什么是晶闸管(可控硅)及其分类

合集下载

晶闸管(可控硅)的结构与工作原理

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。

它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。

其符号表示法和器件剖面图如图1所示。

图1 符号表示法和器件剖面图普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布二、晶闸管的伏安特性晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。

通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。

随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。

当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。

晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。

通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。

晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。

当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。

转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。

如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。

可控硅的工作原理与种类

可控硅的工作原理与种类

可控硅的工作原理与种类可控硅(Silicon Controlled Rectifier,SCR)是一种用于控制大电流的半导体元件,广泛应用于电力电子领域。

其工作原理是基于PN结的特性,通过控制正向偏置电压和触发电流,实现对电流的控制。

可控硅由四个PN结组成,即两个正向接触的P区,中间夹着两个N区。

当P 区加上正向电压,N区加上反向电压时,PN结呈现出正向偏置特性,此时NPNPN结构的形成使电流能够通过。

但当P区加上负向电压,N区加上正向电压时,PN结的反向耐压特性生效,电流无法通过。

在可控硅导通之前,需要通过一个触发电流(Gate Current)来激活。

当触发电流Igt满足一定标准时,从低阻态(OFF态)向高阻态(ON态)切换,并开始导通电流,从而实现对电流的控制。

在可控硅中,还存在一个关键参数叫做触发电压(Gate Voltage)。

当触发电流通过后,正向电压达到一定值时,才能够激活并导通,这就是触发电压的作用。

触发电压的值取决于具体的可控硅型号与工作条件。

可控硅根据不同的工作状态和应用特性,可分为以下几种类型:1. 静态门极控制型可控硅(SGCR)静态门极控制型可控硅是最常见的一种可控硅类型。

当触发电流通过后,硅片的移动电荷会改变PN结的导电特性,从而实现硅片的导通。

通过改变触发信号来控制触发电流,可以实现对电流的调控。

2. 双向晶闸管(Thyristor)双向晶闸管是一种具有双向导通能力的可控硅。

与普通的单向可控硅不同,双向晶闸管可以实现两个方向上的导通和关断。

这种特性使其适用于交流电源的控制。

3. 光控硅(Light Controlled SCR,LSCR)光控硅是一种通过光控制触发电流的可控硅。

光控硅内部嵌入了一个光敏元件,当光敏元件受到光照时,产生电流以激活SCR。

通过改变光照强度和光敏元件的特性,可以实现对电流的控制。

4. 可控硅二极管(SCR-Diodes)可控硅二极管是一种由多个可控硅串联而成的电子元件。

晶闸管原理以及参数介绍

晶闸管原理以及参数介绍

晶閘管結構可等效為一個 NPN型和一個PNP型三極管, 根據其連接方式等效電路 可以基本瞭解到晶閘管控 制導通方式
控制極G加正 向脉衝電壓
NPN管導通
PNP管導通
PNP管關閉
Y
N
NPN管關閉
IT>IH?
整個晶閘管關閉
整個晶閘管 導通
晶閘管的分類
基本分類
按关断导通控制 方式 普通晶闸管(SCR)、双向晶闸管(TRIAC)、逆导晶闸管(RCT)、门极关断晶闸 管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管(LTT)等多种。
普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整 流电路属于不可控整流电路。如果把二极管换成晶闸管,就可 以构成可控整流电路。
晶閘管的基本應用
1.单相半波相控整流电路 下图为单相半波相控整流电路(Single-phase half wave
controllable rectifier),整流变压器二次电压有效值用U2表 示,瞬时值用u2表示,负载上输出电压用uo表示。
(2)维持电流IH(Holding current) 指在室温和门极开路时,逐渐减小导通状态下晶闸管的
阳极电流,最后能维持晶闸管持续导通所必须的最小阳极电 流,结温越高,维持电流IH越小,晶闸管越难关断。
晶閘管的參數介紹
2. 晶闸管的电流参数
(3)掣住电流IL(Latching current) 指晶闸管触发后,刚从正向阻断状态转入导通状态,在立
(6)通态正向平均电压UF
在规定的环境温度和标准散热条件下,器件正向通过正弦 半波额定电流时,其两端的电压降在一周期内的平均值,又称 管压降,其值在0.6~1.2V之间。
晶閘管的參數介紹
2. 晶闸管的电流参数

可控硅

可控硅

一、可控硅概述可控硅(SCR)国际通用名称为Thyristor,中文称为硅晶体闸流管,简称晶闸管。

由于晶闸管最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅(SCR)。

在电路中用文字符号“V”、“VT”表示(旧标准中用字母“SCR”表示)。

晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

可控硅的优点很多,例如:能在高电压、大电流条件下工作,体积小;以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。

可控硅的缺点:静态及动态的过载能力较差;容易受干扰而误导通。

二、晶闸管(thyristor)的分类晶闸管(thyristor)有多种分类方法。

(一)按关断、导通及控制方式分类晶闸管按其关断、导通及控制方式可分为普通晶闸管(SCR)即单向可控硅、双向晶闸管(TRIAC)、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。

(二)按引脚和极性分类晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。

(三)按封装形式分类晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。

其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。

(四)按电流容量分类晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。

通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。

(五)按关断速度分类晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管三、单向可控硅(SCR)(一)单向晶闸管的特性普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分别为阳极A、阴极K和门极G。

电路符号如下图:当单向晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G所加电压是什么极性,晶闸管均处于阻断状态。

晶闸管介绍

晶闸管介绍

晶闸管1.晶闸管概念 (2)2.晶闸管工作原理 (2)3.晶闸管特性 (3)4.晶闸管参数 (4)5.双向可控硅象限 (6)6.双向可控硅应用 (7)7.DIAC (9)8.SIDAC (10)1.晶闸管概念可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。

可实现用小功率控件控制大功率设备。

可控硅分单向可控硅和双向可控硅两种。

双向可控硅也叫三端双向可控硅,简称TRIAC。

双向可控硅在结构上相当于两个单向可控硅反向连接,这种可控硅具有双向导通功能。

其通断状态由控制极G决定。

在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。

晶闸管的开关时间较长,允许的电流上升率较小,因此工作频率受到限制。

当在较高频率工作时,因开关损耗随频率升高而增加,导致器件发热。

它是由四层半导体材料组成的,有三个PN结,对外有三个电极:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N 型半导体引出的电极叫阴极K。

单向可控硅(SCR):1)单向可控硅承受反向阳极电压时,不管门极承受何种电压,单向可控硅都处于反向阻断状态。

2)单向可控硅承受正向阳极电压时,仅在门极承受正向电压的情况下单向可控硅才导通。

这时单向可控硅处于正向导通状态。

3)单向可控硅在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,单向可控硅保持导通,即单向可控硅导通后,门极失去作用。

门极只起触发作用。

4)单向可控硅在导通情况下,当主回路电压(或电流)减小到接近于零(维持电流以下)时,单向可控硅自动关断。

双向可控硅(TRIAC):2.晶闸管工作原理通过等效电路分析:若T2管的基极电流为i B2,则集电极电流为β2i B2;进一步有i B1=i C2=β2i B2,从而i C1=β1i B1=β1β2i B2,又由于i B2=i C1,再一次进行上述放大过程,形成正反馈。

双向晶闸管(可控硅)

双向晶闸管(可控硅)

双向晶闸管(可控硅)
1双向晶闸管的概念
双向晶闸管(可控硅)是一种用在电力系统中的电力调控装置,它
主要负责调节电力系统中输出到负荷的电源,可以调整电压和电流,
保持电源和负载的稳定性和稳定性。

主要有三种工作模式:3桥可控硅(SCR),源极可控硅(D性SCR)和共极可控硅(G性SCR)。

23桥可控硅
3桥可控硅是最常用的一种双向晶闸管,它由三个可控二极管(SCR)以序号顺序排列组成,从而实现单向和双向的电源调节和控制,确保
电源和用电设备的稳定性和稳定性。

另外,它还具有抗电弧能力,能
够在极短时间内阻断高电流,避免因大电流而引发的火灾事故。

3源极可控硅
源极可控硅是一种结构较简单的双向晶闸管,与3桥可控硅相
比,它只有源极和漏极两个极线,而没有控制极,因此在一定条件
下,可以使电流不经过控制极,避免了因控制极的输入延时而引起的
故障。

另外,这种可控硅的反馈电阻容量较低,能够快速控制电源,
可以较好地满足传输系统的高频过载需求。

4共极可控硅
共极可控硅的结构和源极可控硅类似,只有源极和漏极,但是它
把控制极又设置在源极和漏极之间,在一定条件可以绕过控制极。


于控制极的反馈电阻较高,因此它的延时要比源极可控硅要大,因此效率要低一些,但是它的抗电弧能力更好,可以有效的防止电弧引起的损坏。

总之,双向晶闸管(可控硅)是电力系统中一种重要的电源调节装置,能够很好地满足系统的调节和稳定性要求,并可防止因电弧而产生的危害。

晶匣管

晶匣管

(1) 晶闸管加阳极负电压-UA时,晶闸管处于反向
阻断状态 。
(2) 晶闸管加阳极正电压UA,控制极不加电压时,
晶闸管处于正向阻断状态。
(3) 晶闸管加阳极正电压+UA,同时也加控制极
正电压+UG,晶闸管导通。
(4) 要使导通的晶闸管截止,必须将阳极电压降
至零或为负,使晶闸管阳极电流降至维持电流IH以下。
晶匣管
晶闸管是晶体闸流管的简称,又可称做可控硅整 流器,以前被简称为可控硅;晶闸管是PNPN四 层半导体结构,它有三个极:阳极(A),阴极 (K)和控制极(G); 晶闸管具有硅整流器件的 特性,能在高电压、大电流条件下工作,且其工 作过程可以控制、被广泛应用于可控整流、交流 调压、无触点电子开关、逆变及变频等电子电路 中。 晶闸管是一种大功率开关型半导体器件,在电路 中用文字符号为“V”、“VT”表示(旧标准中 用字母“SCR”表示)。
20
(1)反向阻断:晶闸管加反向电压(即阳极a接电源负极, 阴极b接正极),晶闸管不导通。
s + L a k g
Ug
反向阻断
21
(2)正向阻断:晶闸管加正向电压(即阳极a接电源正极, 阴极b接负极),但开关S断开时,控制极g无触发电压, 灯不亮,说明晶闸管不导通。
S + L a k g
Ug
正向阻断

一、晶匣管的结构

晶闸管是具有三个PN结 的四层结构, 其外形、结构 及符号如图。 四 层 半 导 体
A 阳极
P1
A
三 个
PN
N1
P2 N2
K 阴极

G 控制极
G
K
(a) 外形 (b) 符号

晶闸管可控硅

晶闸管可控硅

工作原理
工作原理
晶闸管可控硅由PNPN四层半导体结 构组成,通过控制门极电压来控制内 部晶体管的通断状态,从而实现电流 的调节和控制。
工作过程
当门极电压达到一定阈值时,晶闸管 可控硅内部晶体管导通,电流可以通 过器件;当门极电压消失或低于阈值 时,内部晶体管断开,电流截止。
种类与用途
种类
按照功能和应用,晶闸管可控硅可分为普通晶闸管、双向晶闸管、光控晶闸管等。
总结词
控制无功补偿
详细描述
通过晶闸管可控硅控制无功补偿装置,能够动态调节无 功功率,改善电力系统的功率因数,降低线损,提高供 电质量。
总结词
保护和控制变压器
详细描述
晶闸管可控硅可以用于保护和控制变压器,通过控制变 压器两侧的开关,实现变压器的远程控制和自动投切。
在电机控制中的应用
01
总结词:调速控制
用途
在电机控制中,晶闸管可控硅常用于直流电机、交流电机、步进电机等的驱动和控制;在电力电子中,用于整流、 逆变、斩波等电路中实现电能的转换和调节;在自动控制中,用于温度、压力、流量等控制系统中实现信号的放 大和处理。
02
晶闸管可控硅的应用
在电力系统中的应用
总结词
调节电压和电流
详细描述
晶闸管可控硅在电力系统中主要用于调节电压和电流, 实现无触点控制,提高电力系统的稳定性和可靠性。
晶闸管可控硅
• 晶闸管可控硅简介 • 晶闸管可控硅的应用 • 晶闸管可控硅的优缺点 • 晶闸管可控硅的发展趋势与未来展

01
晶闸管可控硅简介
定义与特性
定义
晶闸管可控硅是一种半导体器件 ,通过控制电流的通断来实现电 能的转换和调节。
特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是晶闸管(可控硅)及其分类
晶闸管是晶体闸流管(Thyristor)的简称,俗称可控硅,它是一种大功率开关
型半导体器件,在电路中用文字符号为V、VT表示(旧标准中用字母SCR表示)。

晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作
过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及
变频等电子电路中。

一、晶闸管的种类
晶闸管有多种分类方法:
1.按关断、导通及控制方式分类
晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶
闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。

2.按引脚和极性分类
晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。

3.按封装形式分类
晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管
三种类型。

其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封
晶闸管又分为带散热片型和不带散热片型两种。

4.按电流容量分类
晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。

通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或
陶瓷封装。

相关文档
最新文档