椭圆中的蝴蝶定理及其应用
椭圆中的蝴蝶定理是什么?

椭圆中的蝴蝶定理是什么?
蝴蝶定理起源于圆,并可推广至圆锥曲线(椭圆、双曲线和抛物线),椭圆中的蝴蝶定理是高考中最常见的情况,对综合分析能力要求甚高。
一·何谓蝴蝶定理:
1815年,英国伦敦出版社,著名的数学科普刊物《男士日记》上刊登了如下的命题:
以上问题的图形,像一只翩翩起舞的蝴蝶,这正是该命题被称之为“蝴蝶定理”的原因。
由于蝴蝶定理意境优美,结论简洁,内涵丰富,两百多年来引无数数学家为之流连忘返,浮想联翩。
时至今日,人们不仅发现了蝴蝶定理的六十多种证明方法,而且还给出了定理的各种变形与推广。
二·蝴蝶定理的证明:
蝴蝶定理的证明方法非常之多,但利用曲线系方程来证明蝴蝶定理干净简洁,内涵丰富。
另外,如果将圆的方程换成圆锥曲线(椭圆、双曲线或抛物线)的方程,则得到对应这些曲线中的蝴蝶定理。
三·蝴蝶定理的推广:
对蝴蝶定理的探索与研究至今仍然没有结束,由人称它为欧氏平面几何里的一颗璀璨明珠。
四·典型高考题示例:
蝴蝶定理在高考数学中曾多次出现,下面仅举一例进行说明:
蝴蝶定理,butterfly thearem,古典欧氏几何最精彩的结果之一。
1815年首次被一个自学成才的中学教师W·霍纳以初等方式证明。
足可见,高等的东西用初等方法解决未必完全不可能。
以上,祝你好运。
高三数学二轮复习冲刺:蝴蝶定理及应用

蝴蝶定理背景下的解析几何与应用1.蝴蝶定理:AB 是二次曲线Ω的一条弦,O 是AB 的中点,过O 作Ω的两条弦CD 和EF ,其中E C ,位于AB 的同一侧,直线CF 和DE 分别交AB 于点Q P ,,则有OQ OP =.2.斜率形式结论1:B A 、分别为椭圆)(1:2222b a by a x E >=+的左、右顶点,)0,(t T 为x 轴上一定点,过M 直线交椭圆于D C ,两点,连接BD AC ,,那么ta t a k k BD AC +-=.证明:过T 作x PQ ⊥轴,交椭圆于Q P ,交BD AC ,于,,N M 由椭圆对称性可知:TQ TP =:进而据蝴蝶定理可知:TN TM =,于是可得:t a t a AT BT BTNT AT MT NBT MAT k k BD AC +-===∠∠=tan tan .结论2[1]:设抛物线)0(2:2>=p px y C 的弦AB 过定点)0)(0,(>m m M ,过点M 作非水平线l 交C 于Q P ,两点,若直线AP 与x 轴交于定点)0,(n ,直线BQ AP ,的斜率21,k k 存在且非零,则nm k k =213坎迪定理如图,过圆的弦AB 上任意一点M 引任意两条弦CD 和EF ,连接CF ED 、交AB 于P 和Q ,则MBMA MQ MP 1111-=-.坎迪定理的推广设AB 是二次曲线的任意一条弦,M 为AB 上任意一点,过M 作任意两条弦CD 和EF ,连接ED 、CF 交直线AB 于P 和Q .(1)若Q P 、位于M 两侧,则MBMA MQ MP 1111-=-;(2)若Q P 、位于M 同一侧,BM AM <,则MB MA MQ MP 1111-=+.二.典例分析例1(2020一卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.解析:依上述蝴蝶定理的内容:由于31=PD P A k k 过E 作x MN ⊥轴,交DP AP ,与N M ,点,交椭圆于H G ,.显然E 为椭圆弦GH 的中点,由蝴蝶定理:EN EM =,3133tan tan =+-===∠∠=E E PD P A x x AE BE BENE AE NE NEB MAE k k ,23=E x 例2.在平面直角坐标系中,已知圆()22:236M x y ++=,点()2,0N ,Q 是圆M 上任意一点,线段NQ 的垂直平分线与半径MQ 相交于点P ,设点P 的轨迹为曲线E 。
蝴蝶定理的八种证明及三种推广

蝴蝶定理的证明定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。
设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。
在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞!证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=︒ FVO FMO 90∠=∠=︒得M E U O 、、、共圆;M F V O 、、、共圆。
则AUM=EOM MOF MVC ∠∠∠=∠,又MADMCB ,U V 、为AD BC 、的中点,从而MUA MVC ∆∆,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。
证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即PC'CQ =。
又111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222∠∠()()故M F B D'、、、四点共圆,即MBF MD'F ∠=∠而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ∆≅∆,故ME=MF 。
证法 3 如图4,设直线DA 与BC 交于点N 。
对NEF ∆及截线AMB ,NEF ∆及截线CMD 分别应用梅涅劳斯定理,有FM EA NB 1ME AN BF ⋅⋅=,FM ED NC1ME DN CF⋅⋅= 由上述两式相乘,并注意到 NA ND NC NB ⋅=⋅ 得22FM AN ND BF CF BF CF ME AE ED BN CN AE ED⋅=⋅⋅⋅=⋅ ()()()()2222PM MF MQ MF PM MF PM ME MQ+ME PM ME -==-+--化简上式后得ME=MF 。
蝴蝶定理的证明与推广

蝴蝶定理(Butterfly theorem),是古典欧氏平面几何的最精彩的结果之一。
这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形象一只蝴蝶。
这个定理的证法多得不胜枚举,至今仍然被数学热爱者研究,在考试中时有出现各种变形。
最基本的叙述为:设M为圆内弦PQ的中点,过M作弦AB和CD。
设AD和BC各相交PQ于点X和Y,则M是XY的中点。
该定理实际上是射影几何中一个定理的特殊情况,有多种推广:
从向和作垂线,设垂足分别为和。
类似地,从向和作垂
线,设垂足分别为和。
证明蝴蝶定理
现在,由于
从这些等式,可以很容易看出:
由于 =
现在,
因此,我们得出结论:,也就是说,是的中点。
关于椭圆中的蝴蝶模型问题的探究与思考

关于椭圆中的蝴蝶模型问题的探究与思考作者:***来源:《数学教学通讯·高中版》2024年第06期[摘要]蝴蝶模型在解析几何中十分常见,开展模型解读、挖掘模型本质、总结模型问题十分必要. 文章以椭圆中的蝴蝶模型为例,开展模型深度探究,并结合教学实践,提出教学建议.[关键词]解析几何;蝴蝶模型;特征;考点;解法蝴蝶模型解读蝴蝶模型是解析几何的重点模型,从外形来看,模型形如两个三角形对顶角相接,因形似蝴蝶的翅膀,故称为蝴蝶模型. 蝴蝶模型在解析几何中十分常见,是几何与函数相结合的典型代表. 探究解析需要把握模型特征,总结模型结论. 下面探究椭圆中的蝴蝶模型.1. 蝴蝶模型在图1所示的☉O中,△CFM和△DEM有共顶点M,两三角形的其他顶点F,C,D,E 位于☉O上. 蝴蝶模型中隐含着相应定理,即蝴蝶定理:点M是弦AB的中点,两条弦CD和EF过点M,连接DE,CF,与AB分别相交于点P,Q,则点M为线段PQ的中点.2. 本质探究高考中直接考查蝴蝶定理的情形并不多见,常将蝴蝶模型与解析几何相结合,对其赋予“数”与“形”的特征.蝴蝶模型背景下的椭圆综合题中,注重考查直线与椭圆的位置关系. 该类问题本质上是研究椭圆的内接四边形,即两对接三角形的四个顶点构成的四边形. 其中形如蝴蝶的四边形通常由椭圆的两条相交弦来构建. 在实际问題中,并不会直接给定弦,而是设定两条弦过定点,或由某固定线的斜率来确定.椭圆问题常围绕蝴蝶模型来构建,基于相交弦设定问题,如定点问题、定值问题、斜率问题等. 在具体求解时,注意分析模型特征,充分利用蝴蝶定理来推导条件,通过数形结合分析转化.典例探究椭圆中的蝴蝶模型问题多样,常见的有定点定值问题、斜率问题、弦长关系问题等. 下面结合实例具体探究,总结方法策略.1. 蝴蝶模型中的定点问题例1 在平面直角坐标系中,已知圆O:x2+y2=9,Q是圆O上任意一点,Q在x轴上的投影是点Q′,点P满足=,设点P的轨迹为曲线E.(1)求曲线E的方程;(2)若A(-3,0),B(3,0),过直线x=9上任意一点T(不在x轴上)作两条直线TA,TB与曲线E分别相交于点C(x,y),D(x,y)(异于点A和B),求证:直线CD 过定点.解析本题为椭圆综合题,问(2)中的弦AB与CD相交于点K,构成了蝴蝶模型,可将其归为椭圆中的蝴蝶模型问题.(1)该问求曲线E的方程,设点P(x,y),Q(x,y),由=推知x=x,y=y,将其代入方程x+y=9,可得+=1. 所以,曲线E的方程为+=1.(2)该问求证直线CD过定点,可根据韦达定理,采用“整体代换”的方法解析,具体如下:设直线CD的方程为x=my+t(t≠0),与椭圆+=1联立,并整理得(5m2+9)y2+10mty+5t2-45=0,由韦达定理得y+y=,yy=,Δ=180(5m2+9-t2)>0.利用点坐标表示蝴蝶模型中两条弦所在直线的解析式,则AC:y=(x+3),当x=9时,y=;BD:y=(x-3),当x=9时,y=. 所以,=,化简得2xy-xy=3y+6y1①. 又xy+xy=2myy+t (y+y)=②. 综合①和②可得xy=+2y++1y2,xy=-2y+-1y2.在直线CD的方程y-y=(x-x)中,令y=0,则x==. 分析可知,当-4+-2=0,即t=1时,直线CD过定点(1,0).评析上述为蝴蝶模型中的定点问题,解析时把握模型特征,采用传统的待定系数法来代换简化. 问题解析有两大关键点:一是把握蝴蝶模型中的两条特殊弦,结合相关点分设直线方程;二是灵活构造对称式方程,形成对应的方程组,巧妙化简求解.2. 蝴蝶模型中的斜率比值问题例2 已知椭圆C:+=1(a>b>0)的左、右焦点分别为F,F,M在椭圆C上,△MFF的周长为2+4,其面积的最大值为2,试解决下列问题.(1)求椭圆C的方程;(2)直线y=kx(k>0)与椭圆C相交于A和B,连接AF,BF,并延长交椭圆C于D和E,连接DE,则AB与DE的斜率之比是否为定值?说明理由.解析本题为椭圆中的蝴蝶模型问题,其中△ABF和△DEF共顶点F,由椭圆的两条相交弦构建.题设两问,第(1)问求椭圆C的方程,转化△MFF的周长和面积最值条件即可求出椭圆方程的特征参数. 第(2)问是关于蝴蝶模型中两条关键弦的斜率之比的问题,探索其值是否为定值,可采用“设而不求”“整体代换”的方法构建斜率之比.(1)已知△MFF的周长为2+4,则FF+MF+MF=2a+2c=2+4,其最大面积S=·2c·b=bc=2,解得a=,b=1,所以椭圆C的方程为+y2=1.(2)第一步,设定点坐标:设点A的坐标为(x,y),则点B的坐标为(-x,-y).第二步,构建方程:推得直线AD的方程为x=y+2,将其代入椭圆C的方程,整理得[(x-2)2+5y]y2+4(x-2)yy-y=0①. 又+y=1,代入方程①,化简得(9-4x)y2+4(x-2)yy-y=0.第三步,斜率推导:设点D的坐标为(x,y),点E的坐标为(x,y),则yy=,所以y=,x=y+2.直线BE的方程可以表示为x=y+2,同理可得y=,x=y+2. 所以,直线DE的斜率为k===9·=9k,即k∶k=9∶1.评析上述蝴蝶模型中的斜率比值问题,属于解析几何中的斜率问题,探究解析时关注模型特点,采用“设而不求”“整体代入”的方法简化斜率比值. 问题突破有两大关键点:一是把握蝴蝶模型的相交弦的位置关系,推导所在直线的方程;二是充分利用类比推导简化的方法,整体代入化简直线斜率比值.实际上,可推广上述椭圆蝴蝶模型中的直线斜率比值结论,在求解相应问题时直接使用. 具体如下:如图4所示,在椭圆C:+=1(a>b>0)中,其左、右顶点为A,B,椭圆C的弦PQ过定点M(t,0),则k·k=3. 蝴蝶模型中的弦长关系问题例3 如图5所示,已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P,在椭圆E上.(1)求椭圆E的方程;(2)设不过原点O且斜率为的直线l与椭圆E相交于不同的两点A和B,线段AB的中点为M,直线OM与椭圆E相交于不同的两点C和D,求证:MA·MB=MC·MD.解析本题同样为椭圆中的蝴蝶模型问题,椭圆的两条弦CD和AB构成蝴蝶模型. 本题第(2)问为核心之问,求证弦长之间的关系,涉及四条弦,探究解析可采用“联立方程”“整体代换”的策略,即设点的坐标,推导线段的长,再整理化简.(1)把握几何特征,可得a=2b,再结合P,在椭圆E上,可得椭圆E的方程为+y2=1.(2)设直线l的方程为y=x+m (m≠0),点A(x,y),B(x,y),联立直线与椭圆的方程,有y=x+m,+y2=1,整理得x2+2mx+2m2-2=0. 结合韦达定理得x+x=-2m,xx=2m2-2,且Δ=4(2-m2)>0,可知参数m的取值范围为(-,). 由点M的坐标-m,推得直线OM的方程为y=-x,与椭圆的方程联立,有y=-x,x2+4y2-4=0,可得點C-,,D,-. 结合点的距离公式得MC·MD=(-m+)·(m+)=(2-m2),MA·MB=AB2=(x+x)2-xx=(2-m2),所以MA·MB=MC·MD,得证.评析上述蝴蝶模型中的弦长关系问题,证明弦长乘积相等. 解析采用的是“联立方程”“整体代换”的策略,即设点的坐标,联立直线与椭圆的方程,借助韦达定理推导参数条件,将弦长乘积问题转化为与坐标参数相关的代数问题. 问题解析有两个关键点:一是挖掘其中的隐含模型,即蝴蝶模型,把握模型中的两条弦的特点;二是联立方程,设而不求,简化运算过程.教学思考上述深入探究了椭圆中的蝴蝶模型,剖析模型特征,结合实例探究常见问题,并探索解题过程,总结破题关键点. 下面对教学探究提出几点建议.1. 解析模型特征,挖掘模型本质蝴蝶模型是高中几何中常见的模型,教学探究要注意模型特征的解析,挖掘模型本质,让学生认识、理解、掌握模型. 上述模型探究按照“特征解析-本质挖掘-考点探究”来开展,探究过程具有连贯性、系统性,循序渐进、逐步深入. 教学时需要注意两点:一是模型解析中的数形结合,即探究时结合直观的模型图象,引导学生关注其几何特征;二是挖掘本质立足知识考点,即引导学生挖掘、理解模型的本质,掌握对应的知识考点.2. 关注模型考点,总结解题方法教学时教师要深入剖析模型的知识重点,围绕模型开展考点探究,精选问题,总结解题方法. 上述蝴蝶模型的探究,围绕三大典例问题开展,分析了定点问题、斜率比值问题、弦长关系问题的破解思路,总结了相应的解题方法. 教学引导时要注意两点:一是解题过程中的思维引导,即引导学生思考,锻炼学生思维能力;二是解法的归纳总结,即开展解后反思,让学生充分认识问题,掌握解题策略.3. 渗透数学思想方法,提升学生综合素养模型问题的探究教学要注意渗透数学思想方法,以提升学生的综合素养. 以上述蝴蝶模型的探究为例,其涉及了数形结合、模型构建、方程思想等,教学可分三个阶段进行:第一,讲解数学思想方法的内涵,引导学生初步理解数学思想方法;第二,结合模型解析渗透数学思想方法,引导学生感悟数学思想方法,体会数学思想方法的作用;第三,升华数学思想方法,促使学生独立使用数学思想方法构建解题思路,提升学生的思维能力.。
蝴蝶定理的一些结论(根据李文杰老师手稿整理, 还没检查)

故
m
a2
a2
|BR| = a − , |BR| = + a, |M B| = m − a, |M A| = m + a,
m
m
从而
a2
|BR| |AR|
=
a− m a2
+a
=
m−a m+a
=
|M B| |M A|
=
kAC kBD
=
kAD . kBC
m
结论 9: (斜率等差模型)
kP A + kP B = 2kP R, kNA + kNB = 2kNR.
1
蝴蝶定理相关结论及证明
如图,
在椭圆
x2 a2
+
y2 b2
=1
(a > b > 0)
中,
A, B
分别为左右顶点,
C(x1, y1),
D(x2, y2)
为
椭圆上两点, 直线 AC, DB 交于 P , 直线 AD, CB 交于 N , 直线 P N 与 x 轴交于 M (m, 0), 设
P (m, p), N (m, n), 则
y
D
A
MQ
N
O
x
B C
kAB =
y1 − y2 x1 − x2
=
y1 − y2 y12 − y22
2p
=
.
y1 + y2
2p 2p
从而
2p
AB
:
y
−
y1
=
y1
(x − + y2
x1)
=⇒
(y1 + y2)y = 2px + y1y2.
椭圆蝴蝶定理过定点斜率之比-概述说明以及解释

椭圆蝴蝶定理过定点斜率之比-概述说明以及解释1.引言1.1 概述概述椭圆蝴蝶定理是一种重要的数学定理,它研究了椭圆曲线上的点与过该点的切线之间的关系。
具体来说,该定理指出:过椭圆任意一点的切线斜率的平方与过该点的切线所形成的直线与椭圆的切线斜率的平方之比保持不变。
在本文中,我们将探讨这一定理并进一步研究其特殊情况——过定点斜率之比。
我们将通过介绍椭圆蝴蝶定理的基本原理和证明过程来解释这一定理的数学基础。
同时,我们还将介绍过定点斜率之比的定义和性质,并通过具体的示例来说明其应用。
通过研究椭圆蝴蝶定理过定点斜率之比,我们可以更深入地理解椭圆曲线的特性和几何性质。
这不仅对数学理论具有重要意义,而且在实际应用中也有着广泛的应用。
例如,在密码学中,椭圆曲线密码学利用了椭圆曲线上的点操作进行加密和解密,而椭圆蝴蝶定理可以帮助我们更好地理解椭圆曲线加密算法的安全性。
通过本文的阅读,读者可以对椭圆蝴蝶定理过定点斜率之比有一个较为全面的了解,并进一步探索其研究意义和应用领域。
在开始正文之前,我们将首先介绍文章的结构以及我们的研究目的,以帮助读者更好地理解和阅读后续内容。
1.2 文章结构文章结构部分的内容可以按照以下方式来编写:本文将分为引言、正文和结论三个部分,以探讨椭圆蝴蝶定理过定点斜率之比的相关内容。
在引言部分,我们将对整篇文章进行一个简要的概述,介绍研究的背景和目的。
首先,我们将概述椭圆蝴蝶定理及其在数学中的重要性。
接着,我们将说明本文的结构和组织方式,让读者能够清晰地了解本文的内容安排。
最后,我们将明确本文的目的,即探讨通过椭圆蝴蝶定理求解过定点斜率之比,并进一步说明此研究的意义和应用。
正文部分将详细介绍椭圆蝴蝶定理和过定点斜率之比的相关理论。
首先,我们将介绍椭圆蝴蝶定理的定义和基本性质。
通过数学推导和几何解释,我们将阐述椭圆蝴蝶定理的重要意义,并提供实例来帮助读者更好地理解该定理的应用。
接着,我们将探讨过定点斜率之比的求解方法。
蝴蝶定理及其推广

蝴蝶定理及其推广本文介绍蝴蝶定理、坎迪定理及相关结论的解析法证明蝴蝶定理最开始是一个关于圆的定理,因其图形像一只翩翩起舞的蝴蝶,被称为蝴蝶定理,并可推广到了任意二次曲线之中,而坎迪定理是蝴蝶定理的一般形式。
圆中的蝴蝶定理蝴蝶定理的霍纳证法证法1.霍纳证法证明:作OU⊥AD,OV⊥BC,则U,V分别是AD,BC的中点注意到∠EUO=ZEMO=90°,从而E,M,O,U四点共圆,进而∠EOM=∠EUM,同理,可知∠FOM=ZFVM注意到△ADM∽△CBM,且U,V是这对相似三角形的对应点,那么∠AUM=∠CVM,即∠EOM=∠FOM,从而ME=MF,证毕。
证法2.单墫证法1983年,中国科技大学单墫教授给出一个简洁的解析法证明: 以M为原点,弦PQ所在直线为x轴,视圆O为单位圆,建立直角坐标系,如图:设圆O的方程为x²+(y-a)²=1,直线AB、CD的方程分别为y=k1x、y=k2x,由圆和直线组成的二次曲线系方程为:μ[x²+(y-a)²-1]+λ(y-k1x)(y-k2x)=0令y=0,则xE,xF满足方程(μ+λk1k2)x²+μ(a²-1)=0,由于x的系数为0,结合韦达定理可得xE+xF=0,即xE=-xF,故ME=MF外接图形为任意二次曲线的蝴蝶定理我们将圆换成一个任意的二次曲线,结论也是一样成立的:蝴蝶定理外接曲线型的推广证明:这里我们仍以单墫教授在上例的解析法证明思路:以M为原点,MP所在直线为x轴,设P(m,0),Q(-m,0),且过这六点的圆锥曲线方程为:Ax²+Bxy+Cy2+Dx+Ey+F=0 (1)将(m,0)和(-m,0)代入,得F=-Am²,D=0,不妨设A=1,则(1)化为:x²+Bxy+Cy²+Ey-m²=0设直线AB:x=k1y,CD:x=k2y,那么经过A,B,C,D的二次曲线系方程为:x²+Bxy+Cy2+Ey-m²+λ(x-k1y)(x-k2y)=0 (2)注意到两条直线是退化的二次曲线,当y=0时,方程(1+λ)x²=m²的两根即为xE,xF,由代数方程根与系数的关系,易知:x E+x F=0,故ME=MF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003年北京高考数学卷第18(III)题考查了椭圆内的蝴蝶定理的证明,本文给出了一般圆锥曲线的蝴蝶定理的两种形式,并由它们得到
圆锥曲线的若干性质.
定理1:在圆锥曲线中,过弦AB中点M任作两条弦CD和EF,直线CE与DF 交直线AB于P,Q,则有.
证明:如图1,以M为原点,AB所在的直线为y轴,建立直角坐标系.
设圆锥曲线的方程为(*),设A(0,t),B(0,-t),知t,-t是的两个根,所以.
若CD,EF有一条斜率不存在,则P,Q与A,B重合,结论成立.
若CD,EF斜率都存在,设C(x1,k1x1), D(x2,k1x2),E(x3,k2x3), F(x4,k2x4),P(0,p),Q(0,
q),,
,同理, 所以
将代入(*)得,又得
, , 同理
, ,所以,即
.
注:2003年高考
数学北京卷第18
(III)题,就是定理1中取圆锥曲线为椭圆,AB为平行长轴的弦的特殊情形.
定理2:在圆锥曲线中,过弦AB端点的切线交于点M,过M的直线l∥AB,过M任作两条弦CD和EF,直线CE与DF交直线l于P,Q,则有.
证明:如图2,以M为原点,AB所在的直线为y轴,建立直角坐标系.
设圆锥曲线的方程为(*),设A(),B(),则切线MA的方程是,切线MB的方程是
,得,所以.(下面与定理1的证明相同,略)
特别的,当弦AB垂直圆锥曲线的对称轴时,点M在圆锥曲线的该对称轴上.
性质1:过点M(m,0)做椭圆、双曲线的弦CD,EF是其焦点轴,
则直线CE、DF的连线交点G在直线l:上.特别的,当M为焦点时,l就是准线.当M为准线与焦点轴所在直线的交点时,l就是过焦点的直线.
证明:如图3,过M做直线AB垂直焦点轴所在的直线,直线CE与DF交直线AB于P,Q,则根据定理1,定理2得.
过G做GH垂直焦点轴所在直线
于H,得,设M(m,0),H(n,0),焦点轴长为2a,则有,得.
注:性质1就是文[1]中的性质1,文[2]中的推论2.
若圆锥曲线为抛物线,把无穷远点作为其虚拟顶点,把图3中的DF看作与
焦点轴平行的直线,于是得到性质2.
性质2:过点M(m,0)做抛物线的弦CD,E是抛物线的顶点,直
线DF与抛物线的对称轴平行,则直线CE、DF的连线交点在直线l:上.
特别的,当M为焦点时,l就是准线.当M为准线与焦点轴的交点时,l就是过焦点的直线.
注:2001年全国高考数学卷第18题,就是性质2中M为焦点的情形.性质2
就是文[1]中的性质2,文[2]中的推论1.
性质3:直线l:,过点M(m,0)做椭圆、双曲线的弦CD,直线l与CD交于点I,则.
证明:如图4,由定理1,定理2及性质1得:.
性质4:过点M(m,0)做椭圆、双曲线的弦CD、EF,则直线CE、DF的连线交点G在直线l:上.
证明:如图5,过G做GH垂直焦点轴所在的直线,由定理1,
定理2得:,由性质3得,点I在直线l:上,所以点G在直线l:上.
类似性质3、性质4得到性质5、性质6.
性质5:直线l:,过点M(m,0)做抛物线的弦CD,直线l与CD交于点I,则.
性质6:过点M(m,0)做抛物线的弦CD、EF,则直线CE、DF的连线交点G在直线l:上.
注: 文[3]中的定理是性质4、性质6的特殊情形,即取M为焦点时,直线CE、DF的连线交点G落在相应准线上.
性质7:过点M(m,0)做椭圆、双曲线的弦CD,则以C,D为切点的圆锥曲线的切线的交点G在直线l:上.
证明:如图6,设切线CG交直线l于G1,连接G1D,若G1D与圆锥曲线有除D点外的公共点F,做直线FM交圆锥曲线于E,由性质4知CE与DF的交点在直线l上,所以C、E、G1三点共线,与CG1是圆锥曲线的切线矛盾,所以G1D与圆锥曲线只有一个公共点D,G1D是圆锥曲线的切线,G1与G重合, G在直线l 上.
性质8:过点M(m,0)做抛物线的弦CD,则以C,D为切点的圆锥曲线的切线的交点G在直线l:上.
注:性质7、性质8也是性质4、性质6
的一种极端情形,就是文[4]中的定理1.
性
质9:直线l:,过点M(m,0)做椭圆、双曲线的弦CD,C、D在l上的射影为C1、D1,在焦点轴所在直线上的射影为C2、D2,则.
证明:如图7,由性质3得:,所以.
性质10:直线l:,过点M(m,0)做抛物线的弦CD,C、D 在l上的射影为C1、D1,在对称轴上的射影为C2、D2,则.
注:性质9、10即文[5]中的定理1、2、3,文[5]中的推论也可由性质3、5直接推出.
性质11:在圆锥曲线中,过弦AB中点M任作两条弦CD和EF,直线CE与DF 交于点G,过G做GI∥AB,直线GI交FE于I,则.
证明:如图8,直线CE与DF交直线AB于P,Q,由定理1得:, 所以.
性质12:在圆锥曲线中,过弦AB端点的切线交于点M,过M任作两条弦CD 和EF,直线CE与DF交于点G,过G做GI∥AB,直线GI交FE于I,则.
性质11,12可认为是性质1,2,3,5的推广,从性质11,12出发可以得到类似性质4,6,7,8,9,10的结论,限于篇幅,本文不再给出。