北师大版数学七上2.9《有理数的乘方》word 精品导学案
北师大版数学七年级上册2.9《有理数的乘方》说课稿1

北师大版数学七年级上册2.9《有理数的乘方》说课稿1一. 教材分析《有理数的乘方》是北师大版数学七年级上册第2.9节的内容,本节课是在学生已经掌握了有理数的乘法、加法、减法、除法的基础上进行学习的,是对有理数运算的进一步拓展。
有理数的乘方是指一个有理数自乘若干次,例如(a2)表示(a)乘以(a),(a3)表示(a)乘以(a)再乘以(a)。
有理数的乘方在实际生活中有着广泛的应用,如计算利息、折现等。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的四则运算有一定的了解。
但是,学生可能对于有理数乘方的概念和意义理解不够深入,对于乘方的计算法则和应用可能还不够熟练。
因此,在教学过程中,需要引导学生从实际问题中抽象出有理数乘方的概念,并通过大量的练习来熟练计算法则。
三. 说教学目标1.理解有理数乘方的概念和意义,掌握有理数乘方的计算法则。
2.能够运用有理数乘方解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和创新能力,提高学生对数学的兴趣。
四. 说教学重难点1.教学重点:有理数乘方的概念、计算法则和应用。
2.教学难点:有理数乘方的计算法则的推导和理解,有理数乘方在实际问题中的应用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中抽象出有理数乘方的概念。
2.使用多媒体课件和板书相结合的方式,直观地展示有理数乘方的过程和规律。
3.通过大量的练习和小组讨论,让学生熟练掌握有理数乘方的计算法则。
4.采用激励评价和过程性评价相结合的方式,鼓励学生积极参与课堂活动,提高学生的学习积极性。
六. 说教学过程1.导入:通过一个实际问题,如计算利息,引入有理数乘方的概念。
2.新课导入:讲解有理数乘方的定义和计算法则,引导学生通过观察和思考,发现乘方的规律。
3.案例分析:通过几个具体的例子,让学生理解和掌握有理数乘方的计算法则。
4.练习环节:布置一些练习题,让学生独立完成,巩固所学内容。
七年级数学上册 2.9.2 有理数的乘方教案 (新版)北师大版-(新版)北师大版初中七年级上册数学教

课时课题:有理数的乘方教学目标:1.进一步理解有理数乘方的意义并能解决一些相关的数学问题;经历有理数乘方的符号法则的探究过程,通过实际计算发现底数为10的幂的特点.2.通过实例感受有理数的乘方运算在具体情境中体会当指数增加时底数为2的幂的增长速度是很快的,通过对解决过程的反思获得解决问题的经验.3.参与操作折纸活动让学生在探索问题的过程中体验学习数学的乐趣,增强自主学习,合作学习意识与习惯.教学重点与难点:重点:进一步理解有理数乘方的意义并能正确进行有理数乘方运算,同时体会当指数不断增加时底数为2的幂的增长速度是很快的.难点:理解乘方的概念,并会用乘方运算解决生活中的问题.课前准备:制作PPT课件.教学过程:一、温故知新,导入新课1.什么是有理数的乘方?什么叫幂?2.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋.为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求.大臣说:“就在这个棋盘上放些米粒吧.第一格放一粒米,第二格放两粒米,第三格放4粒米,然后是8粒米、16粒、32粒、…一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”你认为国王的国库里有这么多米吗?处理方式:第1题让学生回顾有理数乘方的意义,指出na 每个字母所代表的含义.也可以让一名学生举例,其他学生回答的方式进行.第2题目可以采用讲故事的形式来出示问题,然后让小组间交流讨论,让各个小组选一名代表来发表各组的看法,最后教师总结: 总共有的米可列式为:1+22+23+24+……+263 =(264-1)粒米,总共有18 446 744 073 709 551 615粒米,假设10000粒米为1斤,100斤为1袋,估计有多少袋?大约有1 844 674 407 370袋.全国的粮食加起来也不够.设计意图:首先回顾上一节的内容然后再通过讲趣味故事来吸引学生的注意力,激发学生的求知欲,并可以通过本节课的学习来解决这类问题并从中获得启示.二、探究学习,感悟新知 探究1:特例归纳,符号法则 例3 计算:(1)102,103,104,105; (2)()210-,()310-,()410-,()510-.解:(1)210= 100, 310= 1000,410=10000, 510=100000; (2)()210-= 100, ()310-= -1000, ()410-=10000, ()510-= -100000.处理方式:教师让两名学生板演,其他学生在练习本上完成.在学生完成后组织学生进行评价与纠错,规X 解题过程,把答案校对完之后让学生观察例3的结果,并且思考有什么规律,通过小组的交流合作来进一步的总结.或者从以上特例的计算结果中是否能发现乘方运算的符号有什么特点吗?什么时候是正,什么时候是负呢?观察以10为底数的幂,仔细观察结果你还有哪些发现?然后回答 .最后教师总结:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.还可以得到10的n 次幂的特点是1后面有n 个0.设计意图:对例3的讲解一方面引导学生不断地回顾幂的意义,熟练有理数的乘方运算;另一方面指出题目的特点,鼓励学生尽可能多地从运算结果中观察、发现正数幂的符号特点负数幂的符号特点并总结以10为底数的幂的特点,培养学生的观察能力及归纳能力.探究2:动手实践,探索发现师生共同参与折纸活动,一边折,一边思考以下问题:纸的厚度为,对折一次后,厚度为2×;对折两次后,厚度为多少毫米?三次呢?你是怎么计算的?对折20次后,厚度为多少毫米? 若每层楼高度为3米,这X纸对折20次后约有多少层楼高? 通过活动,你从中得到了什么启示?对折1次对折2次对折3次处理方式:通过小组合作的方式让学生一边折纸一边思考,然后通过计算得出对折两次后,厚度为;对折三次后,厚度为;对折两次是4层纸,对折三次是8层纸.所以厚度分别为和;对折20次后,纸的层数是20个2相乘,也就是220厚度为220×.由教师来计算220×0.1=1048576220×=.相当于约35层楼房的高度.教师引导学生回答:当指数不断增加时,底数为2的幂的增长速度相当快.设计意图:培养学生积极参与课堂教学的意识,提高动手能力,猜想能力,估算能力.通过“折纸活动”,加深对乘方意义的理解,也进一步体会了当指数不断增加时,底数为2的幂的增长速度相当快.通过折纸活动学生也积累了一定的数学经验.三、应用新知,分析问题问题:拉面师傅把一根粗面条拉长、两头捏合,再拉长、捏合,重复这样,就拉成许多根细面条了.据报道,在一次比赛中,某拉面师傅用1kg面粉拉出约209万根面条,可约209万根面条,是没法数的.你知道怎样得出这个结论的吗?…第一次第二次第三次处理方式:小组间继续合作交流讨论,由学生试着回答,然后教师引导学生参照上面两个问题的解决方法来分析:第一次2根面条;第二次22根面条;第三次23根面条;第n次2n根面条.因此,只要数出拉面师傅一共操作了几次就能算出共拉出了多少根面条,鼓励学生大胆地、有依据地估计、猜想n10=1024≈103,那么220≈106,即约为100万,所以221约为200万,即大约拉21次即可.设计意图:培养学生应用知识解决问题的能力. 进一步加深对乘方意义的理解,体会当指数不断增加时,底数为2的幂的增长速度相当快,积累应用数学知识解决实际生活问题的经验.四、巩固训练,提升能力 (A 层) 1.计算:(1)43-; (2)23()2--; (3)3(3)--; (4)243-; (5)232-2.判断下列程式结果的符号,你能发现什么规律? (1)4(5)-; (2)5(5)-; (3)6(5)-; (4)7(5)--. (B 层)3.面积为3.2平方米的长方形纸片,第一次截去一半,第二次截去剩下的一半,如此下去,第六次截后剩下的面积是多少?处理方式:第1题找5名学生板书过程,其余的学生在练习本上完成,然后由学生来批改黑板上的习题,第2题学生写出答案后小组间合作找规律,第3题让一些学有余力的学生来完成,大概利用5至6分钟的时间由来完成.设计意图:习题的设计要注意到学生的思维是一个循序渐进的过程,所以由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展.通过练习进一步熟悉有理数乘方的运算及乘方的符号法则.五、课堂小结,升华认知请同学们谈一下本节课的收获和感想?1.正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数. 2.10的n 次幂等于1的后面有n 个0.3.当指数不断增加时,底数为2的幂的增长速度相当快. ……处理方式:教师一方面应积极鼓励学生参与特别是为学习有困难的学生创设发言机会以提高他们的兴趣和自信另一方面要把握课堂小结的准确性和全面性对学生的小节做出适当的补充和修正.设计意图:提高学生的课堂参与意识发展学生的课堂小节能力语言表达交流能力.为学生提供展示自我彰显个性的机会.六、达标检测,应用反馈 必做题:1.2(3)-的底数是,指数,结果为;23-的底数,指数结果. 2.计算:(1)21()2-;(2)33()2-;(3)3(6)-;(4)24()3-.3.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 … 输出 ……当输入数据是8时,则输出的数据是 ________;当输入数据是n 时,则输出的数据是 ________.(选做)4.趣味数学【是真的吗?】珠穆朗玛峰是世界的最高峰,它的海拔高度是8844米.把一X 足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰,这是真的吗?处理方式:选做题利用上面的经验教师指导学生共同完成.教师板书:×230=×1073741824 =.8844.43 ×12=106133.16.所以如果把足够长的厚的纸折叠30次后有10万多米高,有12个珠穆朗玛峰高.这是真的设计意图:本环节的目的就是为了检测学生的达标情况和巩固练习,同时为学有余力的学生设置了有创新思维的问题,以满足不同层次的学生在数学发展方面的需要.七、布置作业,达成目标必做题:课本习题 2.14 第1题; 选做题:课本习题 2.14 第3题. 补充题:计算:(1)31()3-; (2)2332-⨯; (3)23(3)(2)-⨯-;(4)223-⨯; (5)2(23)-⨯; (6)4(2);--(7)20011()-; (8)322+3();-- (9)2223-⨯-()().处理方式:学生按照要求课下完成作业,对于选做题让学有余力的学生完成.对于补充题学生可以课下讨论完成.设计意图:复习巩固检测本节知识训练提高运算技能和解决问题的能力.选做题是为了让学有余力的学生由此感受到当底数小于1时乘方运算的结果减少的速度很快.让不同的学生得到不同的发展.板书设计:。
北师大版七年级数学上册2.9有理数乘方教学设计

(1)总结乘方的性质和法则,并以举例的形式进行说明;
(2)讨论乘方在实际生活中的应用,例如在科学、技术、经济等领域。
5.探究性学习题:鼓励学生利用网络、书籍等资源,了解乘方的起源和发展,了解数学家们在乘方研究方面的贡献,并撰写一篇简要的探究报告。
作业要求:
(2)竞赛:设计乘方运算竞赛,鼓励学生积极参与,提高学生的运算速度和准确率;
(3)游戏:设计乘方主题的数学游戏,让学生在轻松愉快的氛围中巩固乘方的知识。
4.加强课堂练习,注重讲练结合,及时巩固所学知识。针对不同难度的题目,分别设计基础题、提高题和拓展题,以满足不同层次学生的学习需求。
5.创设实际情境,设计具有挑战性的问题,引导学生运用乘方知识解决问题,提高学生的知识运用能力和解决问题的能力。
6.注重课后辅导,针对学生在课堂上遇到的问题,进行个性化的指导,帮助学生克服困难,提高学习效果。
7.定期进行教学评价,通过课堂提问、课后作业、测验等形式,了解学生的学习进度,调整教学策略。
四、教学内容与过程
(一)导入新课
1.教学内容:通过生活中的实例,引导学生感知乘方的意义,为新课的学习做好铺垫。
教学过程:
三、教学重难点和教学设想
(一)教学重难点
1.重点:乘方的概念、性质和法则的理解与运用。
2.难点:
(1)乘方概念的理解,特别是负整数乘方和零乘方的意义;
(2)同底数幂的乘法、除法,幂的乘方,积的乘方等运算规则的掌握;
(3)解决实际问题时,将乘方知识与其他数学知识综合运用。
(二)教学设想
1.采用情境导入法,以生活中的实例引入乘方概念,让学生感知乘方的实际意义。例如,通过教室地面的面积、体积等实例,引导学生发现乘方的规律,理解乘方的意义。
2017北师大版数学七年级上册2.9《有理数的乘方》word导学案2

有理数的乘方学法指导1.深刻理解有理数乘方的意义;2.熟练掌握乘方的有关运算.一.预学质疑(设疑猜想.主动探究)1.计算:(1)()33-- (2)()24-- (3) 25-(4) 245⎪⎭⎫ ⎝⎛-- (5)2311⎪⎭⎫ ⎝⎛-- (6)452-2.将厚0.1毫米的一张纸对折,再对折,这样折4次,其厚度为( )毫米.A .0.4B .0.8C .0.32D .1.6二.研学析疑(合作交流.解决问题)1计算: (1)234510,10,10,10; (2)2345(10),(10),(10),(10);---- 解:2345(1)10______,10_______,10_______,10________;==== 2345(2)(10)______,(10)_______,(10)_______,(10)________;-=-=-=-= 观察结果,你发现什么规律?正数的任何次幂都是__________,负数的奇次幂是___________,负数的偶次幂是__________.2.计算:(注意确定符号)(1)()23- (2)26- (3)()32- (4)()26--(5)()34-- (6) ()29-- (7) ()35-- (8)232⎪⎭⎫ ⎝⎛(9)243⎪⎭⎫ ⎝⎛- (10)252⎪⎭⎫ ⎝⎛- (11)232- (12)243-(13)254⎪⎭⎫ ⎝⎛-- (14)334⎪⎭⎫ ⎝⎛-- (15)⎪⎪⎭⎫ ⎝⎛--542 (16)⎪⎭⎫ ⎝⎛--274三.导法展示(巩固升华.拓展思维)1.计算下列各题: ⑴ ()()2332-⋅- ⑵ ()2332-⋅- ⑶ 2535⎪⎭⎫ ⎝⎛⨯-⑷ 234332⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛ (5) ()243⨯- (6) ()2332-+-2. 一根绳子有10000米长,现要把它对折成长度相同的若干段,使每段刚好低于10米,则要对折多少次?四.小结反思(自主整理,归纳总结)五.促评反思(反思评价,课外练习)1.当5,3-=-=b a 时,求下列各式的值:(1) 2)(b a +; (2) 222b ab a ++.2.平方得9的数有几个?是什么?有没有平方得-9的有理数? 一个数的平方可能是负数吗?为什么?3.若02)1(22=-++b a ,求32000b a ⋅的值.。
北师大版七年级数学上册2.9有理数乘方教学设计

(二)过程与方法
在本章节的教学过程中,教师应注重引导学生通过观察、思考、探究、合作等途径,培养以下能力:
1.观察力:通过观察乘方的实例,发现乘方的规律,培养学生的观察能力。
2.思维能力:引导学生思考乘方的定义和法则,培养学生的抽象逻辑思维能力。
3.探究能力:鼓励学生自主探索乘方的运算规律,提高学生的探究能力。
(五)总结归纳
1.归纳总结:引导学生总结本节课所学内容,加深对乘方知识的理解。
教师提问:“通过本节课的学习,我们学习了什么内容?有理数乘方的运算规则有哪些?它们在实际运算中如何应用?”
2.知识拓展:介绍乘方在科学、技术、生活中的应用,激发学生的学习兴趣。
教师讲解:“乘方运算在科学、技术、生活中有着广泛的应用,如计算机的运算速度、物体的体积计算等,都离不开乘方运算。”
(三)学生小组讨论
1.分组讨论:组织学生分组讨论,共同探讨乘方的运算规则。
教师指导:“下面请同学们分成小组,结合刚才的学习内容,讨论以下问题:有理数乘方的运算规则有哪些?它们在实际运算中如何应用?”
2.交流分享:各小组汇报讨论成果,其他小组进行补充。
教师引导:“现在请各小组派代表汇报你们的讨论成果,其他同学认真听,看看哪个小组总结得最全面。”
1.抽象思维的挑战:乘方运算涉及抽象逻辑思维,学生需要从具体的乘法运算中提炼出乘方的规律,这对部分学生来说可能存在一定难度。
2.运算符号的混淆:在有理数乘方中,正负号的处理容易让学生产生混淆,如何正确运用乘方运算符号,需要教师重点指导。
3.实际应用能力的培养:乘方运算在生活中的应用较广泛,学生需要将所学知识运用到实际问题中,这需要教师在教学过程中注重培养学生的问题解决能力。
《有理数的乘方》第一课时(完整版)精品导学案

精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最||新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最||正确选择 .2.9.1有理数的乘方【学习目标】熟悉有理数的乘方的定义,并能通过乘方进行计算【学习重难点】学习重点:乘方的意义及其计算.学习难点:学习难点:通过你的认真预习,你觉得这节课的难点是【预习学法指导】一、利用6分钟时间通过自己认真阅读课本第58~59页,独立完成下面的问题:某种细胞每过30分便由1个分裂成2个,1个小时后分裂成2×2个, 1.5个小时后分裂成2×2×2个…,5个小时后要分裂10次,分裂成2102222个⨯⨯⨯⨯=1024 (个) ,为了简便,可将2102222个⨯⨯⨯⨯记为102,细胞分裂示意图一般地,n个相同因数a相乘anaaa个⨯⨯⨯( n是正整数)记作n a.如:35表示3个5相乘.这种求n个相同因数的积的运算叫做,乘方的结果叫做,a叫做,n叫做,n a读作"a的n次幂〞(或"a的n次方) 一般地,在n a中,a取任意有理数,n取正整数.二、利用2分钟时间进一步阅读课本第58页例题1 ,独立完成下面的题目:(1 )在( -3 )3中,底数是,指数是,写成乘法是(2 )计算:①63 ② 25.1-)( ③271-)(三、利用2分钟时间进一步阅读课本第59页例题2 ,独立完成下面的题目:(1 ) - ( -2 )3 (2 ) 22- (3 ) -523(4 ) ( -2 )4 (5 ) -24祝贺你已经按照导学案的要求顺利完成预习环节 !请问 ,你只用了 分钟来完成的 ?还有时间就继续挑战吧 !四、运用与拓展延伸:1、一个数的平方等这个数的本身 ,那么这个数为 .2、一个数的立方与这个数的差为0 ,那么这个数是 .3、 n 为正整数 ,那么=n 21)(- ,=-+12)1(n 课内训练稳固1、23的底数是 ,指数是 ,结果是 .2、一个数的平方等于16 ,那么这个数是 ( )A. +4B. -4C.4±D.8±3、计算: (1 )44)(- (2 )44(3 ) -23)(- (4 )232 (5 ) (232) (6 ) - ( -43 )3(7 ) ( -3 )2(8 ) -32以下为赠送内容别想一下造出大海,必须先由小河川开始 .成功不是只有将来才有,而是从决定做的那一刻起,持续积累而成!人假设软弱就是自己最||大的敌人,人假设勇敢就是自己最||好的朋友 .成功就是每天进步一点点!如果要挖井,就要挖到水出为止 .即使爬到最||高的山上,一次也只能脚踏实地地迈一步 .今天拼搏努力,他日谁与争锋 .在你不害怕的时候去斗牛,这不算什么;在你害怕的时候不去斗牛,这没什么了不起;只有在你害怕的时候还去斗牛才是真正的了不起 .行动不一定带来快乐,但无行动决无快乐 .只有一条路不能选择- -那就是放弃之路;只有一条路不能拒绝|| - -那就是成长之路 .坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的 .只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:"我问心无愧 ."用今天的泪播种,收获明天的微笑 .人生重要的不是所站的位置,而是所朝的方向 .弱者只有千难万难,而勇者那么能披荆斩棘;愚者只有声声哀叹,智者却有千路万路 .坚持不懈,直到成功!最||淡的墨水也胜过最||强的记忆 .凑合凑合,自己负责 .有志者自有千计万计,无志者只感千难万难 .我中|考,我自信!我尽力我无悔!听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而行的是智者 .相信自己能突破重围 .努力造就实力,态度决定高度 .把自己当傻瓜,不懂就问,你会学的更多 .人的活动如果没有理想的鼓舞,就会变得空虚而渺小 .安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久 .眉毛上的汗水和眉毛下的泪水,你必须选择一样!假设不给自己设限,那么人生中就没有限制你发挥的藩篱 .相信自己我能行!任何业绩的质变都来自于量变的积累 .明天的希望,让我们忘了今天的痛苦 .世|界上最||重要的事情,不在于我们身在何处,而在于我们朝着什么方向走 .爱拼才会赢努力拼搏,青春无悔!。
北师大版数学七年级上册2.9《有理数的乘方》说课稿2

北师大版数学七年级上册2.9《有理数的乘方》说课稿2一. 教材分析《有理数的乘方》是北师大版数学七年级上册第2.9节的内容,本节内容是在学生已经掌握了有理数的加减乘除和乘方的概念基础上进行讲解的。
本节课的主要内容是让学生掌握有理数的乘方运算,理解乘方的意义,以及会进行有理数的乘方运算。
在教材中,首先通过examples 引出有理数的乘方,然后通过解释乘方的意义,让学生理解乘方的概念。
接下来,教材给出了有理数乘方的法则,并通过大量的练习让学生熟练掌握有理数的乘方运算。
最后,教材还介绍了乘方的性质,让学生进一步理解乘方的意义。
二. 学情分析在七年级的学生中,大部分学生已经掌握了有理数的加减乘除运算,但是对于有理数的乘方运算,很多学生可能还没有完全理解。
因此,在本节课的教学中,需要让学生通过 examples 和练习,逐步理解和掌握有理数的乘方运算。
同时,七年级的学生已经具备了一定的逻辑思维能力,可以通过解释和讲解让学生理解乘方的意义。
此外,学生对于数学的学习兴趣也较高,可以通过examples 和练习激发学生的学习兴趣。
三. 说教学目标本节课的教学目标是让学生掌握有理数的乘方运算,理解乘方的意义,以及会进行有理数的乘方运算。
具体来说,学生需要能够:1.理解有理数的乘方概念,掌握有理数的乘方运算。
2.理解乘方的意义,能够运用乘方解决实际问题。
3.能够运用有理数的乘方法则进行计算,并能够进行乘方的性质推导。
四. 说教学重难点本节课的教学重难点是让学生理解乘方的意义,以及掌握有理数的乘方运算。
具体来说,学生需要能够:1.理解乘方的意义,能够运用乘方解决实际问题。
2.掌握有理数的乘方运算,能够熟练进行有理数的乘方计算。
3.理解乘方的性质,能够进行乘方的性质推导。
五.说教学方法与手段在本节课的教学中,我将采用讲授法和练习法进行教学。
首先,通过讲解和解释让学生理解乘方的意义,然后通过 examples 和练习让学生掌握有理数的乘方运算。
2.9 有理数的乘方 第二课时 教学设计 2023—2024学年北师大版数学七年级上册

学校
授课教师
课时
授课班级
授课地点
教具
教材分析
“2.9有理数的乘方第二课时教学设计2023—2024学年北师大版数学七年级上册”这一节内容,是在学生已经掌握了有理数的加减乘除和负数的概念基础上,进一步引出有理数的乘方。通过这一节的学习,使学生理解有理数乘方的概念,掌握有理数乘方的法则,并能够运用有理数乘方解决实际问题。
(2)引导学生阅读一些数学故事书籍,如《数学家的故事》、《数学的奇遇》等,通过了解数学家的生平事迹和数学的发展历程,激发学生对数学的兴趣和热情。
(3)鼓励学生参加数学俱乐部或数学小组,与其他同学一起讨论和解决数学问题,培养学生的合作能力和团队精神。
(4)让学生尝试学习一些与有理数乘方相关的数学软件或工具的使用,如MATLAB、Python等,通过编程和软件工具的使用,加深对有理数乘方的理解和应用。
(3)运用有理数乘方解决实际问题。学生需要能够将所学的有理数乘方知识应用到实际问题中,例如计算利息、折扣等。
2.教学难点
本节课的难点主要在于学生对有理数乘方法则的理解和应用。具体来说,教学难点包括以下几个方面:
(1)理解乘方的含义。学生可能对乘方的概念理解不深,容易将其与乘法混淆。因此,教师需要通过具体的例子,引导学生理解乘方的含义,让学生能够将乘方运用到实际问题中。
5.拓展练习:
(1)计算下列各题的结果:
(1) (-3)^4
(2) (2)^5
(3) (-4)^5
(2)应用有理数乘方解决实际问题:
(1)某人存入银行1000元,年利率为5%,求一年后的存款总额。
(2)某商品原价为100元,现打九折出售,求打折后的价格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⋅⋅⋅⋅⋅⋅⋅=a a a a a a a a n 个a 相乘呢?
【活动3】探究新知
1.结合书61-62页内容学习,完成下面的问题
1) 叫乘方,
叫做幂,在式子n
a 中,a 叫做 ,n 叫做 .
2)式子n
a 表示的意义是 3)从运算上看式子n
a ,可以读作 , 从结果上看式子n
a ,可以读作 .
由此可知:乘方也是一种 ,形式是特殊的 ,乘方的结果叫做幂。
特殊地:a 可以看做a 的 次幂,也就是说a 的指数是 。
如1
5=
【活动4】应用新知,加深理解 1.指出底数、指数和幂的结果
1)在3
2中,底数是 ,指数是 ,3
2 读作 ,或 ,或 。
幂的结果是 × × = 2)2
)2(-的底数是 ,指数是 ,幂的结果是 = 3)412⎛⎫ ⎪⎝⎭ 的底数是 ,指数是 ,幂的结果是 =
4)5看成幂的话,底数是 ,指数是 ,可看作 5)()3a -的底数是 ,指数是 ,幂的结果是 2.把下列式子写成乘方运算的形式 (1)1×1×1×1×1×1×1= ; (2)2.3×2.3×2.3×2.3 ×2.3= ; (3)(-3)×(-3)×(-3)= ;
(4) =
(5) n
a
55556666⨯⨯⨯①需要注意什么?②比较“=”左边和右边的写法有何感受?
观察各底数有
什么特点?需要注意什么?
55556666
-⨯⨯⨯=
教师个人研修总结
在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:
1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。
4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。
5.课题研究:立足自身发展实际,学校和骨干教师积极申报和参与各级教育科研课题的研究工作,认真落实研究过程,定期总结和交流阶段性研究成果,及时把研究成果转化为教师的教育教学实践,促进教育质量的提高和教师自身的成长。
6.专题讲座:结合教育教学改革的热点问题,针对学校发展中存在的共性问题和方向性问题,进行专题理论讲座。
7.校干引领:从学校领导开始,带头出示公开课、研讨课,参与本校的教学观摩活动,进行教学指导和引领。
8.网络研修:充分发挥现代信息技术,特别是网络技术的独特优势,借助教师教育博客等平台,促进自我反思、同伴互助和专家引领活动的深入、广泛开展。
我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。
多年来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。
反思本学期的工作,还存在不少问题。
很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确,是继续努力的方向。
另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏等各类问题摆在我们面前。
缺乏专业人员的引领,各方面的工作开展得还不够规范。
相信随着课程改革的深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地展开。
“校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台阶。