第1讲计算机中常用的数制
计算机常用数制有哪些

计算机常用数制有哪些数制也称计数制,是用一组固定的符号和统一的规则来表示数值的方法。
下面是一些关于数制的知识,欢迎大家阅读学习!1.数制记数系统(number representation system)简称记数制或数制,是用一组统一的符号和规则来表示数的方法。
根据基数的不同,有十进制、二进制和十六进制等。
日常生活中我们最熟悉十进制数制,但在与计算机打交道时,会接触到二进制。
除此之外,还有八进制、十六进制等等。
但无论哪种数制,其共同之处都是进位记数制,即:如果采用的数制有R个基本符号,则称为基R数制,R称为数制的“基数”,而数制中每一固定的位置对应的单位值Rn称为“权”。
进位记数制的编码符合“逢R进位”的规则,各位的权是以R为底的幂,一个数A可按权展开成如下多项式:A=an1×Rn1+an2×Rn2+…a0 ×R0+ a1×R1+…am ×Rm其中ai(i=n,…,2,1,0,1,2,…,m)为R数制的任何一个数字符号。
常用进位计数制表示方法如表1-3-1所示。
2.数制转换十进制数和二进制数之间的转换方法如下:(1)十进制数转换成二进制数对整数部分采用“除2取余”法,即把一个十进制的.整数部分连续地被2除,将依次得到的余数按相反顺序排列,得到的就是相应二进制数的整数部分。
对小数部分采用“乘2取整”法,即把一个十进制数的小数部分连续地乘以2,将依次得到的整数按顺序排列,得到的就是相应二进制数的小数部分。
(2)二进制数转换成十进制数把二进制数小数点前整数部分的第n位的值乘以2n-1,把小数点后小数部分的第m位的值乘以2-m,然后把这些结果值相加即可。
例如:101101.101B=1×25+0×24+1×23+1×22+0×21+1×20+1×2-1+0×2-2+1×2-3=25+23+22+20+2-1+2-2=45.625(3)不同进制转换二进制数不便于书写和记忆,人们经常采用十六进制数或八进制数来表示它们,因为它们之间的转换非常方便。
大学计算机基础1.2计算机的数制

0.3125
×
8
2.5000…………2
×8
4.0000…………4
因此: (125.3125)10 = (175.24) 8
注意: 在十进制小数转换成二进制小数过程中,如出现小数部分不 归0的情况,则应按精度要求“0舍1入”。
十进制
二进制
八进制
十六进制
不
0
0
0
0
同
1
1
1
1
数
2
10
计算机中常用的数制
进位制 进位规则 基数 二进制 逢二进一 r=2
所用数码 0,1
位权 表示符号
2i
B(Binary)
八进制 逢八进一 r=8 0,1,…,7 8i
O(Octal)
十进制 逢十进一 r=10 0,1,…,9 10i D(Decimal)
十六进制 逢十六进一 r=16 0,1,…,9,A,…,F 16i H(Hexadecimal)
三种基本逻辑运算的真值表
a
b
a
a∧b
a∨b
0
0
1
0
0
0
1
0
1
1
0
0
0
1
1
1
0
1
1
若干位二进制数组成的逻辑数据,位与位之间没有“位权”的内 在联系。对两个逻辑数据进行运算时,每位相互独立,按位进 行运算,不存在进位与借位,运算结果也是逻辑量。
逻辑代数是实现逻辑运算的数学工具,逻辑代数有三种基本的逻 辑运算:与、或、非。其它复杂的逻辑关系均可由这三种基本 逻辑运算组合而成。
①与运算(逻辑乘法) 当做一件事情取决于多种因素时,当且仅当所有因素都满足时才去做,
计算机中的数制与编码

计算机中的数制与编码
(2)定点小数 定点小数规定小数点的位置固定在符号位之后,但不占一个二进制位。那么,符号位的右边表示的是一 个纯小数。
定点小数的表示形式
例如,用8位二进制定点整数表示(-0.6875)10,应为: (-0.6875)10=(11011000)2
计算机中的数制与编码
2 浮点数
浮点数是指小数点的位置不固定的数。对于既有整数部分又有小数部分的数,一般用浮点数表示。 任意一个二进制数N都可以表示成如下形式:
微机原理与接口技术
计算机中的数制 与编码
计算机中的数制与编码
1.1 计算机中的数制
1 数制的概念
数制是人们按进位的原则进行计数的一种科学方法。在日常生活中,经常要用到数制,除了最常见的十进 制计数法,有时也采用别的进制来计数。
一种计数制所使用的数字符号的个数称为基数,某个固定位置上的计数单位称为位权。同一数字符号处 在不同位置上所代表的值是不同的,它所代表的实际值等于数字本身的值乘以所在位置上的位权。例如,十 进制数345中的数字3在百位上,表示位权为100,故此时的3表示的是300。又如,十进制数123.45用位权可以 表示为
整数部分:
小数部分:
所以,(69.625)10=(1000101.101)2。
计算机中的数制与编码
② 转换成八进制数
③ 转换成十六Βιβλιοθήκη 制数计算机中的数制与编码3 二进制数与八进制数、十六进制数之间的转换
二进制、八进制、十六进 制之间存在特殊的关系:1位 八进制数对应3位二进制数,1 位十六进制数对应4位二进制 数,因此转换比较容易。
(2)小数部分的转换。
• 小数部分的转换采用“乘基取整法”,方法 是:将十进制数的小数部分反复乘以基数R, 将每次乘积的小数部分作为被乘数,并取得 相应的整数部分,直到乘积的小数部分为0。 将每次得到的整数部分顺序排列在小数点后, 即为转换后的R进制小数。
第1讲____计算机中的数制及常见的信息编码(1.2节、1.3节)

从上述可知,一个浮点数是由两个定点数组合而成的。实际地,一个定点 数也可以看成是浮点数的一个特例。即当浮点数的阶数部分为零时(表示
浮点数实际小数点的位置与定点小数约定位置一致),这样浮点数只剩下
尾数部分了。同理,定点数表示法是浮点数表示法的基础,而浮点数表示 法是定点数表示法的应用。它们之间的相互关系,从理论上亦可说明。
比例因子还要取得合适,能使参加运算的数、运算的中间结果以及最后结果都能在 该定点数所能表示的数值范围之内。
定点数表示法使计算机只能处理纯整数或纯小数,限制了计算机处理数据的范围。
数的定点与浮点表示
浮点表示
在浮点表示法中,小数点的位置是浮动的。为了使小数点可以自由浮动, 浮点数由两部分组成,即尾数部分与阶数部分。浮点数在机器中的表示方
法如下:
Pf
Pm-1 Pm-2 …
P0
阶码数值部分
Sf
Sn-1
Sn-2 … S0
尾数数值部分
其中:
阶码符号
尾数小数点位置 阶码小数点位置
➢ 尾数部分S表示的是浮点数N的全部有效数字,它是一个有符号位的定点小数, 且该符号就是浮点数N的符号,即Nf;
➢ 阶数部分P表示的是浮点数N的实际小数点位置与尾数约定的小数点位置之间 的位移量。该位移量P是一个有符号位的定点整数。当阶码符号为正时,表 示小数点向右移动P位;当阶码符号为负时,则表示小数点向左移动P位。因 此,浮点数的小数点随着P的符号和大小而自由浮动。
数的表示及数制转换
二进制数与十六进制数的互换
1位十六进制数与4位二进制数的对应关系:
十六进制数 二进制数 十六进制数 二进制数
0
0000
8
1000
1
计算机运算基础复习1常见的几种数制

几个重要概念重点概念1:计算机中的数据都是以二进制形式进行存储和运算的重点概念2:在计算机中存储数据时,每类数据占据固定长度的二进制数位,而不管其实际长度。
一般长度为字节的整倍数例如:在八位微机中,整数216 存储为11011000B整数56 存储为00111000B复习1)十进制特点:每一位数有02)二进制特点:3)十六进制特点:1(即乘10101000376542复习真值与机器数例:真值与机器数+77机机例:真值与机器数-77机机2数的定点与浮点表示计算机中如何表示实数中的小数点呢?计算机中不用专门的器件表示小数点,而是用数的两种不同的表示法来表示小数点的位置。
根据小数点的位置是否固定,数的表示方法分为定点表示和浮点表示,相应的机器数称为定点数和浮点数。
任意一个二进制数N均可表示为:N=S·2J其中:最后面或最前面,即分为定点纯小数与定点纯整数两类,如图1-6所示。
01000000定点小数:定取不同的数值,则在计算机中除了要表示尾码示阶码J。
因此,一个浮点数表示为阶码和尾数两部分,尾数一般是定点纯小数,阶码是定点纯整数,其形式如图点N = 2p S点例:X= +10110.01= 2 +101×(+ 0.1011001)26点= 2无符号数带符号数数有正、负→带符号数把符号位和数值位一起编码:原码,反码,补码。
顺时针调:7+9 =4 (mod 12)逆时针调:7-3 =4 (mod 12)由于时钟上超过12点时就会自动丢失一个数与原码相同,只要将符号位的得到它的真值。
对一个二进制数按位取反,最低位加1。
(计算机 已知负数的补码求真值在计算机中,用补码表示方法:按位取反,最低位加12 105 2 52 12 26 0[ 105D ] 补8位= 0 –0110 1001B = 0 –69H -D 2000:0 如,用DEBUG 查看到存放在内存中的一组符号数:由最高位判断:0 →正数7DH的真值= 7 ×16 + 13 = 125 D凡是能在计算机内存储或参与运算的都是二进制形式的机器数,计算机只能出别“0”和“1”,对于某个二进别致的最高位究竟应看做为符号位还是数值位,理论上是无法自动识别但是,由于引入了补码概念,使得计算机在进行无符号数和有符号数的运算时能够实现操作的一致性,且结果合理。
计算机常用数制及编码

计算机常用数制及编码1.二进制数制:二进制是计算机中最基本的数制,只包含两个数字0和1、它是一种逢二进一的计数法,每位上的数值以2为底数的幂来表示。
例如,二进制数1101表示1*2^3+1*2^2+0*2^1+1*2^0=13、在计算机中,二进制数被广泛应用于存储和运算等操作。
2.八进制数制:八进制使用8个数字0-7来表示。
它是二进制数制的一种压缩表示方法,每3位二进制数可以表示为一位八进制数。
例如,二进制数1101可以表示为八进制数15、八进制数在计算机界并不常见,但在一些特定场景下仍然有一定的应用。
3.十进制数制:十进制是我们常用的数制,使用10个数字0-9来表示数值,每位上的数值以10为底数的幂来表示。
例如,十进制数123表示1*10^2+2*10^1+3*10^0=123、十进制数制通常用于人类的日常计算中,但在计算机中也会涉及到十进制的处理,例如在涉及到金额、日期和时间等数字的场景中。
4.十六进制数制:十六进制使用16个数字0-9和A-F来表示,其中A-F分别表示十进制数10-15、它是二进制数制的另一种压缩表示方法,每4位二进制数可以表示为一位十六进制数。
十六进制数常用于计算机领域,因为它们可以更紧凑地表示二进制数。
例如,二进制数1101可以表示为十六进制数D。
编码系统是为了实现计算机和人类之间的信息交流而发展的。
下面介绍几种常见的编码系统:1.ASCII码:ASCII(American Standard Code for Information Interchange)是最早和最广泛使用的字符编码系统之一、它使用7位二进制数(扩展ASCII使用8位二进制数)来表示128(或256)个字符,包括英文字母、数字、符号等。
ASCII码可以用于存储和表示文本文件中的字符。
2. Unicode编码:3.UTF-8编码:UTF-8(Unicode Transformation Format - 8-bit)是一种对Unicode进行可变长度编码的字符编码系统。
常用数制

8421BCD码用0000H~1001H代表十进制数0~9,运算 法则是逢十进一。8421BCD码每位的权分别是8,4, 2,1,故得此名。 例如,1 649 的BCD码为0001 0110 0100 1001。
2.ASCII(American Standard Code for Information Interchange)码 ASCII码是一种字符编码,是美国信息交换标准代码的 简称,见表1-3.它由7位二进制数码构成,共有128个 字符。 ASCII主要用于微机与外设通信。当微机与ASCII码制 的键盘、打印机及CRT等连用时,均以ASCII码形式进 行数据传输。例如,当按微机的某一建时。键盘中的 单片机便将所按的键码转换成ASCII码传入微机进行相 应处理。
8+0+2+0=1010
(2)十进制
二进制
把一个十进制的整数一次除以所需要的底数,就能够转换 成不同底数的数。例如,为了把十进制的数转换成相应的 二进制数,只要把十进制数一次除以2并记下每次所得的余 数(余数总是1或0),所得的余数倒相排列即为相应的二 进制数。这种方法称为“除2取余”法。
(例1-1)把十进制数25转换成二进制数。 …… 余数 2 解 25 …… 1 2 12 …… 0 2 6 …… 0 2 3 …… 1 2 1 …… 1 0 所以,25D=11001B。
1.4
计算机中常用编码
由于计算机只能识别0和1两种状态,因而计算机 处理的任何信息必须以二进制形式表示。这些二进制 形式的代码即为二进制编码(Encode)。计算机中常用 的二进制编码有BCD码和ASCⅡ码等。 1.BCD(Binary Coded Decimal)码----二-十进制码 BCD码是一种二进制形式的十进制码,也称二-十进制 码。它用4位二进制数表示1位十进制数,最常用的是 8421BCD码,见表1-2。
计算机中的常用数制.

1 计算机中的常用数制进位计数制,按进位的原则计数,超过基数,向左边进位。
日常生活中有10进制、60进制……计算机中有2进制、8进制、16进制等。
1.1 常用的数制数字66是几?先要确定它是几进制数。
在进位计数制中有数位、基数和位权三个要素。
✧数位:是指数码在一个数中所处的位置。
对于任意禁止—J进制,J个数字符号,逢J进一。
例如十进制,逢十进一;✧基数:是指在某种进位计数制中,每个数位上所能使用的数码的个数。
例如十进制,0,1,2,3,4,5,6,7,8,9。
✧位权:在一个形成数的数码序列中,各位上的基数的幂有所不同。
例如十进制数,各数位的位权(由右至左)分别为100,101,102,……最常见,最熟悉的是10进制;计算机用2进制;8进制和16进制都是从2进制“派生”出来的。
1.2数制转换二←→十进制之间的转换是基础。
1)非十进制→十进制a n ...a1a0.a-1...a-m (r) = a n×r n+ …+ a1×r1 + a0×r0 +a-1×r-1+...a-m×r-ma i是某一位上的数码,r是基数,r i是权。
不同的基数,表示是不同的进制数。
r 进制转化成十进制:数码乘以各自的权的累加例:10101=1×24+1×22+1×20=21101.11(B)=22+1+2-1+2-2=5.75101(O)=82+1=6571(O)=7x8+1=57101A(H)=163+16+10=4106注:(B)—表示该数是二进制数;(O)—表示该数是八进制数;(H) —表示该数是16进制数2) 十进制数→非十进制整数部分和小数部分分别计算。
整数—除2取余,到0为止;小数—乘2取整,到0或满足精度为止。
最先算出的数离小数点近。
例:将十进制数转换成二进制数,小数部分和整数部分分别转换:整数部分:小数部分:2 100 0.6252 50 0 离小数点近× 22 25 0 离小数点近1 1.2502 12 1 × 22 6 0 0 0.502 3 0 × 22 1 1 1 1.00 1100.625=1100100.1013) 二、八、十六进制数制间的转换等价关系,3位二进制数对应1位8进制数;4位二进制数对应1位16进制数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习题
◆ 45D = 101101B
◆ 0.625D = 0.101B
◆ 97.6825D = 1100001.1011B
◆ 0.8D = ?
二、数制之间的相互转换规则 (二)十进制转换成二进制
注:十进制小数不一定都能转 换成完全等值的二进制小数。
二、数制之间的相互转换规则
十进制
八进制
十六进制
一、进位计数制
世上有10种人,一种是懂 二进制的人,一种不懂。
教学内容
1
进位计数制
2
数制之间的相互转换规则
3
二进制数的运算
教学目标
1. 理解数制的概念;
2. 熟练掌握常用数制相互转换规则; 3. 了解二进制数的相关运算。
一、进位计数制
数制:也称进位计数制,是用一组固定的符号和统 一的规则来表示数值大小的方法。 三要素: 1.数码:数制中表示基本数值大小的不同数字符号。 2.基数:数制所使用数码的个数。 3.位权:由位置决定的值,用基数的指数次幂表示。
二进制
二、数制之间的相互转换规则 (三)十六进制转换成二进制
规则:一分为四。
3 A 8 C . 9 D ↓ ↓ ↓ ↓ ↓ ↓ 0011 1010 1000 1100 . 1001 1101 3A8C.9DH=11101010001100.10011101B
二、数制之间的相互转换规则 (四)二进制转换成十六进制
规则:三位一组。以小数点为中心,向左右两方向按三位
一组划分,不足三位的组在各自方向的前面补0,然后将每 组三位二进制数代之以一位8进制数字。
10110101.01101 B
010 110 101 011 010
2 6 5 3 2
10110101.01101B=265.32O
二、数制之间的相互转换规则
题目:
◆(11001011.01011)2 = (313.26)8 ◆(CB.58)16 = (11001011.01011)2
二、数制之间的相互转换规则 (七)小结
按权展开
十进制 八进制
按 权 展 开 一分为四
十六进制
三 位 一 组
一 分 为 三
四位一组
二进制
教学内容
1
进位计数制
2
数制之间的相互转换规则
A.丁 C.丙 B.乙 D.甲
课程总结
1
进位计数制
2
数制之间的相互转换规则
3
二进制数的运算
课后作业
1. Page 42 :1、2、3、6、9、12、14, 要求:第2、6题要有计算步骤。
2. 预习后面的内容。
一、进位计数制 常用数制
十进制 数码
0123456789
二进制
01
八进制
01234567
十六进制
0123456789 ABCDEF
基数
位权
10
2
8
16
10的指数次幂
2的指数次幂
8的指数次幂
16的指数次幂
一、进位计数制 不同数制的表示
1.后缀字母B表示二进制,D表示十进制,O表示八进制, H表示十六进制。
二、数制之间的相互转换规则
ቤተ መጻሕፍቲ ባይዱ
十进制
八进制
十六进制
二进制
二、数制之间的相互转换规则 (五)八进制转换成二进制
规则:一分为三。
八进制数: 3 4 5 . 2 3 ↓ ↓ ↓ ↓ ↓ 二进制数:011 100 101 . 010 011
345.23O=11100101.010011B
二、数制之间的相互转换规则 (六)二进制转换成八进制
【例】 将十进制数0.25转换成二进制数。 0.25 × 2 0.50 × 2 1.00 …… 整数0 (高位) …… 整数1 (低位)
0.25D=0.01B
二、数制之间的相互转换规则 (二)十进制转换成二进制
【例】 将十进制数57. 25转换成二进制数。
57D=111001B 57.25D=111001.01B 0.25D=0.01B
如:375D 101B 76O A17H
2.括号加相应下标数字
如:(375)10 (101)2 (76)8 (A17)16
教学内容
1
进位计数制
2
数制之间的相互转换规则
3
二进制数的运算
二、数制之间的相互转换规则
十进制
八进制
十六进制
二进制
二、数制之间的相互转换规则 (一) 任意进制转换成十进制
规则:按权展开,相加之和。
【例】 将十进制数 57 转换成二进制数。 2 2 2 2 2 2 57 28 14 7 3 …… 余数1 …… 余数0 …… 余数0 …… 余数1 …… 余数1
(高位) (低位)
57D=111001B
1 …… 余数1 0
二、数制之间的相互转换规则 (二)十进制转换成二进制
规则:小数 乘(以)基取整,直至乘积的小数部分为0。先整为高,后 整为低。
3
二进制数的运算
三、二进制数的运算 算术运算
加法规则:
0+0=0 0+1=1
1101 + 1110 11011
1+0=1
1+1=10
三、二进制数的运算 算术运算
减法规则:
0-0=0 1-1=0
11011 - 1110 1101
1-0=1
0-1=1
三、二进制数的运算 逻辑运算
逻辑与的真值表
规则:四位一组。以小数点为中心,向左右两方向按四位
一组划分,不足四位的组在各自方向的前面补0,然后将每 组四位二进制数代之以一位16进制数字。
10111010111101.10111B
0010 1110 1011 1101 . 1011 1000
2 E B D B 8
10111010111101.10111B=2EBD.B8H
A
0
B
0
F = A&&B
0
0
1 1
1
0 1
0
0 1
三、二进制数的运算 逻辑运算
逻辑或的真值表
A
0 0 1 1
B
0 1 0 1
F = A||B
0 1 1 1
四、二进制数的逻辑运算 逻辑运算
逻辑非的真值表
A F=A
0
1
1
0
三、二进制数的运算
• 四个犯罪嫌疑人甲、乙、丙、丁口供如下: 甲说:“反正不是我干的。” 乙说:“是丁干的。” 丙说:“是乙干的。” 丁说:“乙是诬陷。” 已知他们当中只有一人说真话,并且罪犯只有 一个,谁是罪犯?
101.11B=1×22+0×21+1×20+1×2-1+1×2-2=5.75D
136O=1×82+3×81+6×80=94D 35AH =3×162+5×161+A×160=858D
二、数制之间的相互转换规则
十进制
八进制
十六进制
二进制
二、数制之间的相互转换规则 (二)十进制转换成二进制
规则:整数 除(以)基取余,直至商为0。先余为低,后余为高。