空间点、直线、平面之间的位置关系测试题及答案
空间点、直线、平面之间的位置关系(习题及答案)

空间点、直线、平面之间的位置关系(习题)1.判断正误,正确的打“√”,错误的打“×”(1)有三个公共点的两个平面必重合.()(2)空间中两条平行直线确定一个平面.()(3)空间两两相交的三条直线确定一个平面.()(4)三角形是平面图形.()(5)平行四边形、梯形、四边形都是平面图形.()(6)两组对边分别相等的四边形是平行四边形.()(7)垂直于同一直线的两直线平行.()(8)一条直线和两平行线中的一条相交,也必和另一条相交.()2.已知α,β为平面,A,B,M,N为点,a为直线,下列理解错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=直线MNC.M∈α,M∈β,α∩β=l⇒M∈lD.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合3.l1,l2,l3是空间中三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.已知a,b,c为三条不重合的直线,α,β为两个不重合的平面,有下列命题:①若a∥c,b∥c,则a∥b;②若a∥β,b∥β,则a∥b;③若a∥c,c∥α,则a∥α;④若a∥β,a∥α,则α∥β.其中正确的是()A.①②B.①C.②④D.③④5.如图,在空间四边形ABCD中,AB,BC,CD的中点分别是P,Q,R,且PQ=2,QR=5,PR=3,则异面直线AC和BD 所成的角为()A.90°B.60°C.45°D.30°第5题图第6题图6.如图,正方体ABCD-A1B1C1D1两个面上成异面关系的两条对角线所成的角为()A.60°B.90°C.60°或90°D.30°7.如图,在正方体ABCD-A1B1C1D1中,AA1=AB=4,AD=2,E,F,G分别是DD1,AB,CC1的中点,则直线A1E,FG所夹的角为_______.8.将正方体的纸盒展开(如图),则直线AB,CD在原正方体中所成的角为________.9.如图,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AC=BD=a,且AC与BD所成的角为60°,则四边形EFGH的面积是________.10.如图,在正方体ABCD-A1B1C1D1中,E,F分别是AA1,CC1的中点,求证:四边形BFD1E是平行四边形.11.如图,在正方体ABCD-A′B′C′D′中,求:(1)AA′和C′D′所成角的大小;(2)AA′和B′C所成角的大小;(3)A′B和B′C所成角的大小.12.如图,△ABC在平面α外,直线AB∩平面α=P,直线AC∩平面α=Q,直线BC∩平面α=R,求证:P,Q,R三点共线.【参考答案】1.×√×√××××2.B3.B4.B5.A6.C7.90°8.60°9.238a 10.略11.(1)90°;(2)45°;(3)60°12.略。
《 空间点、直线、平面之间的位置关系》试题(新人教必修2).

第1题. 下列命题正确的是( ) A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面答案:D.第2题. 如图,空间四边形ABCD 中,E ,F ,G ,H 分别 是AB ,BC ,CD ,DA 的中点. 求证:四边形EFGH 是平行四边形.答案:证明:连接BD .因为EH 是ABD △的中位线,所以EH BD ∥,且. 同理,FG BD ∥,且BD .因为EH FG ∥,且EH FG =. 所以四边形EFGH 为平行四边形.试题号:4658 知识点:空间平行线的传递性——公理4。
试题类型:解答题 试题难度:容易 考查目标:基础知识 录入时间:2006-1-6第3题. 如图,已知长方体ABCD A BC D ''''-中,AB =AD =2AA '=. (1)BC 和A C ''所成的角是多少度? (2)AA '和BC '所成的角是多少度?AE BHGCFD答案:(1)45þ;(2)60þ.第4题. 下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则lα∥.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1 C.2 D.3答案:B.⊄,则下列结论成立的是()第5题. 若直线a不平行于平面α,且aαA.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交答案:B.∥,且a与c的夹角为θ,那么b与c夹角第6题. 已知a,b,c是三条直线,角a b为.答案:θ.第7题. 如图,AA'是长方体的一条棱,这个长方体中与AA'垂直的棱共条.答案:8条.第8题. 如果a,b是异面直线,直线c与a,b都相交,那么这三条直线中的两条所确定的平面共有个.答案:2个.∥则b与α的位置关系是.第9题. 已知两条相交直线a,b,aα平面∥,或b与a相交.答案:b a第10题. 如图,三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?答案:3个,3个.第11题. 如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行.②CN与BE是异面直线.③CN 与BM 成60˚角. ④DM 与BN 垂直.以上四个命题中,正确命题的序号是( ) A.①,②,③B.②,④ C.③,④D.②,③,④答案:C.第12题. 下列命题中,正确的个数为( )①两条直线和第三条直线成等角,则这两条直线平行;②平行移动两条异面直线中的任何一条,它们所成的角不变;③过空间四边形ABCD 的顶点A 引CD 的平行线段AE ,则BAE ∠是异面直线AB 与CD 所成的角;④四边相等,且四个角也相等的四边形是正方形 A.0 B.1 C.2 D.3 答案:B.第13题. 在空间四边形ABCD 中,N ,M 分别是BC ,AD 的中点,则2MN 与AB CD +的大小关系是 . 答案:2MN AB CD <+.第14题. 已知a b ,是一对异面直线,且a b ,成70角,P 为空间一定点,则在过P 点的直线中与a b ,所成的角都为70的直线有 条.答案:4.第15题. 已知平面αβ//,P 是平面αβ,外的一点,过点P 的直线m 与平面αβ,分别交于A C ,两点,过点P 的直线n 与平面αβ,分别交于B D ,两点,若698PA AC PD ===,,, 则BD 的长为 .答案:24245或.第16题. 空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若AC BD a ==,且AC 与BD 所成的角为90,则四边形EFGH 的面积是 . 答案:214a .第17题. 已知正方体1111ABCD A B C D -中,E ,F 分别为11D C ,11C B 的中点,AC BD P = ,11AC EF Q = .求证:(1)D ,B ,F ,E 四点共面;(2)若1AC 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 答案:证明:如图.(1)EF 是111D B C △的中位线,11EF B D ∴∥. 在正方体1AC 中,11B D BD ∥,∴EF BD ∥.EF ∴确定一个平面,即D ,B ,F ,E 四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α,又设平面BDEF 为β.11Q AC ∈ ,Q α∴∈.又Q EF ∈,Q β∴∈.则Q 是α与β的公共点,PQ αβ∴= . 又1AC R β= ,1R AC ∴∈. R α∴∈,R β∈且,则R PQ ∈.故P ,Q ,R 三点共线.第18题. 已知下列四个命题: ① 很平的桌面是一个平面; ② 一个平面的面积可以是4m 2; ③ 平面是矩形或平行四边形;④ 两个平面叠在一起比一个平面厚. 其中正确的命题有( ) A.0个 B.1个 C.2个 D.3个 答案:A.第19题. 给出下列命题:和直线a 都相交的两条直线在同一个平面内; 三条两两相交的直线在同一平面内; 有三个不同公共点的两个平面重合; 两两平行的三条直线确定三个平面. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3 答案:A.第20题. 直线12l l ∥,在1l 上取3点,2l 上取2点,由这5点能确定的平面有( )A.9个 B.6个 C.3个 D.1个 答案:D.第21题. 三条直线相交于一点,可能确定的平面有( ) A.1个 B.2个 C.3个 D.1个或3个 答案:D.第22题. 下列命题中,不正确的是( )①一条直线和两条平行直线都相交,那么这三条直线共面; ②每两条都相交但不共点的四条直线一定共面; ③两条相交直线上的三个点确定一个平面; ④两条互相垂直的直线共面. A.①与② B.③与④ C.①与③ D.②与④ 答案:B.第23题. 分别和两条异面直线都相交的两条直线一定是( ) A.异面直线 B.相交直线 C.不相交直线 D.不平行直线答案:D.第24题. 在长方体1111ABCD A B C D 中,点O ,1O 分别是四边形ABCD ,1111A B C D 的对角线的交点,点E ,F 分别是四边形11AA D D ,11BB C C 的对角线的交点,点G ,H 分别是四边形11A ABB ,11C CDD 的对角线的交点. 求证:1OEG O FH △≌△.答案:证明:如图,连结1AD ,AC ,1CD ,11C A ,1C B ,1BA由三角形中位线定理可知OE ∥ 112CD ,1O F ∥112BA . 又1BA ∥1CD ,OE ∴ ∥1O F .同理可证EG ∥FH . 由等角定理可得1OEG O FH ∠=∠.∴1OEG O FH △≌△.第25题. 若a ,b 是异面直线,b ,c 也是异面直线,则a 与c 的位置关系是( ) A.异面 B.相交或平行 C.平行或异面 D.相交或平行或异面 答案:D.第26题. a ,b 是异面直线,A ,B 是a 上两点,C ,D 是b 上的两点,M ,N 分别是线段AC 和BD 的中点,则MN 和a 的位置关系是( ) A.异面直线 B.平行直线 C.相交直线 D.平行、相交或异面 答案:A.第27题. 如下图是正方体的平面展开图,在这个正方体中 ①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60þ角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A.①②③ B.②④ C.③④ D.②③④答案:C.第28题. 直线与平面平行的条件是这条直线与平面内的( ) A.一条直线不相交B.两条直线不相交C.任意一条直线不相交D.无数条直线不相交答案:C.第29题. 如果直线a平行于平面α,则()A.平面α内有且只有一直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a平行的直线D.平面α内的任意直线与直线a都平行答案:B.第30题. 已知直线的倾斜角为α,若3sin5α=,则此直线的斜率为()C.34±D.43±。
空间点,直线,平面的位置关系试题(含答案)2

空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是( )A .一个平面B .一条直线C .两条直线D .空集 2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a与平面β所成的角( )A .与θ相等B .与θ互余C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为( ) A .3πB .4π C .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG中必有( )A .SG ⊥△EFG 所在平面B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面 5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了( )A .1002米 B .502米 C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos33 B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( ) A .45︒ B .60︒ C.90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为( )A .43aB .43 a C .23 aD .46 a9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是( )A .0<α<6πB .6π<α<4πC .4π<α<3πD .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA〉的大小为( )A .6πB .65π C .3πD .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________.13.在三棱锥P-ABC中,90=∠ABC,30=∠BAC,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D . (1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小.16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM⊥交1AA 于点M,1BB PN ⊥交1CC 于点N.(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFEEF DF EFDFDE∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.17.(本小题满分12分)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=3.(1)求证BC SC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=1AB=a,(如图一)将△ADC 沿AC折起,使2D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若a=)BNCM=<a.20(<(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.参考答案一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共4小题,每小题6分,共24分) 11.750 ,150 12.900 ,300 13.35 14.π32三、解答题(本大题共6题,共76分)15.(12分) (1)证明:(1)∵SB=BC E 是SC 的中点 ∴BE ⊥SC ∵DE ⊥SC ∴SC ⊥面BDE(2)解:由(1)SC ⊥BD ∵SA ⊥面ABC ∴SA ⊥BD ∴BD ⊥面SAC ∴∠EDC 为二面角E-BD-C 的平面角设SA=AB=a,则SB=BC=a2.,2,a SC SBC Rt =∆∴中在,30,0=∠∆∴DCESAC Rt 中在60,=∠∆∴EDC DEC Rt 中在.16.(12分) (1) 证:MNCC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ; (2)解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=,其中α为 平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MNP ∠,在PMN ∆中,cos 2222⇒∠⋅-+=MNP MN PN MNPNPMMNPCC MN CC PN CCMN CC PN CCPM ∠⋅⋅⋅-+=cos )()(211111222222, 由于111111111,,BB PM S CCMN S CCPN S A ABBA ACCB BCC⋅=⋅=⋅=,∴有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=.17.(12分) (1)证法一:如,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影, 由三垂线定理得BC ⊥SC .证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴SD ⊥BC ,又DC ∩SD=D ,∴BC ⊥平面SDC ,∴BC ⊥SC .(2)解:如图2,过点S 作直线,//AD l l ∴在面ASD 上,∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上,l ∴为面ASD 与面BSC 的交线.l ∴,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角.(以下同解法一) (3)解1:如图2,∵SD=AD=1,∠SDA=90°, ∴△SDA 是等腰直角三角形.又M 是斜边SA 的中点,∴DM ⊥SA .∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影.由三垂线定理得DM ⊥SB .∴异面直线DM 与SB 所成的角为90°.图1图2解2:如图3,取AB 中点P ,连结MP ,DP .在△ABS 中,由中位线定理得 MP//SB ,DMP ∠∴是异面直线DM 与SB 所成的角.2321==SB MP,又,25)21(1,222=+==DP DM∴在△DMP 中,有DP 2=MP 2+DM 2,︒=∠∴90DMP∴异面直线DM 与SB 所成的角为90°.18.(12分) 解:(1)在直角梯形ABCD 中, 由已知∆DAC 为等腰直角三角形, ∴45,2=∠=CAB a AC , 过C 作CH ⊥AB ,由AB=2a ,可推得 AC=BC=.2a∴ AC ⊥BC .取 AC 的中点E ,连结ED ',则 ED '⊥AC 又 ∵ 二面角β--AC a 为直二面角,∴ED '⊥β 又 ∵ ⊂BC 平面β ∴ BC ⊥E D ' ∴ BC ⊥a ,而a C D ⊂',∴ BC ⊥C D ' ∴ CAD '∠为二面角γβ--BC 的平面角.由于45='∠CAD , ∴二面角γβ--BC 为 45.(2)取AC 的中点E ,连结E D ',再过D '作β⊥'O D ,垂足为O ,连结OE .∵ AC ⊥E D ', ∴ AC ⊥OE ∴ EOD '∠为二面角β--ACa 的平面角, ∴ EO D '∠60=. 在OE D Rt '∆中,aACE D 2221==',∴O D S V ABC ABC D '⋅=∆-'31O D BC AC '⋅⋅⨯=2131a a a 462261⨯⨯⨯=.1263a =19.(14分)解法一: (1)记AC 与BD 的交点为O,连接OE, ∵O 、M 分别是AC 、EF 的中点,图3ACEF 是矩形,∴四边形AOEM 是平行四边形, ∴AM ∥OE .∵⊂OE平面BDE ,⊄AM 平面BDE ,∴AM ∥平面BDE .(2)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS ,∵AB ⊥AF , AB ⊥AD , ,A AF AD = ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影,由三垂线定理得BS ⊥DF .∴∠BSA 是二面角A —DF —B 的平面角. 在RtΔASB 中,,2,36==AB AS∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º.(3)设CP=t (0≤t≤2),作PQ ⊥AB 于Q ,则PQ ∥AD , ∵PQ ⊥AB ,PQ ⊥AF ,A AFAB = ,∴PQ ⊥平面ABF ,⊂QE平面ABF ,∴PQ ⊥QF .在RtΔPQF 中,∠FPQ=60º,PF=2PQ . ∵ΔPAQ 为等腰直角三角形,∴).2(22t PQ -=又∵ΔPAF 为直角三角形,∴1)2(2+-=t PF,∴).2(2221)2(2t t -⋅=+-所以t=1或t=3(舍去),即点P是AC 的中点.解法二: (1)建立如图所示的空间直角坐标系. 设NBD AC = ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1),∴)1,22,22(--=NE, 又点A 、M 的坐标分别是)0,2,2(,()1,22,22∴AM =()1,22,22--∴AMNE =且NE与AM 不共线,∴NE ∥AM .又∵⊂NE 平面BDE , ⊄AM 平面BDE ,∴AM ∥平面BDF .(2)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD = ∴AB ⊥平面ADF .∴AB)0,0,2(-=为平面DAF 的法向量.∵DBNE ⋅=()1,22,22--·)0,2,2(-=0, ∴NFNE⋅=()1,22,22--·)0,2,2(=0得DBNE ⊥,NFNE⋅,∴NE 为平面BDF 的法向量.∴cos<>⋅NE AB =21∴AB 与NE 的夹角是60º.即所求二面角A —DF —B的大小是60º. (3)设P(t,t,0)(0≤t≤2)得PF),1,2,2(t t --=∴BC =(2,0,0)又∵PF 和BC 所成的角是60º.∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去),即点P 是AC 的中点.20.(14分) 解:(1)作MP ∥AB 交BC 于点P NQ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP =NQ,即MNQP 是平行四边形∴MN =PQ由已知a BN CM ==,1===BE AB CB∴2==BF AC 又21a CP =,21a BQ =,即2a BQ CP ==∴MN=PQ =22)1(BQCP +-=22)2()21(a a +-=21)22(2+-a )20(<<a(2)由(Ⅰ),MN=21)22(2+-a ,所以,当22=a 时,MN=22即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为22.(3)取MN 的中点G ,连结AG 、BG ,∵ANAM =,BNBM=,G 为MN的中点 ∴AG⊥MN,BG ⊥MN,∠A G B即为二面角α的平面角,又AG =BG 46=,所以,由余弦定理有314646214646cos 22-=⋅⋅-⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=α, 故所求二面角⎪⎭⎫⎝⎛-=31arccos α。
专题11 空间点、直线、平面之间的位置关系(核心素养练习)(原卷版)附答案.pdf

专题十一空间点、直线、平面之间的位置关系核心素养练习一、核心素养聚焦考点一逻辑推理-证明直线共面例题9.已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.考点二直观想象-直线之间的关系例题10.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( ) A.平行 B.异面C.相交D.以上均有可能二、学业质量测评一、选择题1.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条()3.如图是一个正方体的平面展开图,则在正方体中直线AB与CD的位置关系为 A.相交B.平行C.异面而且垂直D.异面但不垂直4.若是异面直线,且//平面,那么与平面的位置关系是( ),a b a αb αA .B .与相交C .D .以上三种情况都有可能//b αb αb α⊂5.已知平面平面,直线,直线,则直线,的位置关系为( )//αβm α⊂n β⊂m n A .平行或相交B .相交或异面C .平行或异面D .平行、相交或异面6.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l ∥αD .如果两个平面有三个大众点,则这两个平面重合.二、多选题7.(多选)下列说法中错误的是( )A .不共面的四点中,任意三点不共线B .三条两两相交的直线在同一平面内C .有三个不同大众点的两个平面重合D .依次首尾相接的四条线段不一定共面8.(多选)已知表示不同的点,表示直线,表示不同的平面,则下列推理正确的是()A B C ,,l αβ,A .,,,∈A l A α∈B l ∈B l αα∈⇒⊂B .,,,A α∈A β∈B α∈B ABβαβ∈⇒= C .,l αÚA l A α∈⇒∉D .,,A α∈∈A l l l Aαα⊄⇒⋂=三、填空题9.如图,在正方体中,分别为棱的中点,有以下四个结论:1111—ABCD A B C D M N ,111C D C C ,①直线与是相交直线;AM 1CC ②直线与是平行直线;AM BN ③直线与是异面直线;BN 1MB ④直线与是异面直线.AM 1DD 其中正确的结论的序号为________.10.棱长为的正方体中,是棱的中点,过作正方体的截面,则截面的面21111ABCD A B C D -M 1AA 1,,C M D 积是_________________.11.如图是表示一个正方体表面的一种平面展开图,图中的四条线段、、和在原正方体中AB CD EF GH 相互异面的有__________对.12.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有______组互相平行的面,与其中一个侧面相交的面共有______个.四、解答题13.已知四点和直线,且,,,,求证:直线共面.A B C D ,,,l ∈A l B l ∈C l ∈D l ∉AD BD CD ,,14.如图,AB ∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D 三点共线.15.如图所示的几何体中,,,,且,,,.求证:直11//AB A B 11//AC A C 11//BC B C 11AB A B <11AC A C <11BC B C <线,,相交于同一点.1A A 1B B 1C C专题十一空间点、直线、平面之间的位置关系核心素养练习一、核心素养聚焦考点一逻辑推理-证明直线共面例题9.已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.【证明】法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α,又A∈α,所以AB⊂α.同理AC⊂α,故直线AB,BC,AC共面.法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.考点二直观想象-直线之间的关系例题10.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( ) A.平行 B.异面C.相交D.以上均有可能【参考答案】B 【解析】假设BE 与CF 是共面直线,设此平面为α,则E ,F ,B ,C ∈α,所以BF ,CE ⊂α,而A ∈CE ,D ∈BF ,所以A ,D ∈α,即有A ,B ,C ,D ∈α,与ABCD 为空间四边形矛盾,所以BE 与CF 是异面直线.二、学业质量测评一、选择题1.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【参考答案】B【解析】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质αβ//αβ定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条//αβαβαβ//αβ件,故选B .2.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A .1条或2条B .2条或3条C .1条或3条D .1条或2条或3条【参考答案】D【解析】分类讨论:当α过平面β与γ的交线时,这三个平面有1条交线;当β∥γ时,α与β和γ各有一条交线,共有2条交线;当β∩γ=b ,α∩β=a ,α∩γ=c 时,有3条交线.本题选择D 选项.3.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为 ()A .相交B .平行C .异面而且垂直D .异面但不垂直【参考答案】D【解析】利用展开图可知,线段AB 与CD 是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D4.若是异面直线,且//平面,那么与平面的位置关系是( ),a b a αb αA .B .与相交C .D .以上三种情况都有可能//b αb αb α⊂【参考答案】D【解析】若a 、b 是异面直线,且a ∥平面α,则根据空间中线面的位置关系可得:b ∥a 或者b ⊂α或者b 与α相交.故选:D .5.已知平面平面,直线,直线,则直线,的位置关系为( )//αβm α⊂n β⊂m n A .平行或相交B .相交或异面C .平行或异面D .平行、相交或异面【参考答案】C【解析】因为平面平面,直线,直线,//αβm α⊂n β⊂所以直线没有大众点,m n ,所以两条直线平行或异面.故选:C.6.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l ∥αD .如果两个平面有三个大众点,则这两个平面重合.【参考答案】A【解析】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个大众点且它们共线,这两个平面可以相交,故D 错.综上,选A .二、多选题7.(多选)下列说法中错误的是( )A .不共面的四点中,任意三点不共线B .三条两两相交的直线在同一平面内C .有三个不同大众点的两个平面重合D .依次首尾相接的四条线段不一定共面【参考答案】BC【解析】由公理2易知选项AD 正确;对于选项B :如正方体中,具有同一顶点的三条棱不在同一平面内,故选项B 错误;对于选项C:三个不同的大众点可在两平面的交线上.,故选项C 错误;故选: BC8.(多选)已知表示不同的点,表示直线,表示不同的平面,则下列推理正确的是()A B C ,,l αβ,A .,,,∈A l A α∈B l ∈B l αα∈⇒⊂B .,,,A α∈A β∈B α∈B ABβαβ∈⇒= C .,l αÚA l A α∈⇒∉D .,,A α∈∈A l l l Aαα⊄⇒⋂=【参考答案】ABD【解析】对于选项A:由公理1知,,故选项A 正确;l α⊂对于选项B :因为表示不同的平面,由公理3知,平面相交,且,故选项B 正确;αβ,αβ,AB αβ= 对于选项C:分两种情况:与相交或.当与相交时,若交点为A,则,故选项C 错误;l α⊄l α//l a l αA α∈对于选项D :由公理1逆推可得结论成立,故选项D 成立;故选:ABD三、填空题9.如图,在正方体中,分别为棱的中点,有以下四个结论:1111—ABCD A B C D M N ,111C D C C ,①直线与是相交直线;AM 1CC ②直线与是平行直线;AM BN ③直线与是异面直线;BN 1MB ④直线与是异面直线.AM 1DD 其中正确的结论的序号为________.【参考答案】③④【解析】因为四边不共面,所以直线与是异面直线,所以①错误的;同理,直线与1,,,A M C C AM 1CC AM 也是异面直线,直线与是异面直线,直线与是异面直线,所以②是错误的;③是正确BN BN 1MB AM 1DD 的,④是正确的,故填③④.10.棱长为的正方体中,是棱的中点,过作正方体的截面,则截面的面21111ABCD A B C D M 1AA 1,,C M D 积是_________________.【参考答案】92【解析】如图,由面面平行的性质知截面与平面AB 1的交线MN 是△AA 1B 的中位线,所以截面是梯形CD 1MN ,又,.11MN CD CN MD ====92故参考答案为92AB CD EF GH11.如图是表示一个正方体表面的一种平面展开图,图中的四条线段、、和在原正方体中相互异面的有__________对.【参考答案】3【解析】画出展开图复原的几何体,所以C与G重合,F,B重合,所以:四条线段AB、CD、EF和GH在原正方体中相互异面的有:AB与GH,AB与CD,GH与EF,共有3对.故参考答案为3.12.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有______组互相平行的面,与其中一个侧面相交的面共有______个.【参考答案】4. 6.【解析】六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共由8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.故参考答案为:;46四、解答题13.已知四点和直线,且,,,,求证:直线共面.A B C D ,,,l ∈A l B l ∈C l ∈D l ∉AD BD CD ,,【参考答案】证明见解析【解析】证明:因为,所以直线与点可以确定平面,如图所示,D l ∉l D α因为,所以,又,所以.∈A l A α∈D α∈AD α⊂同理可证,,BD α⊂CD α⊂所以,,在同一平面内,AD BD CD α即直线,,共面AD BD CD 14.如图,AB ∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D 三点共线.【参考答案】略【解析】证明:∵AB ∥CD,∴AB,CD 可确定一个平面,设为平面β,∴AC 在平面β内,即E 在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E 为平面α与平面β的大众点,根据公理3可得,B,D,E 三点共线.15.如图所示的几何体中,,,,且,,,.求证:直11//AB A B 11//AC A C 11//BC B C 11AB A B <11AC A C <11BC B C <11线,,相交于同一点.1A A 1B B 1CC 【参考答案】证明见解析【解析】证明∵,,11//AB A B 11AB A B <∴直线,确定一个平面,并且直线,相交,设.①1A A 1B B 11AA B B 1A A 1B B 11A A B B D ⋂=∵,∴与确定一个平面,11//AC A C AC 11A C 11AA C C ∵平面,∴平面.1A A ⊂11AA C C D ∈11AA C C 同理平面.D ∈11BB C C 又因为平面平面,∴.②11AA C C 111BB C C C C =1D C C ∈由①②可知,,,三线共点,即直线,,相交于同一点.1A A 1B B 1C C 1A A 1B B 1C C D 知识改变命运。
高中数学8-4空间点直线平面之间的位置关系8-4-1平面课后提能训练新人教A版必修第二册

第八章 8.4 8.4.1A级——基础过关练1.已知点A,直线a,平面α,以下命题表述正确的个数是( )①A∈a,a⊄α⇒A∉α;②A∈a,a∈α⇒A∈α;③A∉a,a⊂α⇒A∉α;④A∈a,a⊂α⇒A⊂α.A.0 B.1C.2 D.3【答案】A【解析】①不正确,如a∩α=A;②不正确,∵“a∈α”表述错误;③不正确,如图所示,A∉a,a⊂α,但A∈α;④不正确,“A⊂α”表述错误.故选A.2.(2021年郑州模拟)(多选)下列命题中正确的是( )A.三角形是平面图形B.四边形是平面图形C.四边相等的四边形是平面图形D.圆是平面图形【答案】AD【解析】根据基本事实1可知AD正确,BC错误.故选AD.3.若两个平面有三个公共点,则这两个平面( )A.相交B.重合C.相交或重合D.以上都不对【答案】C【解析】若三点在同一条直线上,则这两个平面相交或重合;若三点不共线,则这两个平面重合.4.(多选)以下命题中错误的是( )A.不共面的四点中,其中任意三点不共线B.若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面C.若直线a,b共面,直线a,c共面,则直线b,c共面D.依次首尾相接的四条线段必共面【答案】BCD【解析】对A,假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以A正确;对B,如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;C显然不正确;D不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.故选BCD.5.三条两两平行的直线可以确定平面的个数为( )A.0 B.1C.0或1 D.1或3【答案】D【解析】当三条直线是同一平面内的平行直线时,确定一个平面.当三条直线是三棱柱侧棱所在的直线时,确定三个平面.故选D.6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.【答案】∈【解析】因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M ∈l.7.如图,在长方体ABCD-A1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有________条.【答案】5【解析】由题图可知,既与AB共面又与CC1共面的棱有CD,BC,BB1,AA1,C1D1共5条.8.已知平面α与平面β、平面γ都相交,则这三个平面可能的交线有________条.【答案】1或2或3【解析】当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线.当β与γ平行时,有2条交线.9.已知:A∈l,B∈l,C∈l,D∉l,如图所示.求证:直线AD,BD,CD共面.证明:因为D∉l,所以l与D可以确定平面α.因为A∈l,所以A∈α.又D∈α,所以AD⊂α.同理,BD⊂α,CD⊂α.所以AD,BD,CD在同一平面α内,即它们共面.10.求证:三棱台A1B1C1-ABC三条侧棱延长后相交于一点.证明:如图,延长AA1,BB1.设AA1∩BB1=P,又BB1⊂平面BC1,∴P∈平面BC1,AA1⊂平面AC1.∴P∈平面AC1.∴P为平面BC1和面AC1的公共点.又∵平面BC1∩平面AC1=CC1,∴P∈CC1,即AA1,BB1,CC1延长后交于一点P.B级——能力提升练11.空间四点A,B,C,D共面但不共线,那么这四点中( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线【答案】B【解析】若AB∥CD,则AB,CD共面,但A,B,C,D任何三点都不共线,故排除A,C;若直线l与直线外一点A在同一平面内,且B,C,D三点在直线l上,则可排除D.故选B.12.(2021年郴州月考)设P1,P2,P3,P4为空间中的四个不同点,则“P1,P2,P3,P4中有三点在同一条直线上”是“P1,P2,P3,P4在同一个平面内”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A【解析】由过一条直线和直线外一点有且只有一个平面,可得P1,P2,P3,P4在同一个平面内,故充分条件成立.由过两条平行直线有且只有一个平面可得,当P1∈l1,P2∈l1,P3∈l2,P4∈l2,l1∥l2时,P1,P2,P3,P4在同一个平面内,但P1,P2,P3,P4中无三点共线,故必要条件不成立.故选A.13.(2021年焦作模拟)(多选)如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线B.A,M,O,A1四点共面C.A,O,C,M四点共面D.B,B1,O,M四点共面【答案】ABC【解析】因为A,M,O三点既在平面AB1D1内,又在平面AA1C内,故A,M,O三点共线,从而易知ABC均正确.14.如图,若直线l与平面α相交于点O,且A∈l,B∈l,C∈α,D∈α,AC∥BD,则O,C,D三点的位置关系是________.【答案】共线【解析】∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=CD.∵l∩α=O,∴O∈α.又∵O∈AB⊂β,∴O∈直线CD.∴O,C,D三点共线.15.如图,在正方体ABCD-A1B1C1D1中,平面A1CC1与平面BDC1的交线是________.【答案】C1M【解析】因为C1∈平面A1CC1,且C1∈平面BDC1,同时M∈平面A1CC1,且M∈平面BDC1,所以平面A1CC1与平面BDC1的交线是C1M.16.如图,已知直线a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c和l 共面.证明:∵a∥b,∴a,b确定一个平面α.∵A∈a,B∈b,∴A∈α,B∈α.∴a,b,l都在平面α内,即b在a,l确定的平面内.同理可证c在a,l确定的平面内.∵过a与l只能确定一个平面,∴a,b,c,l共面于a,l确定的平面.17.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,E,F四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:(1)易知EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF,BD确定一个平面,即D,B,E,F四点共面.(2)正方体AC1中,设平面A1ACC1确定的平面为α,平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β.则Q是α与β的公共点.同理P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ.故P,Q,R三点共线.C级——探索创新练18.在四面体ABCD中,作截面PQR.若PQ,CB的延长线交于点M,RQ,DB的延长线交于点N,RP,DC的延长线交于点K.求证:M,N,K三点共线.证明:∵M∈PQ,PQ⊂面PQR,M∈BC,BC⊂面BCD,∴M是平面PQR与平面BCD的一个公共点.即M在平面PQR与平面BCD的交线上.同理可证N,K也在该交线上.∴M,N,K三点共线.。
空间点、直线、平面之间的位置关系测试题(含答案)

空间点、直线、平面之间的位置关系测试题(含答案)空间点、直线、平面之间的位置关系测试题1.已知平面α内有无数条直线都与平面β平行,那么正确的选项是()A。
α∥βB。
α与β相交C。
α与β重合D。
α∥β或α与β相交2.两条直线a,b满足a∥b,b⊥平面α,则a与平面α的关系是()A。
a∥αB。
a与α相交C。
a与α不相交D。
a⊥α3.对于命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行。
其中正确的个数有(。
)A。
1个B。
2个C。
3个D。
4个4.经过平面外两点与这个平面平行的平面()A。
只有一个B。
至少有一个C。
可能没有D。
有无数个5.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A。
3条B。
4条C。
5条D。
6条6.a,b是两条异面直线,下列结论正确的是()A。
过不在a,b上的任一点P,可作一个平面与a,b平行B。
过不在a,b上的任一点P,可作一条直线与a,b相交C。
过不在a,b上的任一点P,可作一条直线与a,b都平行D。
过a可以并且只可以作一平面与b平行7.m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A。
若m‖α,n‖α,则m‖nB。
若α⊥γ,β⊥γ,则α‖βC。
若m‖α,m‖β,则α‖βD。
XXX⊥α,n⊥α,则m‖n8.如图1,正四面体ABCD的棱长均为a,且AD⊥平面α于A,点B,C,D均在平面α外,且在平面α同一侧,则点B到平面α的距离是()A。
a/2B。
a/3C。
a/23D。
2a/39.如图2,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是A。
PB⊥ADB。
平面PAB⊥平面PBCC。
直线BC∥平面PAED。
直线PD与平面ABC所成的角为45°10.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A。
空间点、直线、平面之间的位置关系跟踪训练

8.4空间点、直线、平面之间的位置关系跟踪训练一、选择题1、下列命题是真命题的是( )A.空间任意三个点确定一个平面B.一条直线和直线外一点确定一个平面C.两两相交的三条直线确定一个平面D.两两平行的三条直线确定三个平面2、如图是一个正方体的展开图,如果将它还原为正方体,则下列说法不正确的是( )A.AB与CD是异面直线B.GH与CD相交C.EF∥CDD.EF与AB异面3、a,b,c是两两不同的三条直线,下面四个命题中,真命题是( )A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c4、已知α,β,γ是平面,a,b,c是直线,α∩β=a,β∩γ=b,γ∩α=c,若a∩b =P,则( )A.P∈c B.P∉cC.c∩a=∅D.c∩β=∅5、在三棱锥A-BCD的边AB,BC,CD,DA上分别取E,F,G,H四点,若EF∩HG=P,则点P( )A.一定在直线BD上B.一定在直线AC上C.在直线AC或BD上D.不在直线AC上,也不在直线BD上6、已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n 两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7、如图,点E,F,G,H分别是正方体ABCD-A1B1C1D1中棱AA1,AB,BC,C1D1的中点,则( )A.GH=2EF,且直线EF,GH是相交直线B.GH=2EF,且直线EF,GH是异面直线C.GH≠2EF,且直线EF,GH是相交直线D.GH≠2EF,且直线EF,GH是异面直线8、如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的图是( )9、如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( )A.直线AC B.直线ABC.直线CD D.直线BC10、如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )A.30°B.45°C.60°D.90°11、若平面α和直线a,b满足a∩α=A,b⊂α,则a与b的位置关系是( )A.相交B.平行C.异面D.相交或异面12、如图,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C113、如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,下列结论正确的是( )A.AP与CM是异面直线B.AP,CM,DD1相交于一点C.MN∥BD1D.MN与平面BB1D1D相交14、在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )A.π2B.π3C.π4D.π615、如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE=14SB,则异面直线SC与OE所成角的正切值为( )A.222B.53C.1316D.11316、如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则直线GH,MN是异面直线的图形有( )A.①②B.①③C.②③D.②④17、已知平面α∩平面β=直线l,点A,C∈平面α,点B,D∈平面β,且A,B,C,D∉l,点M,N分别是线段AB,CD的中点,则下列说法正确的是( ) A.当CD=2AB时,M,N不可能重合B.M,N可能重合,但此时直线AC与l不可能相交C.当直线AB,CD相交,且AC∥l时,BD可与l相交D.当直线AB,CD异面时,MN可能与l平行二、填空题18、已知a,b是两条直线,α,β是两个平面,则下列说法中正确的序号为________.①若a平行于α内的无数条直线,则a∥α;②若α∥β,a⊂α,b⊂β,则a与b是异面直线;③若α∥β,a⊂α,则a∥β;④若α∩β=b,a⊂α,则a与β一定相交.19、已知在棱长为a的正方体ABCD-A′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是________.20、如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.21、如图是正方体的平面展开图,在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.以上结论中,正确结论是________.(填序号)三、解答题22、如图,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.23、如图,已知在空间四边形ABCD 中,AD =BC ,M ,N 分别为AB ,CD 的中点,且直线BC 与MN 所成的角为30°,求BC 与AD 所成的角.24、在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求四棱锥O -ABCD 的体积;(2)求异面直线OC 与MD 所成角的正切值.25、如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为FA ,FD 的中点. (1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?。
空间点、直线、平面之间的位置关系典题及答案

1.已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)若点E 为PC的中点,AC ∩BD =O ,求证EO ∥平面PAD ;(3)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC =2.∴V P -ABCD =13S ▱ABCD ·PC =23. (2)证明:∵EO ∥PA ,EO ⊄平面PAD ,PA ⊂平面PAD .∴EO ∥平面PAD .(3)不论点E 在何位置,都有BD ⊥AE ,证明如下:∵ABCD 是正方形,∴BD ⊥AC ,∵PC ⊥底面ABCD 且BD ⊂平面ABCD ,∴BD ⊥PC ,又∵AC ∩PC =C ,∴BD ⊥平面PAC ,∵不论点E 在何位置,都有AE ⊂平面PAC ,∴不论点E 在何位置,都有BD ⊥AE .2如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB ,EF ⊥F B ,∠BFC=90°,BF=FC ,H 为BC 的中点. (Ⅰ)求证:FH ∥平面EDB ;Ⅱ)求证:AC ⊥平面EDB ;Ⅲ)求四面体B-DEF 的体积.(Ⅰ)证明:设AC 与BD 交于点G ,则G 为AC 的中点,连结EC ,CH ,由于H 为BC 的中点,故,又,∴,∴四边形EFHC 为平行四边形, ∴EG ∥FH ,而EG 平面EDB ,∴FH ∥平面EDB 。
(Ⅱ)证明:由四边形ABCD 为正方形,有AB ⊥BC ,又EF ∥AB ,∴EF ⊥BC ,而EF ⊥FB ,∴EF ⊥平面BFC ,∴EF ⊥FH ,∴AB ⊥FH , 又BF=FC ,H 为BC 的中点,∴FH ⊥BC ,∴FH ⊥平面ABCD ,∴FH ⊥AC ,又FH ∥EG ,∴AC ⊥EG ,又AC ⊥BD ,EG ∩BD=G ,∴AC ⊥平面EDB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1空间点、直线、平面之间的位置关系
一、选择题
1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面
2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交
3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面
4.正方体''''D C B A ABCD -中,AB 的中点为M ,'DD 的中点为N ,异面直线M B '与CN 所成的角是…………………………………………………( ) A .ο
0 B .ο
45 C .ο
60 D .ο
90
5.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行
B .直线βα//,//a a 且直线a 不在α内,也不在β内
C .直线α⊂a ,直线β⊂b 且β//a ,α//b
D .α内的任何直线都与β平行
6.下列命题中,错误的是…………………………………………( ) A . 平行于同一条直线的两个平面平行 B . 平行于同一个平面的两个平面平行
C . 一个平面与两个平行平面相交,交线平行
D . 一条直线与两个平行平面中的一个相交,则必与另一个相交 7.已知两个平面垂直,下列命题
①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面
④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .0
8.下列命题中错误的是……………………………………( ) A . 如果平面βα⊥,那么平面α内所有直线都垂直于平面β B . 如果平面βα⊥,那么平面α一定存在直线平行于平面β
C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D .如果平面γα⊥,γβ⊥,l =⋂βα,那么γ⊥l
9.直线//a 平面α,α∈P ,那么过点P 且平行于α的直线…………( ) A . 只有一条,不在平面α内
B .有无数条,不一定在α内
C .只有一条,且在平面α内
D .有无数条,一定在α内
10.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成ο
60 ④DM 与BN 垂直
以上四个命题中,正确命题的序号是( )
A .①②③
B .②④
C .③④
D .②③④ N
二、填空题
1. 若一条直线与两个平行平面中的一个平面平行,则这条直线与另一平面的位置关系
是__________________
2. 正方体''''D C B A ABCD -中,AC 与'BD 所成角_______________
3. 平面内一点与平面外一点连线和这个平面内直线的关系是_______________
4. 已知直线b a ,和平面α,且α⊥⊥a b a ,,则b 与α的位置关系是______________ 三、解答题
1. 已知长方体''''D C B A ABCD -中,32=AB ,32=AD ,2'=AA , 求:(1)BC 与''C A 所成的角是多少? (2)'AA 与'BC 所成的角是多少?
2. 正方体''''D C B A ABCD -中,求证:平面''D AB //平面BD C '。
3. 如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任
意一点,求证:平面PBC PAC 平面⊥。
A
B
4. 如图:AB =⋂βα,α⊥PC ,β⊥PD ,D C 、是垂足,试判断直线CD AB 与的
位置关系?并证明你的结论。
答案:
选择题
DBDDD ABACC 填空题
1. 平行或重合 2. ο
90 3. 相交或异面 4. αα//b b 或⊆ 解答题:
1.ο
45 ο
60
2.⇒⎪⎪⎭
⎪⎪⎬⎫
=⋂=⋂B BC BD D AD D B BD D B AD BC '''''//'''
//'平面''//''BD C D AB 平面
3.PAC
BC A AC PA BC AC BC PA O PA 平面所在平面圆⊥⇒⎪⎭
⎪
⎬⎫
=⋂⊥⊥⇒⊥ 又PBC BC 平面⊆
∴ PBC PAC 平面平面⊥
P
C
D
A
B α
β
A ’
A
C
4.CD AB PCD AB P PD PC AB PD PD AB PC PC ⊥⇒⊥⇒⎪⎭
⎪
⎬⎫
=⋂⊥⇒⊥⊥⇒⊥平面βα。