数学建模-房价评估模型
数学建模竞赛论文-基于灰色模型的房地产价格分析

摘要本文以重庆市为例,考察房地产价格变化关系。
首先要确定影响房地产价格变化的主要因素,然后建立房地产价格变化与各主要影响因素间的定量关系,接着着重研究住房保障规模变化对房地产价格的影响,并对房地产价格变化趋势进行合理的短期预测,最后针对上述结果,为稳定房地产价格提出相应的调控措施。
在第一问中,要求确定房地产价格的主要影响因素。
首先通过查找相关资料我们先确定影响房地产价格的可能影响因素及其相关统计数据。
然后通过建立灰色关联度分析模型,判断各可能影响因素与房地产价格之间的关联程度。
最后通过分析比较各因素与房地产价格的关联程度,从中找出影响房地产价格的主要因素,分别是土地交易价格、建筑材料价格、经济适用房面积、城镇化率、人均可支配收入。
在第二问中,要求找出房地产价格与各主要因素之间的数学模型。
首先我们选取问题一结论中的五个主要因素,以表1中各主要因素所对应年份的统计数据为分析对象,建立灰色(0,)GM N 模型。
然后根据灰色(0,)GM N 模型的分析方法得到(),GM 0N 估计式为()(1)(1)123()()()1.4968-0.282-0.5919-0.4894ˆ1x k =x k x k (1)(1)(1)456()+()()2.4368-0.0979x k x k x k ,代入相关年份的序号即可计算得到模拟序列。
最后利用后验差检验法将计算得到的预测值与原始值进行比较验证,通过验证后即可利用上述模型关系式进行预测。
在第三问中,要求利用上述模型考察未来三年保障房建设力度变化时,房地产价格的变化趋势。
首先由于数据缺失,我们需要分别对除房地产价格及保障房建设力度以外的4个因素建立灰色GM(1,1,)模型,对未来三年这4个因素的统计值进行预测,将房价的多因变量转化成一个因变量:保障房力度。
然后利用模型二得到的估计式,建立房地产价格与保障房建设力度之间的线性关系。
最后分析两者之间的定量关系,得到在不同保障房建设力度下,预测房价的变化趋势,并且得出结论:为了稳定房价,要保证保障房的建设面积每年比上一年翻一番。
房地产价格指数交易综合评价(数学建模论文)

房地产价格指数交易综合评价摘要本文主要针对房地产价格指数综合评价体系进行研究。
对于问题一,我们建立GM(1,1)模型来预测未来房地产的价格指数;考虑到题中所给的价格指数灵敏度过高,我们采用改进的灰色模型,把原数据三种价格指数换算为相对于2000年为100计算的价格指数,预测好值后再还原。
结果表明,这种改进使得拟合效果非常好。
最后我们得到2008年全国及35个大中城市的房屋租赁价格见表2,并对结果进行分析和解释。
对于问题二,考虑到题目中给出兰州市各年份房地产交易价格指数的相邻关系,拟可以建立回溯递推模型,通过2008年的房屋平均销售价格和房屋租赁平均价格求出2001年的房屋平均销售价格和房屋租赁平均价格分别为:3333.0元和14.6元。
对于问题三,我们通过一定的方法将数据予以排序筛选,找出了这35个城市8年间房屋销售价格增长速度最快和增长速度最慢的三个城市见表5。
对于问题四,通过对所得数据的分析,我们对全国各个城市分类分析,分别说明了各个类型的特点、发展趋势以及国家应采取的措施。
关键词:GM(1,1)模型最小二乘法 EXCEL数据处理 MATLAB拟合1. 问题的提出房地产开发与交易严重影响着城市居民的生活水平与生活质量,也影响着一个城市的经济发展水平。
近10年来,随着国家开发力度的加大和居民的生活需求的不断增多,全国的房地产销售也一路攀升,特别是近几年,住房价格的上升超出了城市居民的承受能力,给许多家庭带来了严重的住房压力,而且这几乎是个全国的普遍性问题。
面对这个问题,政府及时进行了有效的调控,但由于全国的各省市的经济发展不平衡,需要针对各地的不同情况进行有针对性的调控,再加上房地产交易这种商品的特殊性,使得政府往往无法获得全面的信息,且获得信息也需要有一定的周期。
因此,这种特殊性就给政府的调控带来了一定的难度。
房地产价格指数包括房屋销售价格指数、房屋租赁价格指数和土地交易价格指数。
目前,我国房地产市场主要集中在大中城市,据估计,全国35个大中城市的房地产投资额约占全国的70%多,,附表给出了我国35个大中城市从2001—2008年房地产交易价格指数的调查数据,通过对该调查数据的统计分析,解决一下问题:(1) 附表中2008年的土地交易价格指数和房屋租赁价格指数数据暂时缺少,采用一定的数据处理方法给出该年度的房屋租赁价格指数。
房价问题数学建模房价合理性预测

测, 但可能未考虑到影响因素对房价的本质性影响,故我们取灰色关联分析法分 析得到的关联度较大的因素,作为相关数据列,将房价作为特征数据列,建立 GM(1.N) 模型。而每个影响因素又是一个不确定性的灰色系统,所以我们用 GM(1.1)模型预测每个因素的走势,将两个模型结合起来,得到一个考虑影响因 素下的房价预测新数据,最后与仅用 GM(1.1)模型预测的房价数据做对比,从而 更全面、准确地分析两所城市的房价走势,引申到全国的房价走势。 2.3. 问题三的分析 针对问题三, 要探讨对房价调控的合理性措施,我们综合问题二利用灰色关 联分析所求的各个因素与房价关联度, 根据其关联度的大小确定房价调控的优先 权重,其次在根据 2005 年-2014 年各个因素与房价增长率的对比,得到每个因 素与房价之间的相互制约关系,再结合第二问通过灰色预测模型对未来 10 年房 价的预测值分析和第一问对房价合理性的双指标评判标准得到对于房价的直接 调控和简洁调控措施。 2.4. 问题四分析 问题四要求定量分析房价对经济发展的影响, 首先引入问题二中灰色关联度 得到的相关系数作为初始权重, 并从问题二得到的相关因素中,选取商品房销售 价格和房地产开发投资的加权平均代表房价指标,人均生产总值,恩格尔系数及 城市居民人均可支配收入的加权平均代表经济指标, 理清房价指标与经济指标的 相互关系,以房价作为自变量,经济作为因变量,建立多项式拟合模型。对于收 集到的数据, 先进行权重归一化和影响因素无量纲化的数据预处理,再将房价作 为自变量,经济作为因变量,运用 matlab 对其进行多项式拟合,并得到拟合曲 线和拟合多项式。通过拟合曲线分析房价的变化对经济发展的影响。
三. 模型假设
1.房价首付按 30%计算。 2.贷款年限为 30 年。 3.收集到的数据都是正确可靠的。 4.以商品房平均销售价格作为房价,假设全市房价相同为平均水平。 5.本文仅考虑人均可支配收入、 年末总人口、 房屋造价、 房地产开发投资额、 国内生产总值、恩格尔系数、商品房销售面积、竣工房屋面积、人均储蓄存款年 末余额、土地交易价格指数对房价的影响。
数学建模之住房的合理定价问题

住房的合理定价问题摘要房价的合理性已成为当今社会的热门话题。
本文依照题中所给出的数据,对3个问题分别建立模型并求解。
针对问题1,首先利用Excel建立图表,绘制出历年房价走势图。
然后,对原始数据进行拟合,得出指数型及多项式型拟合方程,并在原图上绘制出趋势线。
同时,求出确定性系数R2,依据R2是否接近于1判断拟合程度好坏,即检验拟合方程的有效性。
计算得出的指数型及二阶多项式型拟合方程:x,(i) =678.8le0.1281i、x2(i) =12.59i2 50.274i 716.38,由此预测出2010 年房价分别为4080元/平米、3888元/平米。
为了增加预测的可靠性,再结合二次指数平滑法对2010年房价进行预测。
通过比较实际值与预测值的平均偏差值ME的大小,选择出合适的o预测出2010年的房价为3800元/平米。
最后,建立三元线性回归模型,将上述三种方法对历年房价的预测值分别作为自变量x1、x2、X3的原始数据,以实际房价P(i)作为因变量,用Matlab软件拟合出多元线性方程:P f1(i) =—0.0202 —0.1389 刘⑴ 1.1319 X2(i) 0.0084 X3(i)。
代入相关数据,求出历年的最终房价预测值为3866元/平米。
针对问题2,通过Excel绘制出历年平均房价与人均GDP的关系走势图,且自动生成对原始数据进行拟合后的指数型和自变量为2阶、3阶、4阶的多项式型拟合方程及各自的确定性系数R2o R2的值分别为:0.8673; 0.9929 ; 0.9982; 0.9986。
由此判断,因2阶多项式型拟合方程的R2不仅十分接近于1,且相对于3阶、4阶的多项式方程更为简便,故选择:A 2P(i) =(_7E _06) [G(i)] 0.3236 G(i) -177.06 为平均房价与人均GDP 的关系方程。
最后,在联系当下实际状况的基础上对建立的模型进行研究,分析出平均房价与人均GDP的关系。
大学生数学建模_房价预测

西安邮电学院第九届大学生数学建模竞赛参赛作品参赛队编号: 016赛题类型代码: A题2 房价问题摘 要随着我国房地产市场的不断升温,居民买房难愈来愈严重。
定一个合适的房价既照顾到居民的需求也满足方差开发商的盈利需要是十分必要的,要达到这些目的都要用到数学模型来进行量化。
在本文中,我们经研究解决了城市房价模型,找出了影响房价的主要因素,建立预测下一阶段的房产均价的一个模型,同时也对政策对调控房价所起的作用作了详细的分析说明。
在解决房价模型问题时,我们用了多元线性回规模型和蛛网模型同时对相关变量进行分析和处理,最终找出了影响房价的主要因素为生产成本和供需关系。
并对房价的形成、演化机理和房地产投机进行了深入细致的分析。
模型一,我们通过比较西安房价近11年来的变化及城镇居民收入变化情况,找到买房难的根结。
模型二,在房价预测方面,我们选用多元线性回归,蛛网模型同时对相关变量进行分析和处理,最终找出影响房价的主要因素为生产成本和供需关系,求出房价预测的计算表达式。
模型三,我们取定一个时间段内某几个房价新政,结合新政出台时间前后某地房价的变化情况分析了房价新政对房价的调控作用。
我们选取房价新政的标准是根据政策内容对相关经济指标有直接作用效果。
最终我们发现,新政出台后,虽然房价依然是居高不下,但房价上涨速率得到了一定的控制,变化渐缓。
关键字:楼市 预测 蛛网模型 线性回归一、问题重述住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。
2008年受国际金融危机的影响,部分购房需求受到抑制,2009年在国家税收、土地等调控政策作用下,一度受到抑制的需求得到释放,适度宽松的货币政策使信贷规模加大,为房地产开发和商品房购买提供了比较充裕的资金,房地产市场供求大增,带动了整体回升。
但有的城市房价过高,上涨过快,加大了居民通过市场解决住房问题的难度,另一方面,部分投机者也通过各种融资渠道买入房屋囤积,期望获得高额利润,也是导致房价居高不下的原因之一。
数学建模——线性方程组构建房价预测模型2[1]
![数学建模——线性方程组构建房价预测模型2[1]](https://img.taocdn.com/s3/m/1ae8fbc15fbfc77da269b109.png)
一 问题重述和分析房地产价格问题一直是引起广泛争论的热点问题。
关于目前中国的房地产价格,老百姓普遍认为太贵、天价,所以,当地产商华远集团总裁任志强在博鳌论坛上抛出“30年间,和工资收入相比,房子等于没有涨价”的所谓“房价没涨论”后,立即激起舆论围攻。
有人号召全国的老百姓联合起来,不买任志强们的房子,让房地产商们的房子闲着、烂着、空置着,看他们能挺到什么时候?看他们还忽悠房价上涨不?高房价厌恶者反对一切看涨。
中国社科院日前日发布2009房地产蓝皮书认为,今年上半年房价总体下行,下半年市场有回暖可能。
“回暖”观点一出,毫无疑问地遭到网友一致炮轰,认为其“言过其实”。
只有倾听更多理性的声音,才能帮助百姓理性地理解房价、最终准确地判断房价的走势。
下文中,我们收集全国房地产的相关数据和长春市房地产的相关数据,分析确定影响房屋销售价格的主要因素,并建立全国房地产价格预测模型。
利用本模型对长春市房价做了预测。
二 模型假设与符号说明影响房价的因素很多,如人口数量、建房成本、GDP 、储蓄存款、人均可支配收入、消费者需求因素、房地产的住宅总投资、房地产每年的竣工面积、银行利率、供需关系等因素有关。
1) 假设房价与建房成本、人均GDP 、人均储蓄存款、人均可支配收入呈线性关系;2) 房屋建造成本用全国每年住宅的投资额与房地产竣工面积或者房地产总投资及每年开工面积来衡量;3) 全国经济发展用人均GDP 来衡量;4) 房价购买能力用人均储蓄存款、人均可支配收入来表示5) 消费者心理因素如对房价的期望忽略;消费者对房屋无偏好,如无学校、公园等; 6) 假设银行利率每年保持稳定,房屋供需处于平衡状态;7) 忽略一些配套设施对建房成本的影响,忽略人为的炒作和政府调控。
本文遇到的符号说明符号 符号表示的意义符号 符号表示的意义1ix第一个自变量,表示第i 年的人均可支配收入(元) 1iw ,. 自变量1ix 的系数参数2i x 第二个影响房价的自变量,表示第i 年的人均GDP (元).2iw自变量2i x,,的系数参数3i x 第三个影响房价的自变量,表示第i 年的房屋造价(元/平)3i w自变量3i x 的系数参数4i x第四个影响房价的自变量,表示第i 年的人均储蓄额(元)4iw自变量4i x的系数参数1x为一年的人均可支配收入(元)。
房地产定价数学建模

利用该模型可以快速准确地预测房 地产价格,为开发商和投资者提供 决策依据。
应用案例二
01
时间序列模型
时间序列模型是一种基于时间序列数据的数学建模方法,通过分析历史
数据来预测未来房地产价格走势。
02
模型建立
将房地产价格数据按照时间序列进行排列,并选择适当的时间序列模型
(如ARIMA模型、指数平滑模型等)进行拟合。
使用测试数据对训练好的模型进行评 估,计算模型的准确率、召回率、F1 值等指标,以衡量模型的性能。
模型优化
通过调整模型参数、增加或减少特征 等方式优化模型,提高预测精度。可 以采用交叉验证、网格搜索等技术进 行参数调优。
04
房地产定价的时间序列模型
时间序列模型的建立
1 2
确定模型类型
根据房地产市场的历史数据和变化趋势,选择适 合的时间序列模型,如ARIMA、指数平滑等。
02
房地产定价数学模型的基本 原理
线性回归模型
总结词
线性回归模型是一种预测模型,通过找出影响房地产价格的 主要因素,并建立它们之间的线性关系来预测房地产价格。
详细描述
线性回归模型假设房地产价格与诸如建筑成本、地价、利率 等变量之间存在线性关系。通过最小二乘法等统计技术,可 以估计出这些变量的系数,从而预测房地产价格。
数学建模在房地产定价中的作用
提高定价的准确性和科学性
数学建模能够综合考虑各种因素,建立合理的定价模型,提高定 价的准确性和科学性。
优化资源配置
通过数学建模,可以对不同地区、不同类型、不同时间段的房地产 进行合理定价,优化资源配置,促进市场健康发展。
促进市场公平竞争
数学建模能够减少信息不对称和市场垄断等问题,促进市场公平竞 争,保护消费者利益。
房价预测数学建模

一、摘要房价对经济发展和社会稳定有重大影响,本题的提出是为了探讨各房价的相关影响因素对房价的影响作用并依据相关分析结果给出调节房价的相关措施,并最终将房价的变动反映到经济发展上来.在目前民众普遍关注房价变动的情况下,本题的求解具有很大的应用价值为解决合理性评估问题,我们建立了房屋购买力模型:0XKY式中X代表城镇居民年人均可支配收入,Y代表每平米房价。
给合理性评估提供了一个参考标准,从而有效地评估了房价的合理性。
为解决房价走势问题,我们建立了多元线性回归分析和基于主成分分析的回归分析两个模型,在多元回归分析模型中,通过对各因素的回归拟合分析,建立回归方程,从而达到预测走势的目的。
在主成分分析模型中,通过相关算法,求解出主成分,并建立房价和综合主成分的回归方程,达到预测目的。
二、问题的提出房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。
我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,在这种情况下,对房价的合理性判断及走势的预测对于国家制定相关政策,稳定经济发展有重要意义.本题就是在这种背景下提出的.请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据,选取我国具有代表性的几类城市对房价的合理性及房价的未来走势等问题进行定量分析;根据分析结果,进一步探讨使得房价合理的具体措施,以及可能对经济发展产生的影响,并进行定量分析。
三、条件假设1: 本模型是针对基础房价进行讨论,基础房价指的是不考虑宏观调控政策影响的完全市场行为下的房价.2: 建筑成本有房地产投资总额和固定房屋竣工面积来反映.3: 忽略一些炒作对房价的影响.4:忽略经济危机等突发性事件对房价的影响。
四、符号约定五、问题分析.经过对问题的审阅,题目中包含四个问题:1.结合相关数据,定量分析有代表性的几类城市房价的合理性.2.结合相关数据,定量分析有代表性的几类城市房价的未来走势.3.根据以上分析结果,提出调控房价的具体措施.4.定量分析房价走势对经济发展的影响.在对问题有了初步认识后,我们查阅了经济学以及房地产的相关资料,给出了问题中所要求的对房价有影响的相关因素的数据,主要包括:房地产投资总额(亿元)、房屋竣工面积(2m)、生产总值(亿元)、总人口数、居民消费水平、人均GDP、商品房销售面积、城镇居民家庭人均可支配收入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模选拔作业《房价评估》房价影响因素评估摘要:自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业。
但是,房价的高低影响着国家的发展和人民生活水平的提高,因此,我们有必要了解影响我国房价的主要因素,政府才能针对性的采取措施,进一步推动房产行业的发展,发挥其龙头作用。
在问题一中,我们主要是分析影响我国房价变化的各个因素,确定其主要因素,该文通过在中国国家统计局和其他网站搜的相关数据,建立回归统计模型,确定房价和土地价值、人均可支配收入等其他因素的相关性系数,通过分析指数模型、线性模型,确定了线性模型,从而进一步确定了影响房价的最主要因素是国家土地增值税(亿元)、五年购房贷款利率、城镇居民家庭人均可支配收入(元)城市人口密度(人/平方公里),比如,房价和五年购房贷款利率的关系为9.6223361.3501+-=B W 其中,相关指数为0.97464,非常接近于1,这也说明,我国国家正在国家政策上控制房价。
最终可知最主要的因素是国家土地增值税(亿元),也就是我们所说的土地价值。
在问题二中,我们把房价与位置的关系定在同一个城市中,以这个条件为限制,而不去考虑东西部、南北方这样的大位置,房子的位置影响因素进一步表示为交通C 1、教育C 2、卫生C 3、工作C 4、环境C 5五个相关因素,通过层次分析法,建立模型,得到了相关权重,也就是房子的价格54321*0824.0*0787.0*2365.0*4731.0*1292.0C C C C C W ++++= 此问题得到解决。
在问题三中,主要是对前两个模型的检验,我们利用在网上收集北京市相关数据带入检验,并且在模型二中,通过对五个位置因素的分析,检验我们所得到的模型,着重分析了天津市,发现我们建立的模型基本符合实际,因此较为可靠。
关键词:回归统计 层次分析法 模型检验一、问题重述1.1 问题背景自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业,但是房价的高低却影响着国家的发展和社会的进步,我们有必要充分了解房价与各影响因素之间的关系。
1.2 问题影响房价的因素有很多,通过建立模型,确定影响房价的主要因素。
位置是影响房价的主要因素,建立模型分析位置与房价的关系。
以某个城市为例,检验前两个模型。
二、问题分析1.2.1 问题一这是一个评价模型,通过建立回归统计模型,确定各个因素对房价的影响力,影响房价的因素有很多,该问题的难点在于怎么样缩小影响因子,我们通过在网上收集大量参考文献,在中国国家统计局和其他网站收集相关数据,建立模型,得到答案。
1.2.2 问题二这是一个动态模型,通过分析关于位置的影响因素对房价的影响来分析各个因素对房价影响力大小的高低程度,在这里,我们通过层次分析法,建立线性函数,分析各个影响因素的权重,确定位置和房价的关系。
1.2.3 问题三这是一个检测问题,在模型一和模型二已经给出来的情况下对模型进行检测,以此为限制条件,这个问题的难点在于准确有效数据的收集和整理,并对数据做进一步加工处理。
三、模型假设1.假设我们在网上搜集的信息有效准确;2.假设经济性适用房的销售价格可以代表保障性住房的价格,从而进行本题的研究。
3.房地产价格受众多因素的影响,假设只考虑本文所研究的几个个因素,以外的其他因素对房产价格的影响可暂时忽略。
4.假设本文所研究的各项因素的误差是不相关的。
5.假设本文数据挖掘及处理研究过程中只出现有系统误差,无随机误差。
四、符号说明W——我国经济住房房价C1——交通因素影响力B1——国家土地增值税(亿元)C2——教育因素影响力B3——城镇居民家庭人均可支配收入(元)C3——卫生因素影响力B3——城镇居民家庭人均可支配收入(元)C4——工作因素影响力B4——城市人口密度(人/平方公里)C5——环境因素影响力β1、β2、β3、β4、β5——C1、C2、C3、C4、C5的权重A——正反比矩阵Λ——A的最大特征值五、模型建立与求解5.1 问题一5.1.1 模型分析我们在中国统计局和其他网站搜的如下数据房价和国家土地增值税(亿元)、五年购房贷款利率、城镇居民家庭人均可支配收入(元)城市人口密度(人/平方公里),说明一下,由于国家土地增值税的存在意义,我们在这里把国家土地增值税理解为土地价值。
相关数据如下:因为某些原因,我们没有得到完整的数据,但可以肯定,我们得到的数据真实有效。
在处理相关关系的时候,我们可以采取这样的方法,比如处理房价和五年购房贷款利率时,采取2005年到2011年的有效数据,但处理房价和城镇居民家庭人均可支配收入时,便采取2005年到2012年数据。
当然,通过中国国家统计局网站,我们还可以得到更多的影响房价的而问题,但是在翻看大量关于房价问题的参考文献的情况下,我们着重考虑这四种情况,这并不排除其他因素的不重要性。
5.1.2模型建立和求解我们把得到的数据通过散点图表述出来,就房价和国家土地增值税来说,他们的近似关系如下:为进一步确定其关系,我们建立两种模型: 指数模型为xey 00094.0221.15=。
线性模型为9.49494122.1-=x y 。
在这里,其中y 为房价,x 为国家土地增值税,也就是土地价值。
在这两种模型中,我们分别带入国家土地增值税的真实值求房价,统计他们的相对误差,结合线性模型的相关指数为0.91544,非常接近于1,于是决定采取线性模型。
通过类似的曲线模拟,我们得如下图案:得到如下线性关系:房价与五年购房贷款利率的关系为9.6223361.3501+-=B W ,相关指数为0.97464房价与国家土地增值税的线性关系为9.y,相关指数为.1-=x412249490.91544房价和城镇居民家庭人均可支配收入关系为8.y,相关指数=x32809133.4-为0.9607房价和人口密度线性关系为2.=xy,相关指数为0.54325584.1+1205由相关指数可以确定,对房价影响最大的因素为城镇居民家庭人均可支配收入,其次是土地价值和五年购房贷款利率,最后是人口密度,这就是我们考虑的四个因素与房价的相关性,其余类似。
5.2问题二5.2.1 模型分析确定房价问题类似地相当于一个决策问题,考虑到房价是居民购买房子的最关键、最主要的因素,我们需要建立模型分析位置对房价有什么影响和关系。
因此,可以采用层次分析法进行判断。
进一步分析位置关系,考虑到社会的发展,大多购房者对住址的要求,例如,房子附近的教育环境、交通是否便利等等,良好的位置应该最大可能满足居民在教育、卫生、交通等方面的要求,我们分为五类,分别是,教育、环境、卫生、交通、工作,关系如下:5.2.2 模型建立和求解通过分析五个因素,我们利用层次分析法,建立正反比矩阵A ,也就是在矩阵A 中,jiij a a 1=,得到 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=123/16/13/12/112/14/12/13212/1364216323/16/11A 利用MATLAB 求得A 的最大特征根为 10595665=λ,其一致性指标为 087.0455105956651n CI =--=--=n λ随机一致性指标RI 的数值如下:随机一致性指标RI 的数值可得A 的一致性比率1.0077.012.1087.0CR <===RI CI 即通过一致性检验,所得正反比矩阵可用。
利用MATLAB 求得最大特征根对应的特征向量为T2283338241734215786717896711063247),,,,(=ϖ 数据归一化处理后得:T0824.00787.0,2365.0,4731.0,1292.0),(=ϖ即得房价与位置的关系为54321*0824.0*0787.0*2365.0*4731.0*1292.0C C C C C W ++++= 也就是说,在位置中,对房价影响最大的是教育,其次是卫生,然后是交通、环境,最后是工作。
5.3 问题三5.3.1 问题分析及模型检验通过网上的数据,我们得到天津市近十年房价如下:我们把得到的上述数据带到模型一中,得到天津市的这些数据也符合模型一建立的回归模型,因此模型可靠。
模型二中,我们在网上得到,往往一个城市的学区房是这个城市中房价最高的地方,靠近各个学校,从幼儿园到大学,只要在学区房内,房价就高于其他房价。
在医院附近,房价也是很高的,其房价略低于学区房,在环境优美的地方,比如公园附近,房价较高,在市中心,虽然环境较差,但由于交通便利,其房价也高居不下。
六、模型评价6.1 模型优点1.数据来自国家统计局,具有真实性和权威性;2.通过查阅参考文献,适当选择所要研究的影响因素,忽略次要因素,简化了模型,但是根本方法依然给出,其他因素可以按照这种模型进行评估。
3.运用matlab软件实现数据拟合,使模型方案清晰明了;(4)采用抽样等数学思想,使模型简单且具有代表性;6.2 模型缺点1.数据采集不够精确,具有一定局限性,跟实际有所出入;2.没有考虑由于金融危机、大型自然灾害等意外情况以及政府调整政策等对此的影响,缺乏实际性。
3.在模型一中,没有比较其他相关性模型,例如冥属数模型等,假设所研究的因素相互无关,但在生活实际中,他们具有一定的联系。
6.2 模型改进在问题三中,我们采用灰度预测对所建模型进行评价,可以让我们的模型更加具有说服力。
七、参考文献[1]数学建模第八章离散模型,高等教育出版社,第二版,姜启源,谢金星,叶俊主编[2]MATLAB基础及应用教程数组和矩阵电子工业出版社尚涛主编。