联挂运行 (8)第三节作业操纵 (10)第四节返回驻地 (12)第五节各号位作业标准 (13)第三章PGM96c型钢轨打磨列车的安全技术组织措施 (24)第一节设备使用与检修安全技术组织措施 (24)第二节打磨车附属设备和人员安全组织措施 (27)第三节 PGM96c钢轨打磨车救援预案 (28)第四章PGM96c型钢轨打磨列车的施工组织及质量控制 (32)第一节钢轨病害与维修周期 (32)第二节施工组织与配合 (33)第三节打磨车作业技术要求 (34)第四节钢轨打磨列车作业验收标准 (35)第一章PGM96c型钢轨打磨列车的功能与参数·PGM96c型钢轨打磨列车的功能·PGM96c型钢轨打磨列车的性能参数第一节PGM96c型钢轨打磨列车的功能随着我国高速铁路建设的飞速发展和高速重载指标的不断提高,钢轨磨损越来越严重,高速铁路的养护设备需求也在急剧增加,PGM96c型钢轨打磨列车应运而生。
它由一辆动力车和四辆打磨作业车组成,设计有96个磨头同时作业,可通过控制系统,针对不同的钢轨缺陷采取各种模式对高速铁路的钢轨波浪型磨耗、钢轨肥边、马鞍型磨耗、焊缝凹陷及鱼鳞裂纹等病害实施快速打磨,以消除钢轨表面不平顺、轨头表面缺陷及将轨头轮廓恢复到设计要求,从而实现减缓钢轨表面缺陷的发展、提高钢轨表面平滑度,进一步达到改善旅客乘车舒适度、降低轮/轨噪音、延长钢轨使用寿命的目的。
PGM96c的外形如图1.1图1.1PGM96c型钢轨打磨列车设计的打磨砂轮能同时工作,在外侧20°到内侧70°间经过调节和计算机控制,以3-24公里的速度进行打磨;计算机内能存储预设的打磨角度、功率,能快速切换到不同的打磨工况,针对不同的钢轨病害进行施工,适应封锁作业中“高效、快速”的要求,在规定时间内优质地完成打磨施工任务。
PGM96c型钢轨打磨列车设计使用计算机操作,通过点击屏幕中的各功能按钮进行作业,界面明了,操作简单。
另外,操作列车装有集尘装置符合环保要求,可收集打磨作业粉尘,抑制轨面火花飞溅,减少对环境和列车装备的污染。
列车自运行时速100公里,能快速到达作业现场。
第二节PGM96c型钢轨打磨列车的基本参数PGM96c型钢轨打磨列车的主要技术性能如下:1.作业条件钢轨类型50 kg/m、60 kg/m和75 kg/m钢轨轨枕配置无特殊限制道床类型碎石或无砟道床作业线路单线或线间距4 m及以上的复线与多线适用轨距1435 mm线路最大超高180 mm线路最大坡度33‰最小作业曲线半径180m环境温度-10℃~+50℃海拔高度2000米特殊环境可在雨天和夜间及风沙、灰尘严重的环境下作业2.作业性能打磨电机功率可调整到22千瓦,瞬间可达29千瓦打磨速度3-24公里/小时无级、可调平均每遍打磨切削量0.2mm打磨效率10-18遍公里/小时磨头角度调整范围内侧70度调整到外侧20度3.整机性能整车长度113.84米总重450吨高度(打磨车) 4.57米宽度(打磨车) 3.2米动力车外形尺寸(长宽高)24480mmx2940mmx4670mm车轮直径840mm打磨小车每台打磨车有三个小车各八个打磨电机最大运行速度(10‰坡度) 100公里/小时最大联挂速度120公里/小时打磨电机转速3600转每分钟磨石直径254毫米磨石厚度(新的)89毫米最小运行曲线半径150米常用制动充气制动/弹簧缓解停车制动弹簧制动/充气缓解打磨车油箱每个3,000升动力车油箱7200升辅助发动机功率160千瓦主发动机功率走行970千瓦2台,打磨728千瓦4台水箱3000升(两头各1个)其他装备滤芯和尘土卸载的集尘器第二章PGM96c型钢轨打磨列车的运用·作业准备·运行与联挂运行·作业操纵·返回驻地·岗位作业标准第一节作业准备一、启动辅助发电机组1、检查蓄电池接线是否牢固,检查空气、冷却、润滑及蓄电池供电系统;2、闭合开关柜(EB36)箱内的电源总开关(QS1);3、闭合发电机组控制柜中的控制器模块供电开关(Q1)和发动机ECU模块供电开关(Q2);4、初始化后点发电机组操作面板START启动发电机组;5、启动正常后,点按交流控制柜上的(EB35)上的“发电机组供电”按钮,并确认“发电机组供电”指示灯亮,闭合相应负载的小型断路器,或用电开关,即设备得电,如启动走行计算机;6、若要停止供电,必先切断负载电源,然后点交流控制柜(EB35)上的“交流电源停止”按钮,点STOP关闭发电机组,关闭发电机组控制柜中的控制器模块供电开关(Q1)和发动机ECU模块供电开关(Q2)(注意:关闭Q1后30秒才可关闭Q2),最后关断电源总开关。
二、外接电源供电(用于调试或保养模式)1、将连接导线和随车的PCE插头连接好,再将PCE插头和动力车车端交流输入电源插座连接好,再合上外接电源端的空气开关;2、点交流控制柜(EB35)上的“外接电源供电”按钮,并确认“外接电源供电”指示灯亮;3、闭合相应负载的小型断路器或用电开关,即设备得电;4、若要停止供电,必须先切断负载电源,然后点交流控制柜(EB35)上的“交流电源停止”按钮,最后在连接导线无电的情况下,摘除连接线束。
三、启动走行主发动机1、确认辅助发电机组已经启动并正常送电。
2、开启1#和5#走行计算机。
3、检查发动机的电源接线是否牢固,检查燃油、空气、润滑、冷却系统,检查液压管路及传动箱附件等部位,检查空压机和发电机皮带的松紧度;4、确认非操作端操纵台上各开关、手柄都处于正确状态,总电源开关在断开位置,确认3#车主控制柜(EB34)柜门上的手动换挡开关处于断开位;5、确认发动机转速调节手柄处于最低位,“作业转速”开关在断开位,低速走行控制手柄处于中位,确认工作选择开关处于中位,将本端总电源开关扳至工作位,显示器电源开关扳至工作位,液晶显示屏显示后,确认蓄电池电压在DC24V~DC28V范围内,再按下柴油机启动按钮(绿色按钮,分I位Ⅱ位,按下时间不少于1秒)发动机启动;若双机启动,则按同样方法启动另一台发动机,注意观察两台发动机的技术参数是否正常(注意:当双机重联时,两台发动机不允许同时启动,当启动一台发动机后,应间隔1~2分钟再起动另一台发动机);6、将发动机转速调节手柄向司机方向扳,柴油机转速提高,松手后柴油机转速保持不变,将发动机转速调节手柄向司机反方向扳,柴油机转速降低;7、按下停机按钮,柴油机即停止工作;柴油机停止30秒后方能够关断总电源开关。
四、制动机检查及试验(按整列车操作)发动机起动后,空压机即开始充风,制动阀手把置于缓解位置,按《操规》规定,对JZ-7 型空气制动机进行“五步闸”的检查与试验。
1、检查各风表指示压力应符合以下规定:总风缸700~800kPa均衡风缸500kPa制动管500kPa制动缸0kPa2、减压50kPa,制动缸压力为125kPa。
列车制动管泄漏,每分钟不超过20kPa。
3、将自动制动阀手柄自最小减压位开始,施行阶段制动,直到最大减压位,在制动区移动3-4 次,观察阶段制动是否稳定,减压量与制动缸压力的比例应正确。
全制动后,当列车制动管风压在500kPa 时,列车制动管减压量为140kPa,制动缸压力应为360kPa。
4、单阀缓解良好,通常应能缓解到50kPa 以下。
5、自阀缓解应良好,均衡风缸及列车制动管风压应为500kPa。
6、列车制动管减压量应在240-260kPa 之间,制动缸压力应在350-420kPa 之间,并且不应发生紧急制动。
7、均衡风缸压力上升,而列车制动管压力保持不变,总风遮断应用良好。
8、缓解应良好。
9、均衡风缸减压量应在240-260kPa 之间,而且列车制动管不应减压。
10、过充作用应良好。
列车制动管风压比规定压力高30-40KPa 时,过充风缸上的排风孔处应排风。
11、过充压力应在120 秒后自动消除,不引起车辆自然制动。
12、列车制动管压力能在3 秒内降至0,制动缸压力应能在5-7 秒内升到400~420kPa,均衡风缸减压量为240-260kPa,撒砂作用应良好。
13、放置10-15 秒,制动缸压力开始缓解,并逐渐降到0。
14、单阀复原应良好。
15、自阀缓解应良好。
16、单阀制动应良好。
17、单独制动阀手柄由运转位逐渐移至全制动位,阶段制动应稳定。
全制动位时,18、制动缸压力应达到300kPa。
检查闸瓦与车轮间隙是否在4~7mm 范围内。
19、检查(18)~(19)阶段缓解作用是否良好。
20、单独制动阀手柄由全制动位逐渐移至运转位,阶段制动作用应良好。
21、换端操纵并试验以上项目22、将停车制动缓解开关扳至缓解位,使用自阀进行一次制动,检查制动系统是否正常工作再缓解,缓解时间不超过35 秒。
第二节运行与联挂运行一般情况,钢轨打磨列车为单台机组作业,但遇到需与其它大型养路机械机组联挂运行的情况时,需按章作业,注意安全。
一、高速自运行1、高速运行前检查打磨车的各锁定机构是否锁定;2、确认需要使用的传动箱工况处于“小运转”位,不使用的传动箱工况处于“空档”位;3、取得控制权,即将控制电源主开光置于“开”位(此前必须确认另一端处于“关”位。
4、触摸液晶显示屏上“软开关控制”按钮,显示屏进入软开关控制界面,确认I位Ⅱ位马达均摘到位。
如果摘到位没有亮绿色,则触摸显示屏上的前进或后退微动按钮(注意:微动时工况选择开关需扳至“低速”位);5、将自阀和单阀手柄置于操纵端制动阀上,将停车制动缓解开关扳至缓解位,并确认停车制动管压力表显示大于500KPa;6、将工况选择开关扳至“高速”位,方向手柄至“前进”或“后退”,缓慢拉动油门控制手柄发动机转速升高,此时传动箱自动进入“I”档,使车辆启动。
7、调节油门,用以控制车辆走行速度,直到到达作业地点。
二、故障操纵运行当计算机无法控制时,可以尝试使用故障操纵方法将打磨列车从故障地点驶离。
但必须加强瞭望,并将速度控制在40Km/h以内。
具体方法如下:1、闭合开关柜(EB36)箱内的电源总开关(QS1),确认1、5号车操纵台上的总电源开关在断开位,确认主控制柜(EB34)柜门上手动换挡开关处于中位;2、确认需要使用的传动箱工况处于“小运转”位,不使用的传动箱工况处于“空档”位;3、打开主控制柜(EB34)柜门上手动换挡控制开关,按下需要使用的发动机启动按钮,发动机启动,注意观察柜门上发动机主显示单元;4、按下空压机起动按钮,空压机开始打风;5、按正常操作检查及实验空气制动系统;6、打开停车制动缓解开关,并由1、5车操作人员确认停车制动管压力达到规定值;7、确认发动机转速处于怠速,把传动箱手动换挡控制开关扳至前进或后退I档,提高发动机转速,车辆运行,如果车辆不能运行,可能出现传动箱主空阀发卡现象,此时可以点动“传动箱故障解除”按钮。