热塑性弹性体(SBS)合成、改性和应用
热塑性弹性体(SBS)的合成、改性和应用教学文稿

• 。1980年以后, • 又开发了第三代即反应性SEBS, • 它是在SEBS上引进极性官能团, • 从而赋予其与各种工程塑料 • 良好的相容性和对金属的粘接性。
• 国内SBS的研究始于70年代中期, • 目前已有燕山石化、 • 巴陵石化 • 和茂名石化 • 等几套万吨装置投入工业化生产。
• 但是SBS产品的品种和规格 • 难以满足不同用途的需要。 • 高附加值的新牌号SBS • 已成为国内厂家的竞争点。
• 通常SBS的合成 • 采用阴离子聚合三步加料的方法, • 以传统的BuLi为引发剂, • 醇为终止剂。
• 它作为一种新型高分子材料,已经历了三 代的开发。
• 第一代SBS是以1963年美国Phillips公司推 出偶联法线型丁二烯-苯乙烯嵌段共聚物为 起点,
• 接着Shell公司于1965年采用阴离子聚合技 术以三步加料法生产商品名为Kraton的同类 产品。
• 的反应速率较苯乙烯单体与苯乙烯活性种 反应快。
• 而形成的丁二烯活性种
• 又不易与苯乙烯单体反应,
• 一般地,当丁二烯嵌段聚合结束后才能引 发苯乙烯单体聚合。
• 所以,操作中第一段反应结束后可将苯乙 烯和丁二烯混合溶液同时加入。
• 2. 2 SBS的极性化改性 • 由于SBS极性小、 • 耐油性和溶解性较差, • 使其运用受到限制。 • 通过官能化可以在SBS链上引入极性基团,
• THF为给电子试剂,
• 它的含量的增加削弱了活性种正离子Li十与 C之间的键能,
• 使单量体增加,单体更易发生插入反应, 加快反应速度,同时它还影响到丁二烯嵌 段中1.2一结构的含量。
• 因此,它的加入量不大,一般控制在 THF/n-BuLi为0.5-2.0之间。
热塑性弹性体简介及SEBS的应用现况和市场分析

热塑性弹性体简介及SEBS的应用现况热塑性弹性体(TPE)是一种介于橡胶和热塑性塑料特性的高分子材料,具有橡胶和塑料的双重性和宽广特性,常温下具有橡胶的高弹性,在高温下又能塑化成型,目前已广泛应用于汽车、电子电气、建筑、医疗、玩具等领域。
随着新技术的发展,促进了TPE性能的不断优化和提升,应用领域不断拓展,尤其是汽车和医疗领域需求强劲;此外由于人们环境意识的提高,材料回收性成为选材的一个重要因素,全球废弃的PVC成为环境污染的重要问题,国外限制使用PVC 呼声日趋高涨,也促进了TPE消费快速增长。
目前工业化生产TPE主要分为以下几类:苯乙烯类(TPS)、烯烃类(TPO)、氯乙烯类(TPVC)、氨酯类(TPU)、聚酯类(TPEE)、酰胺类(TPAE)、有机氟类(TPF)、双烯类(TPB、TPI)等。
TPE和传统橡胶相比具有以下优点:1、可用一般的热塑性塑料成型机加工,例如注塑成型、挤出成型、吹塑成型、压塑成型、递模成型等;2、生产过程中产生的废料(逸出毛边、挤出废胶)和最终出现的废品,可以直接返回再利用:3、用过的TPE旧品可以简单再生之后再次利用,减少环境污染,扩大资源再生来源;4、不需硫化,节省能源,以高压软管生产能耗为例:橡胶为188MJ/kg,TPE 为144MJ/kg,可节能25%以上;5、自补强性大,配方大大简化,从而使配合剂对聚合物的影响制约大为减小,质量性能更易掌握;6、为橡胶工业开拓新的途径,扩大了橡胶制品应用领域。
7、部件尺寸和整个质量更能严密控制,密度较低,而使单位重量能得到更多的部件,满足轻量化的要求。
下面简单介绍一下热塑性弹性体的几个主要类型:一,苯乙烯类:苯乙烯系热塑性弹性体(又称苯乙烯类嵌段共聚物缩写为TPS或SBC)目前是世界产量最大、与橡胶性能最为相似的一种热塑性弹性体,由硬段相苯乙烯段和软段相丁二烯、异戊二烯嵌段共聚组合而成,主要分为苯乙烯-丁二烯-苯乙烯嵌段共聚物SBS,苯乙烯-异戊二烯-苯乙烯嵌段共聚物SIS,以及两者的加氢共聚物SEBS和SEPS。
SEBS性能应用配方改性大全

SEBS性能、应用、配方、改性大全SEBS具有优异的耐老化性能,既具有可塑性,又具有高弹性,无需硫化即可加工使用,边角料可重使用,广泛用于生产高档弹性体、塑料改性、胶粘剂、润滑油增粘剂、电线电缆的填充料和护套料等。
1) 产品特性SEBS是热塑性弹性体SBS的加氢产物,常称为氢化SBS。
这种被氢化的SBS 由于具有较高含量的1,2结构,在氢化后组成为聚苯乙烯(S)—聚乙烯(E)—聚丁烯—1(B)—聚苯乙烯(S),故简称为SEBS SEBS是1974年由Shell公司首次在世界上实现工业化生产,商品名为KratonG。
随着SEBS应用增长,参与SEBS开发、生产的厂商日益增多,到目前全球SEBS生产、销售能力达到20万吨,其中Shell公司11万吨/年,其余厂家生产能力共计9万吨左右。
由于SEBS中丁二烯段的碳—碳双键被氢化饱和,因而其具有良好的耐候性、耐热性、耐压缩变形性和优异的力学性:⑴较好的耐温性能,其脆化温度≤-60℃,最高使用温度达到149℃,在氧气气氛下其分解温度大于270℃。
⑵优异的耐老化性能,在人工加速老化箱中老化一星期其性能的下降率小于10%,臭氧老化(38℃)100小时其性能下降小于10%。
⑶优良的电性能,其介电常数在一千赫为1.3*10-4,一兆赫为2.3*10-4;体积电阻是一分钟9*1016Ω/cm;二分钟为2*1017Ω/cm。
⑷良好的溶解性能、共混性能和优异的充油性,能溶于许多常用溶剂中,其溶解度参数在7.2~9.6之间,能与多种聚合物共混,能用橡胶工业常用的油类进行充油,如白油或环烷油。
⑸无需硫化即可使用的弹性体,加工性能与SBS类似,边角料可重复使用,符合环保要求,无毒,符合美国FDA要求。
⑹比重较轻,约为0.91,同样的重量可生产出更多体积的产品。
2) 产品用途1.SEBS通过与聚丙烯、环烷油或氢化环烷油、白油等混合可生产邵氏硬度在A0-95的弹性体,此类弹性体有优秀的表面质感和耐候抗老化性能,可广泛用于软接触材料如手柄、文具、玩具、运动器材的握手、密封条、电线电缆、牙刷柄及其它包覆材料等。
热塑性弹性体SBS的研究

1.3热塑性弹性体SBS的研究1.3.1 SBS简况热塑性弹性体TPE是六十年代开发的新型高聚物[73],是高分子材料科学与工程理论和应用中的一个重大突破。
它具有橡胶和热塑性塑料的特性,在常温下显示橡胶高弹性,高温下又能塑化成型的高分子材料。
它是继天然橡胶、合成橡胶之后的被称为“第三代橡胶”。
热塑性弹性体分子链的结构特点是由化学组成不同的树脂段(硬段>和橡胶段(软段>构成。
硬段的链段间作用力足以形成“物理交联”,软段则是具有较大自由内旋转能力的高弹性链段;而软硬段又以适当的次序排列并以适当的方式联接起来。
硬段的这种物理交联是可逆的,即在高温下失去约束大分子组成的能力,呈现塑性。
当温度降至室温时,这些“交联”又恢复,起到类似硫化橡胶交联点的作用。
正是由于热塑性弹性体的这种链结构特点和交联状态的可逆性,使它在常温下显示硫化胶的弹性、强度和形变特性等物理机械性能,可代替传统硫化胶制造某些橡胶制品;在高温下硬段会软化或熔化,在加压下呈现粘性流动,显现热塑性塑料的加工特性,可采用注射成型和吹塑成型等热塑性塑料的方法,比传统硫化橡胶常用的压缩、挤出、压延成型速度快、周期短,所需后硫化设备少,生产费用低。
热塑料弹性体还可用真空、吹塑成型等传统橡胶不能使用的迅速、经济的方法加工。
重复加工对其性能或加工特性无明显损害,废品和边角料可重新加工,用过材料可与新料一起使用,大大提高了材料利用率,极大地减少环境污染,被认为是环境友好材料。
b5E2RGbCAP按其化学组成TPE可以分为苯乙烯类SBC、聚烯烃类TPO、聚氨酯TPV和聚酯类CPE。
在TPE中SBC占有重要的地位,是目前世界上产量最大、发展最快的一种热塑性弹性体,按嵌段成分SBC可分为苯乙烯-丁二烯-苯乙烯嵌段共聚物<SBS)、苯乙烯-异戊二烯-苯乙烯嵌段共聚物<SIS)以及它们相应的加氢产物- 氢化SBS<SEBS)和氢化SIS<SEPS)4 种类型。
SBS改性沥青机理研究

SBS改性沥青机理研究一、本文概述随着交通事业的飞速发展,道路建设和维护对于沥青材料的要求越来越高。
SBS改性沥青作为一种性能优异的道路材料,已经在全球范围内得到了广泛的应用。
本文旨在深入研究SBS改性沥青的机理,以期为提高道路使用寿命、降低维护成本提供理论支持。
本文将概述SBS改性沥青的基本概念、发展历程及其在道路工程中的应用现状。
随后,文章将详细探讨SBS改性沥青的改性机理,包括SBS的分子结构、改性过程中的物理化学变化以及改性沥青的性能提升等方面。
本文还将通过实验研究,分析SBS改性沥青在不同条件下的性能表现,并对比传统沥青与SBS改性沥青的性能差异。
本文将对SBS改性沥青的应用前景进行展望,并提出针对性的建议,以期推动SBS改性沥青在道路工程中的进一步应用与发展。
通过本文的研究,将为道路工程领域提供更为全面、深入的SBS改性沥青机理认识,为相关领域的科研和实践工作提供有益的参考。
二、SBS改性沥青的制备与表征SBS改性沥青的制备是研究其改性机理的关键步骤。
制备过程中,首先选择高质量的基质沥青和SBS橡胶作为原料,保证产品的基本性能。
接着,通过特定的加工工艺,如熔融共混法,将SBS橡胶均匀分散在基质沥青中,形成稳定的SBS改性沥青。
在这个过程中,SBS橡胶的分子链会与基质沥青中的组分发生相互作用,如吸附、溶解和扩散,从而实现改性效果。
为了表征SBS改性沥青的性能,我们采用了一系列实验方法。
通过粘度测试,可以了解SBS改性沥青的流动性和施工性能。
动态剪切流变实验(DSR)可以评估SBS改性沥青的高温抗车辙性能。
我们还通过弯曲梁流变实验(BBR)来评价其低温抗裂性能。
这些实验结果可以为SBS改性沥青的应用提供重要依据。
除了以上基本性能测试,我们还对SBS改性沥青的微观结构进行了表征。
通过扫描电子显微镜(SEM)和原子力显微镜(AFM)观察,可以直观地了解SBS橡胶在基质沥青中的分散状态以及其与基质沥青的相互作用情况。
SEBS性能应用配方改性大全

SEBS性能、应用、配方、改性大全SEBS具有优异的耐老化性能,既具有可塑性,又具有高弹性,无需硫化即可加工使用,边角料可重使用,广泛用于生产高档弹性体、塑料改性、胶粘剂、润滑油增粘剂、电线电缆的填充料和护套料等。
1) 产品特性SEBS是热塑性弹性体SBS的加氢产物,常称为氢化SBS。
这种被氢化的SBS 由于具有较高含量的1,2结构,在氢化后组成为聚苯乙烯(S)—聚乙烯(E)—聚丁烯—1(B)—聚苯乙烯(S),故简称为SEBS SEBS是1974年由Shell公司首次在世界上实现工业化生产,商品名为KratonG。
随着SEBS应用增长,参与SEBS开发、生产的厂商日益增多,到目前全球SEBS生产、销售能力达到20万吨,其中Shell公司11万吨/年,其余厂家生产能力共计9万吨左右。
由于SEBS中丁二烯段的碳—碳双键被氢化饱和,因而其具有良好的耐候性、耐热性、耐压缩变形性和优异的力学性:⑴较好的耐温性能,其脆化温度≤-60℃,最高使用温度达到149℃,在氧气气氛下其分解温度大于270℃。
⑵优异的耐老化性能,在人工加速老化箱中老化一星期其性能的下降率小于10%,臭氧老化(38℃)100小时其性能下降小于10%。
⑶优良的电性能,其介电常数在一千赫为1.3*10-4,一兆赫为2.3*10-4;体积电阻是一分钟9*1016Ω/cm;二分钟为2*1017Ω/cm。
⑷良好的溶解性能、共混性能和优异的充油性,能溶于许多常用溶剂中,其溶解度参数在7.2~9.6之间,能与多种聚合物共混,能用橡胶工业常用的油类进行充油,如白油或环烷油。
⑸无需硫化即可使用的弹性体,加工性能与SBS类似,边角料可重复使用,符合环保要求,无毒,符合美国FDA要求。
⑹比重较轻,约为0.91,同样的重量可生产出更多体积的产品。
2) 产品用途1.SEBS通过与聚丙烯、环烷油或氢化环烷油、白油等混合可生产邵氏硬度在A0-95的弹性体,此类弹性体有优秀的表面质感和耐候抗老化性能,可广泛用于软接触材料如手柄、文具、玩具、运动器材的握手、密封条、电线电缆、牙刷柄及其它包覆材料等。
热塑性弹性体(SBS)的合成、改性和应用

(1)大分子化学改性法 ① SBS接枝反应 SBS接枝可采用低分子化合物如马 来酸酥等, 用有机单体如丙烯酸在过氧化物引 发剂存在下进行接枝反应, 在SBS链上接枝极性的高分子链段, 也可在一元接枝的基础上进行二元、 三元、乃至四元接枝反应。
张爱民等人用示差扫描仪 研究了SBS, SBS -g-MAH改性沥青的储 存稳定性研究表明, 由于SBS -g-MAH的极性比SBS高, 与沥青之间能形成一种更稳定的、均 匀的、 分相而不分离的织态结构, 从而能有效改善沥青的热储存稳定性。
• • • • •
在生产中使用THF等添加剂, 由于活性种在非极性溶剂中以缔合形态存在, 随着THF的增加,平衡向右移动, 缔合体逐渐减少,形成单量体, 一络合体,二络合体等,反应如下:
• THF为给电子试剂, • 它的含量的增加削弱了活性种正离子Li十与 C之间的键能, • 使单量体增加,单体更易发生插入反应, 加快反应速度,同时它还影响到丁二烯嵌 段中1.2一结构的含量。 • 因此,它的加入量不大,一般控制在 THF/n-BuLi为0.5-2.0之间。
• 若将上述得到的官能化聚合物与盐酸、梭 酸、磷酸等反应可将聚合物末端氨基进一 • 步按化。端基基团能有效提高丁苯嵌段聚 合物的粘合性及与金属表面的粘合性能。
• 2. 3 SBS的结构与性能及其影响因素 • (1) SBS的结构与性能 • SBS的高分子链是由塑性嵌段(聚苯乙烯 硬段)和弹性嵌段(聚丁二烯软段)组成, • 聚苯乙烯嵌段连在聚丁二烯中间段的两端. 由于聚苯乙烯嵌段间的作用力,使其能与 其它大分子的聚苯乙烯嵌段聚集在一起, 形成物理交联,构成网状结构。
• 实验表明上述星型 SBS 在端基官能化后与 极性聚合物、极性填料之间的相容性有很 大的提高。
SBS在改性沥青中的应用

10
《公路改性沥青路面施工技术规范》聚合物改性沥青技术要求
11
改性沥青高剪切胶体磨法工艺流程
12
SBS结构与改性沥青性能的关系
苯乙烯含量升高
软化点上升,延度和针入度降低。适合改性高芳烃含 量基质沥青,与低芳烃含量基质沥青相容性差,易离 析。 改性沥青性能提升能力强,可同时提高软化点和延度 指标,但溶解不易。可减少添加量,降低用户成本 软化点提升能力强,但延度较低。
6
独山子 SBS道改牌号 T6302 和T161B 干胶 (嵌段比30/70)
T6302,线型,与巴陵1301-1(YH791H)、李长荣3501类 似;星型T161B,与道改2#、4303、李长荣3401类似。 线型产品易溶解,相容性好,利于加工,但对改性沥青的 性能提升能力小,工厂改性;星型产品难容,相容性差, 但对改性沥青的性能提升能力强,多用于现场改性,对相 容性(离析)无要求,一般不加稳定剂。 配方:SBS加入量一般为4-6%。为提高相容性加入增容剂 (糠醛抽出油)和稳定剂(S)。分子量大,加量小 加工工艺:初步溶胀→高速剪切→胶体磨→发育→成品。 方式:工厂改性(1000公里内)和现场改性。
3
星型和线型SBS的分子结构示意图
与丁苯胶区别:SBS嵌段分布,可像塑料加工不 需硫化,物理交联;丁苯胶无规分布,需硫化, 化学交联,不可逆。 4
SBS物理交联模型
5
独山子与燕山SBS生产工艺的差异
独山子在生产线型牌号时与燕化和巴陵有差别:独 山子石化采用的是偶联法,即先投S(苯乙烯),然后 投B(丁二烯),生成SB· ,最后加线形偶联剂偶联生 成线型SBS。此工艺决定了PE公司产品中含有部分二 嵌段聚合物SB(约10%);燕山(巴陵)石化公司是 采用三段法生产线型SBS产品,即先投S(苯乙烯), 然后投B,最后再投S(苯乙烯)单体,最后生成线型 SBS,此工艺不用偶联剂。 独山子在生产星型牌号时与燕化和巴陵相同:都是 偶联法。即先投S(苯乙烯),然后投B(丁二烯),生 成SB· ,最后加星形偶联剂偶联生成星型SBS。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• ③添加剂 • 在醚类添加剂中, • 不对称醚, • 如BEE(乙二醇乙基叔丁基醚),BME(乙二
醇甲基叔丁基醚)等,
• 它与对称醚相比具有单体转化率很高和偶 联效率高的优点,
• 但此类添加剂仅限于实验室研究阶段。
• 在生产中使用THF等添加剂, • 由于活性种在非极性溶剂中以缔合形态存在, • 随着THF的增加,平衡向右移动, • 缔合体逐渐减少,形成单量体, • 一络合体,二络合体等,反应如下:
• 由于SBS极性小和耐油性较差, • 使其运用受到限制。 • 通过官能化可以在SBS链上引入极性基团, • 极大地提高了SBS的耐热, • 耐氧化, • 粘接性能及吸水性能。
• 通常SBS的合成 • 采用阴离子聚合三步加料的方法, • 以传统的BuLi为引发剂, • 醇为终止剂。
• 它作为一种新型高分子材料,已经历了三 代的开发。
• 烷基锂引发聚合是制备有明确结构的苯乙 烯及共轭二烯烃聚合物的最常用方法。
• 所得聚合物具有以下特征: • (i)通过单体与引发剂的化学计量比可以设计
聚合物的数均分子量;
{ ii)如果引发速率比增长速率大得多,则聚合 物分子量分布窄(Mw/Mn=1.1);
{111)在活性种末端依次加入不同的单体可获 得嵌段聚合物;
{IV)用适当的亲电试剂进行终止可获得末端官 能化聚合物;
(V)用多官能化偶联剂与活性种反应可以获得 星形支化聚合物;
( V1)在不同极性调节剂作用下,可设计高分 子不同微观结构和集合结构,从而控制聚 合物的性能。
SBS其合成方法可归纳如下:
• (1)线性SBS反应体系
• ①单体
• SBS的反应单体是苯乙烯(St)和丁二 烯(Bd),实验中各种单体均须精制以消除
• 第一代SBS是以1963年美国Phillips公司推 出偶联法线型丁二烯-苯乙烯嵌段共聚物为 起点,
• 接着Shell公司于1965年采用阴离子聚合技 术以三步加料法生产商品名为Kraton的同类 产品。
• 随后,英国、日本、前西德 • 均采用此技术生产。 • 1967年,荷兰Phillips公司 • 又推出了星形SBS, • 其门尼粘度和拉伸强度比线型SBS高, • 适用于温度和Fra bibliotek荷较高的场合。
• THF为给电子试剂,
• 它的含量的增加削弱了活性种正离子Li十与 C之间的键能,
• 使单量体增加,单体更易发生插入反应, 加快反应速度,同时它还影响到丁二烯嵌 段中1.2一结构的含量。
• 因此,它的加入量不大,一般控制在 THF/n-BuLi为0.5-2.0之间。
• ④溶剂 • SBS聚合的溶剂采用非极性溶剂,
• 苯乙烯一丁二烯一苯乙烯(SBS) • 三嵌段聚合物是目前世界上产量 • 最大的热塑性弹性体之一, • 常温下具有橡胶的弹性, • 高温下熔融成可塑性的材料。
• 因其具有优良的拉伸性能、 • 良好的耐低温性、 • 透气性、 • 溶解性 • 及独特的抗滑性
• 而被大量应用于制鞋、塑料改性、沥青改 性等领域。
• 环烷烃和芳香烃,如己烷,庚烷,辛烷,环 己烷,苯,甲苯等。
• 在实验中采用混合环己烷为溶剂 • (正己烷的含量为16%),因为我国北方天气
寒冷,而环己烷的凝固点为4℃, • 为防止环己烷凝固加入低凝固点的正己烷。
• (2)线性SBS反应机理 • ①三步法反应机理 • 根据共聚合原理, • St与Bd聚合时KBB﹥Kss, • 即第三步反应时PSB-Li+活性中心 • 不易与St单体反应,
再加上第二部反应结束时, 溶液的粘度较高, 实际操作中为提高反应速度, 使St与PSB-Li+充分接触, 通常需延长第三步的反应时间 或提高搅拌速度。
• 聚合机理如下:
• ②两步法(竟聚率法)反应机理 • 根据阴离子聚合原理, • 当单体St(M1)和Bd(M2)发生共聚反应时,
r1=KSS/KSB=0.088-0.41, • r2=KBB/KBS=4.5,也即KBB ﹥KBS。 • 因此丁二烯单体与苯乙烯活性中心
• ②引发剂
• n-BuLi存在较强的缔合现象, • 易导致分子量分布加宽, • 一般需加入极性添加剂来加快反应速度。
• ③添加剂 • 极性添加剂的种类很多, • 有醚类,如1G、2G和THF等; • 有胺类,如Et3N和TMEDA; • 有烷基金属化合物,如叔丁氧基钾(KOBu),
叔戊氧基钾(KOAm)等; • 还有复合添加剂。
• 其中水和二氧化碳等杂质;单体浓度不宜过 高,因为浓度过高产生散热不均,导致副 反应的发生和活性中心的失活,一般控制 单体浓度在10%-15%之间。
• ②引发剂 • SBS一般采用烷基锂为引发剂,
• 除实验室进行一些双锂和复合引发剂外, 工业生产上的引发剂主要是n-BuLi和s-BuLi。
• 虽然s-BuLi的活性比n-BuLi高约60倍, • 但其缺点是不易贮存, • 应用不如n-BuLi广泛。
• 国内SBS的研究始于70年代中期, • 目前已有燕山石化、 • 巴陵石化 • 和茂名石化 • 等几套万吨装置投入工业化生产。
• 但是SBS产品的品种和规格 • 难以满足不同用途的需要。 • 高附加值的新牌号SBS • 已成为国内厂家的竞争点。
2 SBS的合成、改性与表征 • 2.1 SBS的合成方法
• 的反应速率较苯乙烯单体与苯乙烯活性种 反应快。
• 而形成的丁二烯活性种
• 又不易与苯乙烯单体反应,
• 一般地,当丁二烯嵌段聚合结束后才能引 发苯乙烯单体聚合。
• 所以,操作中第一段反应结束后可将苯乙 烯和丁二烯混合溶液同时加入。
• 2. 2 SBS的极性化改性 • 由于SBS极性小、 • 耐油性和溶解性较差, • 使其运用受到限制。 • 通过官能化可以在SBS链上引入极性基团,
• 第二代SBS • 是在20世纪70年代为了改进线型 • 和星形SBS的耐热氧老化性 • 和耐候性 • 而开发的氢化SBS(SEBS)。
• 。1980年以后, • 又开发了第三代即反应性SEBS, • 它是在SEBS上引进极性官能团, • 从而赋予其与各种工程塑料 • 良好的相容性和对金属的粘接性。