热塑性聚酯弹性体TPEE综述
tpee材料

tpee材料
TPEE材料。
TPEE材料是一种热塑性弹性体,具有优异的弹性和耐热性能,广泛应用于汽车零部件、电子产品、运动器材等领域。
本文将介绍TPEE材料的特性、应用及发展趋势。
TPEE材料具有优异的弹性和耐热性能,其弹性模量高,具有良好的弹性恢复性,能够在大变形下迅速恢复原状,因此被广泛应用于汽车零部件制造。
例如,TPEE材料可以用于汽车密封条、悬挂系统、减震器等零部件的制造,能够有效提高汽车的安全性和舒适性。
除了汽车领域,TPEE材料还被广泛应用于电子产品领域。
由于其优异的耐热性能,TPEE材料可以用于电子线缆、电池包覆材料、电子元件等领域,能够有效提高电子产品的使用寿命和稳定性。
此外,TPEE材料还被广泛应用于运动器材领域。
由于其优异的弹性和耐磨性能,TPEE材料可以用于运动鞋、运动器材的制造,能够有效提高运动器材的舒适性和耐用性。
随着科技的不断进步,TPEE材料的应用领域将不断扩大。
未来,TPEE材料有望在航空航天、医疗器械等高端领域得到广泛应用,为人类的生产生活带来更多便利和创新。
总之,TPEE材料以其优异的弹性和耐热性能,已经成为汽车零部件、电子产品、运动器材等领域的理想材料之一,其应用前景广阔,有望在更多领域得到应用和发展。
热塑性聚酯弹性体(TPEE)综述

热塑性聚酯弹性体(TPEE)热塑性聚酯弹性体(TPEE)又称聚酯橡胶,是一类含有PBT(聚对苯二甲酸丁二醇酯)聚酯硬段和脂肪族聚酯或聚醚软段的线型嵌段共聚物。
TPEE兼具橡胶优良的弹性和热塑性塑料的易加工性,软硬度可调,设计自由,是热塑性弹性体中倍受关注的新品种。
1972年,美国DuPont公司和日本Toyobo公司率先开发出TPEE,商品名分别为Hytrel和Pelprene。
随后,Hochest-Celanese、GE、Eastman、AKZO(现在的DSM)等世界大公司相继开发出了各种牌号的TPEE产品,商品名各为Ritefex、Lomod、Ecdel和Arnitc。
与橡胶相比,TPEE具有更好的加工性能和更长的使用寿命;与工程塑料相比同样具有强度高的特点,柔韧性和动态力学性能更好。
对大多数用途来说,TPEE 可以直接使用,若有特殊要求,可添加相应助剂以满足要求。
TPEE的特性是:1. 优异的抗弯曲疲劳性能2. 极好的瞬间高温性能3. 优异的耐冲击性能,尤其是在低温(-40℃)4. 良好的抗撕裂性和耐磨性5. 出色的耐化学性和耐候性6. 优异的电性能7. 优异的电荷承受能力8. 与ABS,PBT和PC等材料具有极好的粘结性9. 与油漆,胶水和金属均具有极好的粘结性10. 加工的多样性和易与加工,熔融流动性好,熔融状态稳定,收缩率低,结晶速度快。
由于TPEE具有突出的机械强度、优良的回弹性和宽广的使用温度等综合性能,在汽车制件、液压软管、电缆电线、电子电器、工业制品、文体用品、生物材料等领域得到了广泛的应用,其中在汽车工业中的应用最广,占70%以上。
合成1. 原料TPEE中的硬段一般选择高硬度结晶性PBT,软段则选择非结晶性Tg的聚醚(如聚乙二醇醚PEG、聚丙二醇醚PPG、聚丁二醇醚PTMG等)或聚酯(如聚丙交酯PLLA、聚乙交酯PGA、聚己内酯PCL等脂肪族聚酯)。
不同聚醚软链段与PBT的相容性次序为:PEG>PTMG>PTMG-PPG>PPG。
热塑性聚氨酯弹性体简介介绍

制备原料
二异氰酸酯
是热塑性聚氨酯弹性体的重要 原料之一,常用的有二苯甲烷 二异氰酸酯、环己烷二异氰酸
酯等。
聚醚多元醇
作为弹性体的软段,常用的聚 醚多元醇有聚乙二醇、聚丙二 醇等。
扩链剂
用于调节弹性体的分子量和交 联度,常用的扩链剂有二元醇 、二元胺等。
催化剂
促进反应的进行,常用的催化 剂有有机锡催化剂、胺类催化
特性
热塑性聚氨酯弹性体具有优异的耐磨性、耐油性、耐化学品腐蚀性、抗紫外线 和氧化性能。同时,它还具有良好的加工性能,如可注塑、挤出、吹塑、压延 等。
类型与分类
类型
根据分子结构的不同,热塑性聚氨酯弹性体可分为聚酯型和聚醚型两大类。聚酯 型热塑性聚氨酯弹性体由二元醇与二元酸通过酯化反应制得,而聚醚型热塑性聚 氨酯弹性体由二元醇与环氧乙烷或环氧丙烷通过开环聚合制得。
05
热塑性聚氨酯弹性体的研究与发展趋势
热塑性聚氨酯弹性体的研究与发展趋势
• 热塑性聚氨酯弹性体(TPU)是一类具有优异弹性、耐磨性、耐油性、耐化学品性和耐候性的高分子材料。它在众多领域得 到了广泛应用,如汽车、鞋材、电线电缆、医疗器械、体育器材等。下面将对热塑性聚氨酯弹性体的研究与发展趋势进行 详细介绍。
分类
热塑性聚氨酯弹性体还可根据其硬度、分子量、结晶度等参数进行分类。不同类 别的热塑性聚氨酯弹性体在性能和应用上会有所区别。
应用领域
鞋材领域
热塑性聚氨酯弹性体在鞋材领域中应用广泛,如 鞋底、鞋面、鞋垫等部件。它具有良好的耐磨性 、弹性和舒适性,能提高鞋子的使用寿命和穿着 体验。
电缆护套
热塑性聚氨酯弹性体还可用于电缆护套的制造。 它具有优良的电气绝缘性能、耐磨性和耐候性, 能保护电缆免受外界环境的侵蚀,提高电缆的使 用寿命。
热塑性聚酯弹体(TPEE)

热塑性聚酯弹性体(TPEE)热塑性聚酯弹性体(TPEE)又称聚酯橡胶,是一类含有PBT(聚对苯二甲酸丁二醇酯)聚酯硬段和脂肪族聚酯或聚醚软段的线型嵌段共聚物。
TPEE兼具橡胶优良的弹性和热塑性塑料的易加工性,软硬度可调,设计自由,是热塑性弹性体中倍受关注的新品种。
1972年,美国DuPont公司和日本Toyobo公司率先开发出TPEE,商品名分别为Hytrel和Pelprene。
随后,Hochest-Celanese、GE、Eastman、AKZO(现在的DSM)等世界大公司相继开发出了各种牌号的TPEE产品,商品名各为Ritefex、Lomod、Ecdel和Arnitc。
与橡胶相比,TPEE具有更好的加工性能和更长的使用寿命;与工程塑料相比同样具有强度高的特点,柔韧性和动态力学性能更好。
对大多数用途来说,TPEE 可以直接使用,若有特殊要求,可添加相应助剂以满足要求。
TPEE的特性是:1. 优异的抗弯曲疲劳性能2. 极好的瞬间高温性能3. 优异的耐冲击性能,尤其是在低温(-40℃)4. 良好的抗撕裂性和耐磨性5. 出色的耐化学性和耐候性6. 优异的电性能7. 优异的电荷承受能力8. 与ABS,PBT和PC等材料具有极好的粘结性9. 与油漆,胶水和金属均具有极好的粘结性10. 加工的多样性和易与加工,熔融流动性好,熔融状态稳定,收缩率低,结晶速度快。
由于TPEE具有突出的机械强度、优良的回弹性和宽广的使用温度等综合性能,在汽车制件、液压软管、电缆电线、电子电器、工业制品、文体用品、生物材料等领域得到了广泛的应用,其中在汽车工业中的应用最广,占70%以上。
合成1. 原料TPEE中的硬段一般选择高硬度结晶性PBT,软段则选择非结晶性Tg的聚醚(如聚乙二醇醚PEG、聚丙二醇醚PPG、聚丁二醇醚PTMG等)或聚酯(如聚丙交酯PLLA、聚乙交酯PGA、聚己内酯PCL等脂肪族聚酯)。
不同聚醚软链段与PBT的相容性次序为:PEG>PTMG>PTMG-PPG>PPG。
tpee标准

tpee标准热塑性聚酯弹性体(TPC-ET)又称聚酯橡胶(或TPEE),是一类含有PBT(聚对苯二甲酸丁二醇酯)聚酯硬段和脂肪族聚酯或聚醚软段的线型嵌段共聚物,兼具橡胶优良的弹性和热塑性塑料的易加工性,软硬度可调,设计自由,是热塑性弹性体中倍受关注的新品种。
●一、反应原理●TPEE主要由对苯二甲酸、BDO、PTM GE通过酯交换反应,缩聚反应制备。
其反应方程式如下:式中:HOOC-R''-COOH 为对苯二甲酸;HO-R'-OH为1,4-丁二醇、PTMEG等。
●二、性能特点●TPEE属于高性能工程级弹性体,具有机械强度高、弹性好、抗冲击、耐蠕变、耐寒、耐弯曲疲劳性、耐油、耐化学药品和溶剂侵蚀等优点,具有良好的加工性,并可填充、增强及合金化改性,在汽车零部件、液压软管、电缆电线、电子电器、工业制品、文体用品、生物材料等领域得到了广泛的应用。
1、力学性能通过对软硬段比例的调节,TPEE的硬度可以从邵氏D32到D80变化,其弹性和强度介于橡胶和塑料之间。
与其他热塑性弹性体(TPE)相比,在低应变条件下,TPEE模量比相同硬度的其他TPE高。
当以模量为重要的设计条件时,用TPEE可缩小制品的横截面积,减少材料用量。
2、拉伸强度与聚氨酯弹性体(TPU)相比,TPEE压缩模量与拉伸模量要高得多,用相同硬度的TPEE和TPU制作同一零件,前者可以承受更大的负载。
在室温以上,TPEE弯曲模量很高,适宜制作悬臂梁或扭矩型部件,特别适合制作高温部件。
TPEE低温柔顺性好,低温缺口冲击强度优于其他TPE,耐磨耗性与TPU相当。
TPEE具有优异的耐疲劳性能,与高弹性特点相结合,使该材料成为多次循环负载使用条件下的理想材料,适宜制作齿轮、胶辊、挠性联轴节、皮带等。
3、耐热性能TPEE具有优异的耐热性能,硬度越高,耐热性越好。
TPEE的使用温度非常高,能适应汽车生产线上的烘漆温度(150-160℃),并且它在高温下机械性能损失小。
热塑性弹性体(TPE)

热塑性弹性体(TPE)一、热塑性弹性体的基本概念热塑性弹性体是在高温下能塑化成型,而在常温下能显示硫化橡胶弹性的一类新型材料。
这类材料兼有热塑性塑料的加工成型性和硫化橡胶的高弹性性能。
热塑性弹性体有类似于硫化橡胶的物理机械性能,如较高的弹性、类似于硫化橡胶的强力、形变特性等。
在性能满足使用要求的条件下,热塑性弹性体可以代替一般硫化橡胶,制成各种具有实用价值的的弹性体制品。
另一方面,由于热塑性弹性体具有类似于热塑性塑料的加工特性,因而不需要使用传统的橡胶硫化加工的硫化设备,可以直接采用塑料加工工艺,如注射、挤出、吹塑等。
从而设备投资少、工艺操作简单、成型速度快、周期短、生产效高。
此外,由于热塑性弹性体的弹性和塑性两种物理状态之间的相互转变取决于温度变化,而且是可逆的,因而在加工生产中的边角料、废次品以及用过的废旧制品等,可以方便地重新加以利用。
热塑性弹性体优异的橡胶弹性和良好的热塑性相结合,使其得到了迅速发展。
它的兴起,使塑料与橡胶的界限变得更加模糊。
目前,热塑性弹性体的种类日趋增多,根据其化学组成,常用的有四大类。
1、热塑性聚氨酯弹性体(TPU)。
按其合成所用的聚合物二醇又可分为聚醚型和聚酯型。
2、苯乙烯嵌段类热塑性弹性(TPS)。
典型品种为热塑性SBS弹性体(苯乙烯一丁二烯一苯乙烯三嵌段共聚物)和热塑性SIS弹性体(苯乙烯一异戊二烯一苯乙烯三嵌段共聚物)。
此外,还有苯乙烯一丁二烯的星形嵌段共聚物。
3、热塑性聚酯弹性体(TPEE)。
该类弹性体通常是由二元羧酸及其衍生物(如对苯二甲酸二甲酯)、聚醚二醇(分子量600~6000)及低分子二醇的混合物通过熔融酯交换反应而得到的均聚无规嵌段共聚物。
4、热塑性聚烯烃弹性体(TPO)。
该类弹性体通常是通过共混法来制备。
如应用EP(D)M(即具有部分结晶性质的EPM或EPDM)与热塑性树脂(聚乙烯、聚丙烯等)共混,或在共混的同时采用动态硫化法使橡胶部分得到交联甚至在橡胶链上接枝聚乙烯或聚丙烯。
热塑性聚酯弹性体(TPEE)综述

热塑性聚酯弹性体(TPEE)综述热塑性聚酯弹性体(TPEE)热塑性聚酯弹性体(TPEE)又称聚酯橡胶,是一类含有PBT(聚对苯二甲酸丁二醇酯)聚酯硬段和脂肪族聚酯或聚醚软段的线型嵌段共聚物。
TPEE兼具橡胶优良的弹性和热塑性塑料的易加工性,软硬度可调,设计自由,是热塑性弹性体中倍受关注的新品种。
1972年,美国DuPont公司和日本T oyobo公司率先开发出TPEE,商品名分别为Hytrel和Pelprene。
随后,Hochest-Celanese、GE、Eastman、AKZO(现在的DSM)等世界大公司相继开发出了各种牌号的TPEE产品,商品名各为Ritefex、Lomod、Ecdel和Arnitc。
与橡胶相比,TPEE具有更好的加工性能和更长的使用寿命;与工程塑料相比同样具有强度高的特点,柔韧性和动态力学性能更好。
对大多数用途来说,TPEE 可以直接使用,若有特殊要求,可添加相应助剂以满足要求。
TPEE的特性是:1. 优异的抗弯曲疲劳性能2. 极好的瞬间高温性能3. 优异的耐冲击性能,尤其是在低温(-40℃)4. 良好的抗撕裂性和耐磨性5. 出色的耐化学性和耐候性6. 优异的电性能7. 优异的电荷承受能力8. 与ABS,PBT和PC等材料具有极好的粘结性9. 与油漆,胶水和金属均具有极好的粘结性10. 加工的多样性和易与加工,熔融流动性好,熔融状态稳定,收缩率低,结晶速度快。
由于TPEE具有突出的机械强度、优良的回弹性和宽广的使用温度等综合性能,在汽车制件、液压软管、电缆电线、电子电器、工业制品、文体用品、生物材料等领域得到了广泛的应用,其中在汽车工业中的应用最广,占70%以上。
合成1. 原料TPEE中的硬段一般选择高硬度结晶性PBT,软段则选择非结晶性Tg的聚醚(如聚乙二醇醚PEG、聚丙二醇醚PPG、聚丁二醇醚PTMG 等)或聚酯(如聚丙交酯PLLA、聚乙交酯PGA、聚己内酯PCL等脂肪族聚酯)。
tpee原材料

tpee原材料TPEE原材料。
TPEE,全称为热塑性聚酯弹性体,是一种优异的工程塑料,具有优异的耐热性、耐化学性和机械性能,广泛应用于汽车、电子、家电、医疗器械等领域。
TPEE的性能取决于其原材料的选择和加工工艺,下面将对TPEE原材料进行详细介绍。
首先,TPEE的原材料主要包括聚酯原料、弹性体原料和添加剂。
聚酯原料是TPEE的主要成分之一,其质量和种类直接影响着TPEE的性能。
常见的聚酯原料有聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)等,它们具有优异的耐热性和机械性能,是TPEE的重要组成部分。
弹性体原料是TPEE的另一重要成分,常见的弹性体原料有聚酯弹性体(COPE)、聚醚酯弹性体(COPE)等,它们能够赋予TPEE优异的弹性和韧性,提高其耐磨损性能。
除了聚酯原料和弹性体原料外,TPEE的原材料中还需要添加一定的增塑剂、稳定剂、填料等,以提高TPEE的加工性能和终端产品的性能稳定性。
其次,TPEE原材料的选择需要考虑到产品的使用环境和要求。
在汽车领域,TPEE需要具有优异的耐热性、耐油性和耐磨损性能;在电子领域,TPEE需要具有优异的电气性能和耐候性;在医疗器械领域,TPEE需要具有优异的生物相容性和耐低温性能。
因此,在选择TPEE原材料时,需要根据不同领域的需求,选择合适的聚酯原料、弹性体原料和添加剂,以确保TPEE制品能够满足特定的使用要求。
最后,TPEE原材料的加工工艺对最终产品的性能也有着重要影响。
在TPEE的加工过程中,需要控制好熔体温度、注塑压力、模具温度等参数,以确保TPEE原材料能够充分流动并充填模具,避免在制品中产生气泡和熔接线。
此外,还需要对TPEE制品进行后处理,如退火、表面处理等,以提高其性能稳定性和外观质量。
综上所述,TPEE原材料的选择和加工工艺对最终产品的性能至关重要。
只有选择合适的原材料,并采用合理的加工工艺,才能生产出具有优异性能和稳定质量的TPEE制品,满足不同领域的使用要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热塑性聚酯弹性体(TPEE)热塑性聚酯弹性体(TPEE)又称聚酯橡胶,是一类含有PBT聚对苯二甲酸丁二醇酯)聚酯硬段和脂肪族聚酯或聚醚软段的线型嵌段共聚物。
TPEE兼具橡胶优良的弹性和热塑性塑料的易加工性,软硬度可调,设计自由,是热塑性弹性体中倍受关注的新品种。
1972年,美国DuPont公司和日本Toyobo公司率先开发出TPEE商品名分别为Hytrel和Pelprene。
随后,Hochest-Celanese、GE Eastman AKZO现在的DSM等世界大公司相继开发出了各种牌号的TPEE产品,商品名各为Ritefex、Lomod Ecdel和Arnitc。
与橡胶相比,TPEE具有更好的加工性能和更长的使用寿命;与工程塑料相比同样具有强度高的特点,柔韧性和动态力学性能更好。
对大多数用途来说,TPEE可以直接使用,若有特殊要求,可添加相应助剂以满足要求。
TPEE的特性是:1. 优异的抗弯曲疲劳性能2. 极好的瞬间高温性能3. 优异的耐冲击性能,尤其是在低温(-40 C)4. 良好的抗撕裂性和耐磨性5. 出色的耐化学性和耐候性6. 优异的电性能7. 优异的电荷承受能力8. 与ABS PBT和PC等材料具有极好的粘结性9. 与油漆,胶水和金属均具有极好的粘结性10. 加工的多样性和易与加工,熔融流动性好,熔融状态稳定,收缩率低,结晶速度快。
由于TPEE具有突出的机械强度、优良的回弹性和宽广的使用温度等综合性能,在汽车制件、液压软管、电缆电线、电子电器、工业制品、文体用品、生物材料等领域得到了广泛的应用,其中在汽车工业中的应用最广,占70%以上。
合成1. 原料TPEE中的硬段一般选择高硬度结晶性PBT软段则选择非结晶性Tg的聚醚(如聚乙二醇醚PEG聚丙二醇醚PPG聚丁二醇醚PTM蒔)或聚酯(如聚丙交酯PLLA聚乙交酯PGA聚己内酯PCL等脂肪族聚酯)。
]n [可以合成反应,PEG或PTM(和PBT PEG>PTMG>PTMG-PPG的相容性次序为:PBT不同聚醚软链段与在1.3-1.8以上的PTMG-PB和PEG-PB■多嵌段共聚物。
PTMG-PB共聚物较PEG-PBT共聚酯的强度和耐水稳定性高得多,而PEG-PBT共聚酯在油中的溶胀性比PTMG-PB共聚物小得多,两种共聚物各有自己的优点,可用于不同领域。
制备PTMG-PB或PEG-PB■共聚酯主要以对苯二甲酸二甲酯(DMT), 1,4- 丁二醇(BG)和PTMGK PEG为原种。
2 .合成过程DMT、BG和PTMGt催化剂存在下,经酯交换、缩聚制得普通TPEE合成TPEE过程中第一步酯交换反应的影响因素主要是原料摩尔比、酯交换反应温度、催化剂种类及用量,其次是反应时间、催化剂加入顺序、分溜柱顶温和有无氮气保护。
实验证明,酯交换反应最佳条件为:BG与DMT摩尔比为1.7 : 1.0〜2.0 : 1.0,催化剂为钛酸四丁酯,助催化剂为醋酸镁,催化剂用量0.16g(以100gTPFE计),原料在150C溶解后加入催化剂,酯交换反应温度为190-200 C,分馏柱顶温为65-70 C,在氮气的保护下进行酯交换反应,酯交换反应时间为30-50min。
酯交换反应结束后,将温度升至240-250 C,压力逐渐降至100Pa以下进行缩聚反应,当搅拌功率到达规定值时,反应结束。
实际生产中,可根据TPEE的用途来选择不同的配比,自由设计嵌段找聚物的软硬链段比例。
软、硬链段的种类、长度和含量对TPEE的性能均有影响。
结构特征由DMT BG PTMGS过酯交换反应得到的是长链的无规嵌段共聚物。
这种共聚物显示出连续的两相缔合结构,PBT结晶相起到物理交联作用,受热可逆,软段赋予聚合物以弹性。
改变两相的相对比例,可以调整聚合物的硬度、模量、熔点、耐化学性和气密性。
用电子显微镜观察,可发现TPEE在低于结晶熔点时,具有相分离结构。
连续相由软段以及链长度不够或缠结而不能结晶的其它聚酯嵌段构成。
结晶相彼此相连。
Hytrel(硬度为55, PBT硬段质量分数为58%的DSC谱图显示了两个温度转化点,约-50 C为无定形的玻璃化转变点(Tg),约200C为结晶熔点(Tm)。
TPEE的低玻璃化温度和高结晶熔点是这种聚合物使用温度范围宽的重要原因。
经研究由DMT BG PEG!过熔融缩聚得到的PEG-PBT共聚酯的结构,发现其DSC谱图中有两个玻璃化转变温度TgPEG 和gPBT和两个熔点TmPE和TmPBT说明共聚物为微观非均相体系,即:无定形态PEG和PBT与结晶态的PEG和PBT四相共存。
PEG/PBT含量比一定,增加PEG的分子量,或在PEG分子量一定的情况下增加PBT的含量(指质量分数),都会增加PBT段的平均长度,有利于结晶形成。
TgPEG在-52.7〜-42.9 C之间,并随组分中PEG含量的升高而降低,T mPEG 只在高PEG含量的样品(>60%中表现出来,并随组分中PEG含量的增加而增加,从-3.3 C到15C。
TgPBT随PBT含量的变化而发生阶段性变化:当PBT质量分数<40%寸,TgPBT在45-55 C之间变化;当PBT质量分数>50%寸,TgPBT在22-28 C 间变化。
TmPB和PBT含量的增加而增加。
PBT的结晶率也随共聚物体系中性能1. 力学性能通过对软硬段比例的调节,TPEE的硬度可以从邵氏D30-80,其弹性和强度介于橡胶和塑料之间。
与其它热塑性弹性体(TPE)相比,在低应变条件下,TPEE模量比相同硬度的其它热塑性弹性体高。
当以模量为重要的设计条件时,用TPEE 可缩小制品的横截面积,减少材料用量。
TPEE具有极高的拉伸强度。
与聚氨酯类弹性体(TPU)相比,TPEE压缩模量与拉伸模量要高得多,用相同硬度的TPEE和TPU制作同一零件,前者可以承受更大的负载。
在室温以上,TPEE弯曲模量很高,而低温时又不象TPU那样过于坚硬,因而适宜制作悬臂梁或扭矩型部件,特别适合制作高温部件。
TPEE低温柔顺性好,低温缺口冲击强度优于其他TPE耐磨耗性与TPU相当。
在低应变条件下,TPEE具有优异的耐疲劳性能,且滞盾损失少,这一特点与高弹性相结合,使该材料成为多次循环负载使用条件下的理想材料,齿轮、胶辊、挠性联轴节、皮带均可采用。
研究发现,在相同硬段长度下,随软段长度增加,材料的弹性模量E、撕裂强度° b及屈服强度° y降低,断裂延伸率£b增加;反之,当固定共聚物软段长度,增加PBT链段长度时,E、° b、° y增大,£b、减小。
这种现象说明,TPEE的力学性能与其组成有密切关系。
2 .热性能TPEE具有优异的耐热性能,硬度越高,耐热性越好。
据报道,TPEE在110-140C连续加热10h基本不失重,在160C和180C分别加热10h,失重仅为0.05和0.1%。
等速升温曲线表明,TPEE自250C开始失重,到300C累计失重5%至400C 则发生明显的失重。
因而TPEE的使用温度非常高,短期使用温度更高,能适应汽车生产线上的烘漆温度(150-160 C),并且它在高低温下机械性能损失小。
TPEE在120 C以上使用,其拉伸强度远远高于TPU 此外,TPEE还具有出色的耐低温性能。
TPEE脆点低于-70 C,并且硬度越低。
耐寒性越好,大部分TPEE可在-40 C下长期使用。
由于TPEE在高、低温时表现出的均衡性能.它的工作温度范围非常宽,可在-70-200 C使用。
研究浸渍(5-30min)和冷却条件对玻纤增强TPEE的热性能和形貌的影响发现,弯曲强度随浸渍时间增长而增加,而基体树脂与玻纤的粘结却变差;材料的热性能如熔点、玻璃化转变温度不受冷却条件的影响,但急剧冷却下的结晶度大于缓慢冷却。
3 .耐化学介质性TPEE具有极佳的耐油性,在室温下能耐大多数极性液体化学介质(如酸、碱、胺及二醇类化合物),但对大多TPEE及酚类的作用却无能为力,其耐化学品的能力随其硬度的提高而提高。
)氟里昂除外(对卤代烃.数有机溶剂、燃料及气体的抗溶胀性能和抗渗透性能是好的,对燃油渗透性仅为氯丁胶、氯磺化聚乙烯、丁腈胶等耐油橡胶的1/3-1/300 。
但TPEE耐热水性较差,添加聚碳酰亚胺稳定剂可以明显改善其抗水解性能。
据报道,在TPEE分子链中的PBT硬段引进PEN或PCT可以获得耐水性和耐热性更好的TPEE4 .耐候性与耐老化性TPEE 在很多不同条件下,如在水雾、臭氧、室外大气老化等条件下,化学稳定性优良。
象大多数热塑性弹性体 (TPE) 一样,在紫外光作用下会发生降解(310nm 以下的紫外光是降解的一个主要因素,因此对于室外应用或制品受阳光照射的条件,配方中应添加紫外光防护助剂,其中包括炭黑和各种颜料或其它屏蔽材料。
酚类防老剂和苯并三唑型紫外光屏蔽剂并用,能够有效地起到防护紫外光老化。
光和热导致的氧化是TPEE W解老化的两个主要因素,PEG-PB■共聚酯耐热及耐光性均差,热氧化降解和光老化降解非常严重。
升温加速降解。
随老化过程中分子量的降低,材料断裂伸长下降,瞬时弹性恢复率变差。
此外,TPEE还具有不同程度的水解性。
TPEE在水中产生交联反应,形成凝胶的量增多。
PEG-PB■共聚酯作为生物材料支架植入体内,正是利用了它易于水解降解的特性。
PEG-PB■共聚酯在水中降解并服从水解机理,即H2C分子进攻PEG PBT之间的酯基而断链,降解产物为PEG和低分子量的PBT;降解速率受组成、温度、pH值、酶等因素影响,PEG含量、温度、pH 值越高,降解速率越快,通过调节两种组分含量可满足不同用途对降解速率的要求。
加工成型TPEE 具有优良的熔融稳定性和充分的热塑性,故而具有良好的加工性,采用各种热塑性加工的工艺,如挤出、注射、吹塑、旋转模塑及熔融浇铸成型等,都能得到性能优异的产品。
在低剪切速率下,TPEE熔体粘度对剪切速率不敏感,而在高剪切速率102/S-103/S下,熔体粘度随剪切速率升高而下降。
TPEE熔体对温度十分敏感,在10C变化范围内,其熔融粘度变化几倍至几十倍,成型时应严格控制温度。
为保证树脂含水量小于0.1%,加工前需鼓风干燥(80-120 C,6-8h)。
1 .挤出成型采用普通塑料挤出机可以将TPEE挤出成型为片材、管材、棒材和电线包皮等。
可采用一般渐变式螺杆,长径比A 24: 1,压缩比为(2.7-4) :1。
2 .注射成型用注射成型技术可以加工成各种形状和尺寸的制品。
往复式螺杆型注射机由于能得到温度均匀一致的,采80-120MPa;注射压力1:(18-24) ,螺杆长径比 3.0-3.5 熔体而优先采用,槽深为渐变式,推荐压缩比.用慢中速注射。