LTE网络无线参数及KPI指标优化(详)
LTE的KPI指标分析及优化

(12) Create Bearer Response
(13) Handover Command
(14) RRC Reconfiguretion/ Handover Command
(15) eNB Status Transfer
(16) Forward SRNS Context
18
LINGO 教 程
切换问题解决方法
从网络侧跟踪UU口和终端侧Uu口跟踪结合判断: 网络侧:同一用户(CALL ID)连续上报测量报 告但没有下发切换命令,检查X2或S1跟踪中分 别也没有HANDOVER REQUST及 S1AP_HANDOVER_REQUIRED,则很可能是 漏配的小区(通U过E侧收:查不发到测询切量换报配命告令,置但 确认); 终端侧:随着UE移动服务小区RSRP越来越差, SINR越来越差,e但No不而de发B侧起邻:切收换区到(测XR2量口S报没R告有,P越来越好,上报测
3. 计算公式: eNB间S1切换出成功次数/eNB间S1切换出请求次数*100% S1口切换包含同频切换和异频切换两种情况,对于每种情况,需要统计切 换出和切换入两个指标。
17
LINGO 教 程
影响切换成功率的因素
影响切换问题的因素: 硬件传输故障(载频坏、合路天馈问题); 数据配置不合理; 拥塞问题; 时钟问题; 干扰问题; 覆盖问题及上下行不平衡;
10
Page 10
LINGO 教 程
掉话问题解决方法
Top1:参数对比 随机抽取部分站点的脚本与基线参数进行核 对,对不一致的参数进行分析;
Top2:告警核查 是否存在传输告警:观察S1传输是否出现问 题; 是否存在设备告警:观察eNB侧是否存在告 警; 检查系统是否升级、打补丁等动作;
LTEKPI指标详解

LTEKPI指标详解
LTEKPI(Long Term Evolution Key Performance Indicator)是LTE(Long Term Evolution)网络设备的指标,指标用于衡量LTE网络的性能。
LTEKPI是通信运营商用于观察和分析LTE网络的性能,以确定是否满足客户的服务质量要求。
1.DLPR(下行平均比特率):这个指标衡量平均每个用户通过下行链路接收的比特率。
DLPR是由用户每次活动的时间和比特率计算得出的。
2.ULPR(上行平均比特率):此指标衡量平均每个用户通过上行链路发送的比特率。
ULPR是由用户每次活动的时间和比特率计算得出的。
3.TSW(时延):这个指标衡量每次数据传输的总时延,从接收到最终的接收到目标。
4.RSRP(参考信号接收功率):这个指标衡量发射机发出的参考信号及其附属信号的接收功率。
5.SINR(信噪比):这个指标是指覆盖范围内用户的有效比特率与噪声功率的比率。
6.RRC设置成功率:这个指标衡量建立RRC连接的次数与尝试建立RRC连接的次数的比率。
7. Packet Loss:这个指标衡量字节数或分组数因为网络中的发送问题而丢失的比率。
8.RAB建立成功率:此指标衡量建立RAB连接的次数与尝试建立RAB 连接的次数的比率。
9.无线利用率:这是一个重要的指标。
LTE无线参数及KPI指标优化

LTE无线参数及KPI指标优化一、常见的LTE无线参数1.带宽:带宽是指LTE网络中可用的频谱资源,一般可分为10MHz、15MHz和20MHz三种。
增加带宽可以提供更大的数据传输速率,但也需要更大的频谱资源。
在优化过程中,可以根据实际情况适当调整带宽来优化网络性能。
2.调制解调器方案:LTE中常用的调制解调器方案有QPSK、16QAM和64QAM。
QPSK提供较低的数据传输速率,但更适合在较差的信道条件下使用。
16QAM和64QAM提供更高的数据传输速率,但对信道条件要求更高。
在优化过程中,可以根据信道质量和容量需求来选择合适的调制解调器方案。
3.功控方案:LTE中采用功率控制来保持用户与基站之间的信号质量。
常见的功控方案有Open Loop和Closed Loop两种。
Open Loop功控通过测量接收信号水平来调整传输功率。
Closed Loop功控除了测量接收信号水平外,还依靠反馈信息来调整传输功率。
在优化过程中,可以根据信道质量和容量需求来选择合适的功控方案。
4.调度策略:LTE中的调度策略用于决定哪些用户可以使用无线资源来传输数据。
常见的调度策略有Proportional Fair、Round Robin和Max C/I等。
Proportional Fair调度策略根据用户的信道质量和传输需求进行调度,以提供较好的用户体验。
Round Robin调度策略按照时间片轮流为每个用户分配资源。
Max C/I调度策略根据信道质量来分配资源,以提供较高的系统容量。
在优化过程中,可以根据用户需求和网络负载来选择适当的调度策略。
二、常见的LTEKPI指标1.接入成功率:接入成功率是指成功建立与基站的无线连接的用户比例。
良好的接入成功率可以保证用户能够及时接入网络,提供良好的用户体验。
2.切换成功率:切换成功率是指用户在移动过程中成功切换到新的基站的比例。
良好的切换成功率可以确保用户在移动中保持无缝的通信连接。
LTE网络KPI指标体系及网络评估

LTE网络KPI指标体系及网络评估随着移动通信技术的发展,LTE(Long Term Evolution)作为第四代移动通信技术已经成为主流网络技术。
为了评估LTE网络的性能,我们需要建立一套完整的KPI(Key Performance Indicator)指标体系,并进行相应的网络评估。
1. 无线覆盖:LTE网络的无线覆盖是网络评估的关键指标之一、主要衡量指标包括覆盖率、信号质量、接入成功率等。
覆盖率是指在特定区域内LTE网络的信号覆盖情况,可以通过测量RSRP(Reference Signal Received Power)和RSRQ(Reference Signal Received Quality)等参数得出。
信号质量反映了LTE网络传输质量的好坏程度,可以通过测量SINR(Signal to Interference plus Noise Ratio)来评估。
2.容量与负载:容量和负载是评估LTE网络性能的重要指标。
容量指网络能够处理的最大用户量,可以通过测量网络的用户同时上行与下行流量来评估。
负载指网络当前的使用情况,可以通过测量小区的用户数、流量以及带宽利用率来评估。
这些指标可以帮助运营商了解网络的繁忙程度,以及是否需要优化网络配置和资源分配。
3.数据速率:数据速率是衡量LTE网络性能的重要指标。
主要衡量指标包括上行数据速率和下行数据速率,可以通过测量传输的数据量和传输时间来计算。
这些指标可以体现LTE网络传输数据的效率和稳定性,客户可以根据自身需求选择适合的数据套餐。
4.无线干扰:无线干扰会影响LTE网络的性能和覆盖范围。
为了评估干扰情况,可以通过测量小区的接收干扰功率(RxLEV)、信噪比(SNR)以及频谱效率等指标来判断。
减少干扰可以提高LTE网络的质量和用户体验。
5.呼叫成功率:呼叫成功率是评估LTE网络的重要指标之一,反映了网络连接的稳定性和可靠性。
呼叫成功率可以通过测量呼叫成功的次数与所有呼叫尝试次数的比值来计算。
LTEKPI指标详解

LTEKPI指标详解LTEKPI(Long Term Evolution Key Performance Indicator)指标是用来衡量LTE网络性能的关键指标,用于评估LTE网络的覆盖、容量、可靠性和质量等方面的性能。
以下是对LTEKPI指标的详细解释:1. RSRP(Reference Signal Received Power):参考信号接收功率,用于衡量UE(User Equipment)接收到的参考信号的功率。
RSRP越大,表示接收到的信号强度越好,LTE网络的覆盖范围也更广。
2. RSRQ(Reference Signal Received Quality):参考信号接收质量,衡量接收信号的质量。
RSRQ值越大,说明接收到的信号质量越好,网络质量也更高。
3. SINR(Signal-to-Interference plus Noise Ratio):信号与干扰加噪声比,用于衡量UE接收到的信号质量。
SINR值越大,表示UE接收到的干扰和噪声越小,网络性能越好。
4. PDCCH(Physical Downlink Control Channel) CCE(Control Channel Elements) utilization:物理下行控制信道CCE利用率,衡量PDCCH的利用率。
CCE利用率越高,说明网络容量越大,能够处理更多的控制信息。
5. Throughput:网络吞吐量,衡量网络数据传输速率的指标。
通过衡量单位时间内传输的数据量来评估网络的性能。
6. Latency:网络延迟,衡量数据从发送到接收所需的时间。
较低的延迟意味着在发送和接收之间的时间延迟较短,提供更好的用户体验。
7. Accessibility:可用性,衡量用户能够接入网络的能力。
通过衡量网络接入的成功率来评估网络可用性。
8. Retainability:保持能力,衡量用户在网络中保持连接的能力。
通过衡量用户在一定时间内保持连接的比例来评估网络的保持能力。
LTE无线质量分析指标和方法

研 究 制 定 评 估 LTE 分 组业务的指标集 指标集由KPI、MR 和 少量DT数据构成 用什么评估? 确定从哪些方面来挑选 评 估 和 衡 量 LTE 分 组 业 务的关键指标 确定关键指标的合理门 限范围 如何监测分组业务质量? 挖掘指标背后典型的 网络问题 采用“指标组合分析 为基础,分步定位网 络问题”的方法 如何定位网络问题?
10!-24…
10!-26…
10!-28…
10!-30…
11!-1!-…
10!-8!-…
11!-3!-…
10!-…
10!-…
10!-…
10!-…
10!-…
10!-…
SINR
– 定义:目前定义为下行RS参考信号的 SINR值,为接收到了RS专用参考信号的值 (RSRP)与干扰功率 及噪声功率之合的比 值。 – 取值:其单位为dB,目前集团要求的 取值为>=-3dB
建设指标
覆盖指标(95%概率)
类型 穿透损耗 网络结构 指数 良好 良好 良好 良好 良好 RSRP门限(dBm) F频段 主城区 高 低 D频段 -98 -101 -101 -103 -113 RS-SINR门限 边缘用户速率指 标 (dB) (邻小区50%负载) 2Mbps(100RB)/ -3 1Mbps(50RB) 2Mbps(100RB)/ -3 1Mbps(50RB) 2Mbps(100RB)/ -3 1Mbps(50RB) 2Mbps(100RB)/ -3 1Mbps(50RB) 2Mbps(100RB)/ -3 1Mbps(50RB)
网络问题分析定位(2/3)
精品文档_培训_LTE网络KPI常见问题和优化方法

B)天线工程参数:天线高度、天线下倾角、天线方位角
一般在网络规划设计时已根据组网需求确定选择合适的天线,因此天 线性能参数一般不调整,只在后期覆盖无法满足要求,且无法增设基站,通过 常规网络优化手段无法解决时,才考虑更换合适的天线,例如选用增益较高的 天线以增大网络覆盖。因此,在网络优化中,天线调整主要是根据无线网络情 况调整天线的挂高、下倾角和方位角等工程参数。例如弱覆盖和过覆盖主要通 过调整天线的俯仰角以及方位角来解决,弱覆盖可通过减小俯仰角,过覆盖可 通过增大俯仰角来改善。
LTE无线网络优化特点
业务速率质量优化时考虑的内容
需要考虑覆盖、干扰、UE能力、小区用户数的影响 需要考虑带宽配置对速率的影响 需要考虑天线模式对速率的影响 需要考虑时隙比例配置、特殊时隙配置对速率的影响 需要考虑功率配置对速率的影响 需要考虑下行控制信道占用OFDM符号数量对速率的影响
干扰问题分析时的重点和难点
TD-LTE系统会大量采用同频组网,小区间干扰将是分析的重点和难点 TD-LTE系统采用多种方式进行干扰的抑制和消除,算法参数的优化也将是后续 工作的重点和难点
无线资源管理算法更加复杂 TD-LTE系统增加了X2接口,并且采用了MIMO等关键技术,以及ICIC等算法, 使得无线资源的管理更加复杂
LTE网络优化
LTE网络KPI常见问题 优化方法
LTE网络优化
1 LTE无线网络优化介绍 2 LTE无线网络优化特点 3 LTE无线网络优化内容
LTE网络优化介绍
LTE无线网络优化主要通过调整各项相关的无线网络工程设计参数和无线资源参数, 满足系统现阶段对各种无线网络指标的要求。
优化调整过程往往是一个周期性的过程,因为系统对无线网络优化的要求总是不断 的变化。
LTE——KPI指标详解

LTE——KPI指标详解LTE(Long Term Evolution)是第四代无线移动通信技术,它有一套完善的关键性能指标(Key Performance Indicators, KPIs)来衡量网络的质量和效能。
本文将对LTE的KPI指标进行详细解析。
1. 初始接入成功率(Initial Access Success Rate):衡量用户设备在连接到LTE网络时的成功率。
初始接入成功率取决于各种因素,包括网络覆盖范围、信号强度、干扰和用户密度等。
2. 控制信道物理分配成功率(Control Channel Physical Assignment Success Rate):衡量基站成功将控制信道资源分配给用户设备的比例。
这对确保用户设备能够收发数据和接收网络命令至关重要。
3. 用户面协议数据传输成功率(User Plane Protocol Data Transfer Success Rate):衡量用户设备通过无线接口成功传输数据的比例。
这个指标反映了网络的可靠性和性能。
4. 接口信令延迟(Interface Signaling Delay):衡量网络信令在各个接口传递的延迟时间。
较低的接口信令延迟对于提供实时通信和无缝服务至关重要。
5. 切换成功率(Handover Success Rate):衡量用户设备在从一个基站切换到另一个基站时成功的比例。
切换成功率是衡量移动网络的无缝性和连续性的重要指标。
6. 反向链路丢包率(Reverse Link Packet Loss Rate):衡量用户设备通过无线接口向基站发送的数据包丢失的比例。
较高的反向链路丢包率可能导致通信质量下降和数据传输错误。
7. 前向链路速率(Forward Link Throughput):衡量基站向用户设备传输数据的速率。
前向链路速率反映了网络的容量和性能,在视频流和大型文件传输等应用中尤为重要。
8. 用户面流量平均时延(User Plane Flow Average Delay):衡量用户设备传输数据时的平均延迟时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、LTE小区选择及相关参数1.1 小区选择S准则UE进行小区选择时,需要判断小区是否满足小区选择规则。
小区选择规则的基础是EUTRAN小区参考信号的接收功率测量值,即:RSRP。
驻留小区的条件要求符合小区选择S准则:Srxlev>0。
Srxlev= Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation;Pcompensation=max(PMax-UE Maximum Outpower,0)各参数含义如下:1、Srxlev:小区选择S值,单位dB;2、Qrxlevmeas:测量小区的RSRP值,单位dBm;3、Qrxlevmin:小区最小接收电平,单位dBm,目前集团规定为:-128;(该参数可影响用户接入)4、Qrxlevminoffset:减少PLMN之间的乒乓选择,此参数只在UE驻留在访问PLMN (Visited PLMN)时, 周期性地搜寻更高级别的PLMN时使用.;5、PMax:UE在小区中允许的最大上行发送功率;6、UE Maximum Outpower:UE能力决定的最大上行发送功率1.2 小区选择相关参数小区选择相关参数如下:二、LTE小区重选及相关参数2.1 小区重选相关知识2.1.1 小区重选知识小区重选指(cell reselection)指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供服务信号的过程。
当邻区的信号质量及电平满足S准则且满足一定重选判决准则时,终端将介入该小区驻留。
UE驻留到合适的小区停留1S后,就可以进行小区重选的过程。
小区重选过程包括测量和重选两部分过程,终端根据网络配置的相关参数,在满足条件时发起相应的流程。
2.1.2 重选的分类1)系统内小区测量及重选;●同频小区测量、重选●异频小区测量、重选2)系统间小区测量及重选;2.1.3 重选优先级概念1)与2/3G网络不同,LTE系统中引入了重选优先级的概念●在LTE系统,网络可配置不同频点或频率组的优先级,通过广播在系统消息中告诉UE,对应参数为cellreselectionPriority,取值为(0….7);(注:0优先级为最低,现网同频设置为5;异频设置宏站加室分底层&高层设置为6,室分高层加宏站为4,室分底层加宏站为5.)●优先级配置单位是频点,因此在相同载频的不同小区具有相同的优先级;●通过配置各频点的优先级,网络便能方便地引导终端重选到高优先级的小区驻留达到均衡网络负荷、提升资源利用率,保障UE信号质量等作用;2)重选优先级也可以通过RRCConnectionRelease消息告诉UE,此时UE忽略广播消息中的优先级信息,以该信息为准;网络主动引导UE进行系统间小区重选,完成CS域语音呼叫等;2.1.4 重选系统消息LTE中,SIB3-SIB8全部为重选相关信息,具体如下:2.2 重选测量启动条件1)UE成功驻留后,将持续进行本小区测量。
RRC层根据RSRP测量结果计算Srxlev,并将其与Sintrasearch(即:同频重选门限,现网设置为46)和Snonintrasearch(即:异频重选门限,现网设置为44)比较,作为是否启动邻区测量的判决条件;2)对于重选优先级高于服务小区的载频,UE始终对其测量;3)对于重选优先级等于或者低于服务小区的载频:RSRP<=测量启动门限+最小接入电平;●同频:当服务小区Srxlev>Sintrasearch时,UE自行决定是否进行同频测量;当服务小区Srxlev<=Sintrasearch或系统消息中Sintrasearch为空时,UE必须进行测量;注:根据现网参数配置:服务小区RSRP>46-128=-82时启动同频重选测量●异频:当服务小区Srxlev>Sintrasearch时,UE自行决定是否进行异频测量;当服务小区Srxlev<= Snonintrasearch或系统消息中Snonintrasearch为空时,UE必须进行异频测量;注:根据现网参数配置:服务小区RSRP>44-128=-84时启动同频重选测量注:Srxlev=当服务小区RSRP -qrxlevmin-qRxLevMinOffset-max( pMaxOwnCell-23, 0);邻小区的S值计算时只需要把里面的参数变成邻小区的配置参数即可。
2.3 重选判决准则1)同频小区及同优先级异频小区重选判决:R准则:服务小区Cell Rank(R值) Rs= Qmeas,s+ Qhyst候选小区Cell Rank(R值) Rt= Qmeas,t-Qoffset根据R值计算结果,对于重选优先级等于当前服务载频的邻小区,若:RSRP邻–RSRP 服>Qoffset+ Qhys;邻小区Rt大于服务小区Rs,并持续Treselection,同时UE已在当前服务小区驻留超过1s以上,则触发向邻小区的重选流程;以上相关参数介绍如下:2)优先级不同的异频小区重选判决●低先级小区到高优先级小区重选判决准则当同时满足以下条件,UE重选至高优先级的异频小区1)UE在当前小区驻留超过1s2)高优先级邻区的Snonservingcell> Threshx,high 即:RSRP邻> Threshx,high-最小接入电平3)在一段时间(Treselection-EUTRA)内,Snonservingcell一直好于该阈值(Threshx,high) 注:根据现网参数设置,异频低优先级到高优先级重选为:RSRP邻>40-128=-88时并在当前小区驻留超过1S后发生重选;●高优先级小区到低优先级小区重选判决准则当同时满足以下条件,UE重选至低优先级的异频小区1)UE驻留在当前小区超过1s2)高优先级和同优先级频率层上没有其它合适的小区3)Sservingcell< Threshserving,low 即:RSRP服< Threshserving,low-最小接入电平4)低优先级邻区的Snonservingcell,x> Threshx,low 即:RSRP邻> Threshx,low-最小接入电平5)在一段时间(Treselection-EUTRA)内,Snonservingcell,x一直好于该阈值(Threshx,low) 注:根据现网参数设置,异频高优先级到低优先级重选为:RSRP服<2-128=-126且RSRP邻>14-128=-114时并在当前小区驻留超过1S时发生重选;另:异系统小区间的重选和系统内,异频小区间重选原理基本相同;以上相关参数介绍如下:2.4 小区重选相关参数小区重选相关参数汇总及现网设置介绍,如下:三、LTE系统内切换测量及切换相关参数说明:此处不做切换流程介绍了。
3.1 LTE系统内测量事件LTE定义了一系列事件作为触发报告的条件,这些事件在规范TS 36.331, chapter 5.5有详细描述。
虽然在规范中RSRQ也可以作为测量和触发的基础,但目前仅使用RSRP。
下面仅介绍事件A系列事件。
LTE系统内的同频/异频测量事件:LTE系统内测量事件简介规范同时定义了事件的进入和离开条件:LTE系统内测量事件的判决条件3.2 LTE测量及切换判决其中判决条件中的各参数根据同频/异频/异系统不同场景设置不同的值,定义如下:1)Mn:邻小区测量值(UE测量到的邻区RSRP实际值)2)Ofn:邻小区频率偏移(现网设置为0)3)Ocn:邻小区偏置(邻小区特殊偏置,即CIO,设置为正值为快切,负值为慢切)4)Hys:迟滞值(即:Q-Hyst,重选本小区滞后值,现网设置为2db)5)Ms:服务小区测量值(UE测量到的服务小区RSRP实际值)6)Ofs:服务小区频率偏移(服务小区的特定频率偏置,采用默认值为0,同频切换可不考虑)7)Ocs:服务小区偏置(服务小区特定偏置,设置为0)8)Off:偏置值(事件偏置参数,对调节切换触发的难易有关)9)Thresh&Thresh1&Thresh2:门限下面仅介绍事件A系列涉及的参数:1、Threshold1:激活事件A2(同频测量),解除事件A11)同频测量启动条件:RSRP服<threshold1-140即启动;在服务小区RSRP< threshold1(现网设置为90,即服务小区电平<-90触发同频测量,)时,触发事件A2,启动同频邻区测量。
2)同频测量停止条件:RSRP服>threshold1即停止,当服务小区RSRP>= hreshold1(即服务小区电平>=-90)时,触发事件A1,放弃同频邻区测量。
事件A2激活与threshold12、Threshold2:激活事件A2(异频测量,异系统测量)1)异频切换测量启动条件:RSRP服<threshold2InterFreq-140且持续a2TimeToTriggerActInterFreqMeas时长即启动;在a2TimeToTrigger(现网设置为:1024ms)时间内,如果服务小区RSRP 一直小于threshold2InterFreq(现网宏站35、室分设置为50) +hysThreshold2(现网设置为0),即服务小区RSRP<35-140=-105时并持续为1024ms的时长,则触发事件A2,启动以异频和异系统邻区测量。
事件A2激活与threshold23、Threshold2a:激活事件A1,解除事件A2(异频测量,异系统测量)1)异频切换测量停止条件:RSRP服>threshold2a-140且持续a1TimeToTriggerDeactInterMeas时长停止;在a1TimeToTriggerDeacttimeMeas(现网设置为:480ms)时间内,如果服务小区RSRP 一直大于threshold2a(现网宏站设置为38、室分设置为53)+hysThreshold2a(现网设置为0),即服务小区RSRP>38-140=-102时并持续为480ms的时长,则触发事件A1,放弃异频和异系统的测量。
事件A2去激活与threshold2a4、a3Offset:激活事件A3(同频,异频)在a3TimeToTrigger(现网设置为320ms)时间内,如果服务小区RSRP+a3Offset(现网设置为3dB)+ hysA3Offset(现网设置为0)一直小于邻近小区RSRP,则触发事件A3,即服务小区RSRP+3+0<邻区RSRP并持续320ms则触发时间A3,UE上报A3报告,a3ReportInterval(现网设置为1024ms)决定A3报告的时间间隔。